用户名: 密码: 验证码:
碳纤维表面纳米结构的构筑及其复合材料性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维增强树脂基复合材料己经在航空航天、汽车、船舶、石油、化工等行业得到了广泛的应用,然而碳纤维表面惰性大、活性官能团少,导致其与基体的界面粘结性差,很大程度上影响了复合材料整体的力学性能,限制了其应用范围。由微米尺度的传统碳纤维与纳米尺度的碳纳米管复合而成的增强材料-碳纳米管/碳纤维多尺度增强体可以明显改善复合材料的界面性能,进而提高复合材料的整体性能,因而成为近年来研究的热点。
     碳纤维除了上述被用作结构增强型材料以外,碳纤维由于其优良的电性能等因素,近年来作为载体在功能材料等领域也受到了广泛的研究。碳纤维由于其低密度和良好的导电特性等优势,以碳纤维为基体的改性材料在电磁屏蔽和吸收方面也有优异的表现,被越来越多的作为吸波材料的基体材料。碳纤维本身具有优异的介电损耗性能,可单独作为吸波剂制备轻质吸波材料,因此,具有磁性无机纳米涂层的碳纤维有望成为具有结构增强性能的新型吸波材料。
     本论文主要从碳纤维的表面改性入手,在碳纤维的表面及纳米粒子表面引入反应较强的活性点,使碳纤维与纳米粒子通过化学或者物理作用有效地结合,从而实现碳纤维复合材料的高性能化及高功能化。
     (1)本论文采用一种化学修饰的方法将碳纳米管修饰在碳纤维表面。混酸处理后的碳纳米管被分散在聚乙烯醇溶液中,碳纤维浸渍在分散有碳纳米管的聚乙烯醇溶液中。碳纤维在氮气的保护下经过高温处理,在其表面形成了少量胺基基团。带有羧基基团的碳纳米管与含有胺基基团的碳纤维通过羧基与胺基的缩合反应,将碳纳米管修饰在了碳纤维的表面。通过傅里叶变换红外光谱、X光电子能谱仪、场发射电镜,以及拉曼光谱分析对化学修饰碳纳米管的碳纤维进行了分析表征。由力学性能分析得知,化学修饰碳纳米管的碳纤维其单丝的拉伸强度比初始碳纤维单丝的拉伸强度提高了15%。这进一步证明了在碳纤维表面修饰碳纳米管,能够修复碳纤维的表面缺陷,减少由缺陷引起的应力集中现象,最终提高了碳纤维的拉伸强度。
     (2)本论文通过化学气相沉积(CVD)法分别在碳纤维(Carbon fiber)、碳布(carbon cloth)和碳纸(carbon paper)表面原位生长了不同形貌的碳纳米管。该方法通过将催化剂前驱体二茂铁溶解在碳源二甲苯中通过高温分解碳源来实现碳纳米管在碳纤维表面的取向生长。通过固定催化剂种类、催化剂浓度、反应时间等反应条件,研究反应温度的变化对碳纤维表面生长的碳纳米管表面形貌的影响,最终得出适宜碳纳米管生长的最佳反应温度,并且通过拉曼光谱分析了碳纤维表面生长碳纳米管以后的杂化结构。
     (3)碳纳米管及其碳纤维具有优异的性能,可以作为高性能复合材料的增强体而成为研究的热点。但是碳纤维表面呈惰性,与基体粘结性差,限制了复合材料性能的提高,且碳纤维与碳纳米管的表面均缺少活性官能团,与复合材料的相容性较差,这些都成为制约二者应用的一个重要因素,为改善复合材料的界面性能,对二者进行了表面改性。本论文通过化学修饰的方法以及气相沉积的方法在碳纤维表面修饰碳纳米管来改善碳纤维的表面性能。并且分析对比了由两种方法制备的碳纤维复合材料的结构及其力学性能。由扫描电镜照片得知用化学方法修饰的碳纳米管以及气相沉积方法生长的碳纳米管都均匀覆盖在碳纤维的表面。由力学性能测试对比分析了由两种方法制备的碳纤维/碳纳米管/环氧树脂复合材料的拉伸性能。用CVD方法制备的碳纤维/碳纳米管/环氧树脂复合材料的拉伸强度比用化学修饰方法制备的碳纤维/碳纳米管/环氧树脂复合材料的拉伸强度提高了11%,这说明用CVD方法制备的碳纤维/碳纳米管/环氧树脂复合材料比用化学修饰方法制备的的碳纤维/碳纳米管/环氧树脂复合材料具有更优异的力学性能。而且用化学修饰方法制备的碳纤维/碳纳米管/环氧树脂复合材料的拉伸强度比相同条件下的没有修饰碳纳米管的碳纤维的拉伸强度提高了20%,这说明碳纤维表面修饰碳纳米管后,能够大大改善树脂基体和碳纤维的界面结合,提高了碳纤维复合材料的整体性能。
     (4)本论文在前文研究的基础上,进一步研究了如何将纳米微晶纤维素与碳纳米管这种两种纳米粒子修饰在高性能碳纤维的表面,这是以前的研究工作者从未开展过的工作。该研究的主要内容是将纳米微晶纤维素作为化学修饰反应的中间体,首先将酰氯化的碳纳米管修饰在带有大量羟基的纳米微晶纤维素的表面,然后将酰氯化的碳纤维与上一步反应后剩余的纳米微晶纤维素的羟基基团相互反应。这样就成功的实现了在碳纤维表面化学修饰了碳纳米管与纳米微晶纤维素两种纳米粒子。
     (5)本论文在前文研究的基础上,进一步在碳纤维表面修饰了铁磁性纳米粒子,实现了碳纤维的高功能化。通过一种环境保护的溶胶凝胶方法在碳纤维的表面制备了均一可控、致密度高、磁响应较强的磁性三氧化二铁纳米粒子的涂层,并且由该方法制备的磁性三氧化二铁纳米粒子的涂层能够均匀的覆盖在碳纤维的表面。由X射线光电子能谱、傅里叶变换红外光谱仪、X射线衍射、扫描电镜等多种分析测试方法分析了磁性复合物的结构和形态。由扫描电镜照片观察得知,磁性三氧化二铁纳米粒子可以均匀的涂覆在碳纤维的表面,其平均直径为10nm。对碳纤维织物表面涂层铁磁性纳米粒子的磁性能进行了表征,进一步验证了通过溶胶凝胶方法在碳纤维表面涂层铁磁性纳米粒子以后具有优异的铁磁性。该研究对后续碳纤维吸波复合材料的设计和应用具有重要意义。
Carbon fiber reinforced polymer composites have been widely used in many field such as aerospace industry. Automotive industry, steamship industry, Petroleum industry and chemical industry. The cohesive force between carbon fibers (CFs) and the matrix is weak because the CFs has small active specific surface area, low surface energy, and lipophobic suface. It much limites the applications of carbon fibers reinforced composites. To improve the adhesion behavior of the carbon fiber/matrix interface, grafting carbon nanotubes (CNTs) onto the carbon fibers to design a CNT/CF multi-scale structure has become a hot spot in recent years and attracted more and more attention.
     (1) A novel method is developed for grafting multiwall carbon nanotubes (MWNTs) onto the surface of polyacrylonitrile-based high strength (T300GB) carbon fiber. Functionalized MWNTs were well dispersed in the PVA solution and the carbon fiber was dip-coated in this solution. After heat treatment of the coated carbon fiber under a nitrogen atmosphere, MWNTs with carboxyl groups were grafted onto the functionalized carbon fiber via chemical interaction. The resulting materials were characterized by Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), Field emission scanning electron microscopy (FESEM), Raman spectrum and mechanical testing. FESEM observations revealed uniform coverage of carbon nanotubes on carbon fiber. The carbon fiber grafted with MWNTs improved the tensile strength by15%with respect to the pristine carbon fiber. These results are supportive of good interfacial bonding between the carbon nanotubes (CNTs) and carbon fibre. The introduction of MWNTs onto the surface of carbon fiber may help to remedy the surface defects and reduce stress concentrations, resulting in improved tensile strength of the carbon fiber.
     (2) The main purpose of this paper is focused on the growth of carbon nanotube on the surface of carbon fiber, carbon cloth and carbon paper with different morphologies by chemical vapor deposition (CVD) method. In this process, the metal catalyst ferrocene was dissolved in a liquid hydrocarbon, Xylene, to form a feed solution. This solution was delivered by a syringe pump to an injection tube and dispersed into a stream of hydrogen and helium. This vapor was transported into a hot quartz tube reactor. Aligned carbon nanotubes were grown on the carbon fiber surface at680℃.
     (3) Because of their noticeable mechanical, chemical and physical properties, carbon nanotubes (CNTs) and carbon fibers (CF) are attracted wide attention as reinforcement for composites. However, both of them have poor wettability and absorption with most polymers because their surface is non-polar and compound of highly crystallized graphitic basal planes with inert structures. In order to improve the performance of composites, we used chemical method to modify CNT and CF surface. And after that, the composites'performances were studied. The interfacial bonding strength between fibers and polymer matrices is low, therefore, good mechanical performance of composites cannot be ensured. We use the chemical method and chemical vapor deposition to modify the carbon fiber surface. The morphology of CNT/carbon fibers was examined by scanning electron microscope (SEM). SEM observation revealed uniform coverage of carbon fibers with carbon nanotubes in both of CVD method and chemical method. CNT grafted woven carbon fibers were used to make carbon/epoxy composites and their mechanical properties were measured using three-point bending and tension tests which showed that those with CNT grafted carbon fiber reinforcements using the CVD process has11%higher tensile strength compared to those containing carbon fibers modified with the chemical method. Also, composites with CNT grafted carbon fibers with chemical method showed20%higher tensile strength compared to composites with unmodified carbon fibers. The results of tensile test revealed that both CVD and chemical grafting could significantly improve the mechanical properties of the carbon fiber composites.
     (4) In the here proposed work we intend to investigate systematically of grafting carbon nanotube (CNTs) and nanocrystal cellulose (NCC) onto carbon fiber surface (CF). The main goal is to make CNTs-NCC-CF using NCC as a bridging molecule between CNT and CF. Grafting secondary materials onto carbon fibers and carbon nanotubes is often limited by the low reactivity of graphitic carbon and there is strong demand to create novel grafting methods using functional groups. One desirable functional group is a carboxylic acid, which strongly interacts with many organic and inorganic materials. Another advantage is that the carboxylic acid group can be modified and also be used as an active group to bind CNT, NCC and CF's together.
     (5) Carbon fiber (CF) microwave absorption materials are multifunctional composites with high strength and modulus; good carry capacity, excellent electrical property and reflection loss characteristic, which are increasingly, recognized and practical structural absorption composites. The magnetization modification of carbon fiber is an important way to enhance the microwave absorption property of carbon fiber filled composites. In this paper, a novel environmentally friendly method was proposed for decorating carbon fiber with y-Fe2O3magnetic nanoparticles (maghemite) that aim to develop new functional nanomaterials with good magnetic properties. It was found that excellent uniformity of γ-Fe2O3nanoparticle layers were obtained on carbon materials' surface. The structure and morphology of the magnetic composites have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), and Raman spectra. The SEM images showed that a complete and uniform y-Fe2O3nanoparticle coating was formed on carbon materials at600℃, and the average diameter of the γ-Fe2O3nanoparticles on the surface was about10nm. The surface properties of y-Fe2O3nanoparticles detached from carbon fibers/γ-Fe2O3composite have been analyzed by XPS and FTIR. The uniformity of y-Fe2O3coating on the surface of carbon materials have improved magnetic and microwave absorption properties of the base materials. This research had great significance for the design and application of microwave absorption materials.
引文
[1]张晓虎,孟宇,张炜,碳纤维增强复合材料技术发展现状及趋势,纤维复合材料,1(4),50-59,2004.
    [2]赵稼祥,碳纤维复合材料在民用航空上的应用,高科技纤维与应用,28(3),1-5,2003.
    [3]赵景,冯锋,碳纤维表面生长纳米碳管及其增强的炭-炭复合材料,材料热处理学报,31(10),2010.
    [4]梅蕾,碳纳米管/碳纤维多尺度结构制备及其界面增强效果研究,2010.
    [5]程涛,李铁虎,李莎莎,赵婷凯,程有亮,侯翠玲,吸波材料的研究进展,材料导报 A,25(8),50-53,2011.
    [6]余声明,智能磁性材料及其应用,磁性材料及真器件,35(5),1-4,2004.
    [7]李文章,李洁,邱克强,曾恒志,超顺磁性三氧化三铁纳米颗粒的制备及其修饰,功能材料,8(38),1279-282,2007.
    [8]王郝,刘亚青,张斌,碳纤维表面处理技术的研究进展,合成纤维,29,29-32,2007.
    [9]S. Dalton, F. Heatley,P. M. Budd, Thermal stabilization of polyacrylonitrile fibres, Polymer, 40,5531-5543,1999.
    [10]胡培贤,温月芳,杨永岗,刘朗,氨气处理碳纤维第Ⅱ报碳纤维表面和复合材料的性能,合成纤维,7(25),25-29,2008.
    [11]胡培贤,温月芳,杨永岗,刘朗,氨气处理碳纤维第1报++表面组成和反应机理,合成纤维6,9-12,2008.
    [12]C. U. Pittman, G. R. He, B. Wu,S. D. Gardner, Chemical modification of carbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethylenepentamine, Carbon,35 (3), 317-331,1997.
    [13]G. J. Ehlert, Y. Lin,H. A. Sodano, Carboxyl functionalization of carbon fibers through a grafting reaction that preserves fiber tensile strength, Carbon, In Press, Corrected Proof,2011.
    [14]徐茂伟,杜美利,杜伟,么秋香,刘静,碳纤维改性及其增强环氧树脂性能的研究,New Chemical Materials,39(4),121-124,2011.
    [15]王成忠,杨小平,于运花,XPS.AFM研究沥青基碳纤维电化学表面处理过程中的机制,复合材群学报,19(5),28-32,2002.
    [16]曹海琳,黄玉东,张志谦,刘立询,碳纤维阳极氧化处理对复合材料界面性能的影响,材料工程,4,16-20,2000.
    [17]L. Mei, L. Yibin,R. Wang, Multiscale Carbon Nanotube-Carbon Fiber Reinforcement for Advanced Epoxy Composites with High Interfacial strength, polymer & polymer composites, 19(2&3),107-112,2011.
    [18]L. Mei, X. D. He, Y. B. Li, R. G. Wang, C. Wang,Q. Y. Peng, Grafting carbon nanotubes onto carbon fiber by use of dendrimers, Materials Letters,64 (22),2505-2508,2010.
    [19]L. Mei, X. D. He, Y. B. Li, Q. Y. Peng, R. G. Wang,J. A. Xu, Enhancement of composite-metal interfacial adhesion strength by dendrimer, Surface and Interface Analysis, 43 (3),726-733,2011.
    [20]J. Xie, D. Xin, H. Cao, C. Wang, Y. Zhao, L. Yao, F. Ji,Y. Qiu, Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment, Surface and Coatings Technology,206 (2-3),191-201,2011.
    [21]F. Zhao,Y. Huang, Uniform modification of carbon fibers in high density fabric by [gamma]-ray irradiation grafting, Materials Letters, In Press, Uncorrected Proof,2011.
    [22]刘丽,傅宏俊,黄玉东,碳纤维表面处理及其对碳纤维/聚芳基乙炔复合材料力学性能的影响,航空材料学报,25(2),59-62,2005.
    [23]B. Lin, R. Sureshkumar,J. L. Kardos, electropolymerization of pyrrole on PAN based carbon fibers:Experimental observations and a multiscale modeling approach, chemical engineering science,56,6563-6569,2001.
    [24]M. Das, J. Ghosh,A. K. Basu, Effect of activation on boron nitride coating on carbon fiber, Ceramics International,36 (8),2511-2514,2010.
    [25]S. Iijima, Helical microtubules of graphitic carbon, Nature,354 (6348),56-58,1991.
    [26]P. L. Dickrell, S. B. Sinnott, D. W. Hahn, N. R. Raravikar, L. S. Schadler, P. M. Ajayan,W. G. Sawyer, Frictional anisotropy of oriented carbon nanotube surfaces, Tribology Letters,18 (1), 59-62,2005.
    [27]孙晓刚,碳纳米管聚合物复合材料研究和应用进展,塑料,2003.
    [28]刘举庆,肖.潭,吴.萍,碳纳米管的功能化及其在聚合物结构复合材料中的应用,纳米科技,3,21-25,2007.
    [29]R. D. Brooker, F. J. Guild,A. C. Taylor, Quantifying the dispersion of carbon nanotubes in thermoplastic-toughened epoxy polymers, Journal of Materials Science,46 (9),3108-3118, 2011.
    [30]张鉴炜,江大志,曾竟成,肖加余,碳纳米管及连续碳纤维增强复合材料研究进展,航天返回与遥感,30(3),63-69,2009.
    [31]辛菲,碳纳米管增强聚合物纳米复合材料研究进展,中国塑料,25(8),1-7,2011.
    [32]G. Gabriel, G. Sauthier, J. Fraxedas, M. Moreno-MaOas, M. T. MartInez, C. Miravitlles,J. CasabU, Preparation and characterisation of single-walled carbon nanotubes functionalised with amines, Carbon,44(10),1891-1897,2006.
    [33]Z. Spitalsky, D. Tasis, K. Papagelis,C. Galiotis, Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties, Progress in Polymer Science,35 (3),357-401,2010.
    [34]E. Bekyarova, E. T. Thostenson, A. Yu, M. E. Itkis, D. Fakhrutdinov, T.-W. Chou,R. C. Haddon, Functionalized Single-Walled Carbon Nanotubes for Carbon Fiber,aiEpoxy Composites, A(?), The Journal of Physical Chemistry C,111 (48),17865-17871,2007.
    [35]X. W. Zhao,L. Ye, Structure and mechanical properties of polyoxymethylene/multi-walled carbon nanotube composites, Composites Part B-Engineering,42 (4),926-933,2011.
    [36]G. Viswanathan, N. Chakrapani, H. C. Yang, B. Q. Wei, H. S. Chung, K. W. Cho, C. Y. Ryu,P. M. Ajayan, Single-step in situ synthesis of polymer-grafted single-wall nanotube composites, Journal of the American Chemical Society,125 (31),9258-9259,2003.
    [37]M. Rahmat,P. Hubert, Carbon nanotube-polymer interactions in nanocomposites:A review, Composites Science and Technology,72 (1),72-84,2011.
    [38]V. Goncalez, F. L. Barcia.B. G. Soares, Composite Materials Based on Modified Epoxy Resin and Carbon Fiber, J. Braz. Chem. Soc.,17 (6),1117-1123,2006.
    [39]P. Mangalgiri, Composite materials for aerospace applications, Bulletin of Materials Science, 22 (3),657-664,1999.
    [40]S. Zhu, C. H. Su, S. L. Lehoczky, I. Muntele,D. Ila, Carbon nanotube growth on carbon fibers, Diamond and Related Materials,12(10-11),1825-1828,2003.
    [41]D. M. Bruce, R. N. Hobson, J. W. Farrent,D. G. Hepworth, High-performance composites from low-cost plant primary cell walls, Composites Part a-Applied Science and Manufacturing,36 (11),1486-1493,2005.
    [42]H. J. Song, Z. Z. Zhang.X. H. Men, Surface-modified carbon nanotubes and the effect of their addition on the tribological behavior of a polyurethane coating, European Polymer Journal, 43 (10),4092-4102,2007.
    [43]S. L. Gao, E. Mader,R. Plonka, Nanocomposite coatings for healing surface defects of glass fibers and improving interfacial adhesion, Composites Science and Technology,68 (14), 2892-2901,2008.
    [44]K. L. Kepple, G. P. Sanborn, P. A. Lacasse, K. M. Gruenberg.W. J. Ready, Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes, Carbon,46 (15),2026-2033,2008.
    [45]A. Laachachi, A. Vivet, G. Nouet, B. Ben Doudou, C. Poilane, J. Chen, J. B. Bai,M. Ayachi, A chemical method to graft carbon nanotubes onto a carbon fiber, Materials Letters,62 (3), 394-397,2008.
    [46]K. Naito, J. M. Yang, Y. Tanaka,Y. Kagawa, Tensile properties of carbon nanotubes grown on ultrahigh strength polyacrylonitrile-based and ultrahigh modulus pitch-based carbon fibers, Applied Physics Letters,92 (23),2008.
    [47]B. Zhao, J. Wang, Z. Li, P. Liu, D. Chen,Y. Zhang, Mechanical strength improvement of polypropylene threads modified by PVA/CNT composite coatings, Materials Letters,62 (28), 4380-4382,2008.
    [48]Y. Y. Li,A. Sakoda, Growth of carbon nanotubes and vapor-grown carbon fibers using chemical vapor deposition of methane, Journal of the Chinese Institute of Chemical Engineers, 33 (5),483-489,2002.
    [49]M. C. Weisenberger, E. A. Grulke, D. Jacques, T. Rantell,R. Andrews, Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers, Journal of Nanoscience and Nanotechnology,3 (6),535-539,2003.
    [50]Y. L. Li, I. A. Kinloch,A. H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis, Science,304 (5668),276-8,2004.
    [51]T. Mukawa, S. Okada, R. Kobayashi, J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito,S. Matsui, Position-controlled carbon fiber growth catalyzed using electron beam-induced chemical vapor deposition ferrocene nanopillars, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers,44 (7B),5639-5641,2005.
    [52]Z. X. Yu, D. Chen, B. Totdal,A. Holmen, Effect of support and reactant on the yield and structure of carbon growth by chemical vapor deposition, Journal of Physical Chemistry B, 109(13),6096-6102,2005.
    [53]T. Shiokawa, B. P. Zhang, M. Suzuki,K. Ishibashi, Low pressure chemical vapor deposition of single-wall carbon nanotubes, Japanese Journal of Applied Physics Part 2-Letters& Express Letters,45 (20-23), L605-L607,2006.
    [54]S. V. Lomou, L. Gorbatikh,I. Verpoest, Compression behaviour of a fibre bundle with grafted carbon nanotubes, Carbon,49 (13),4458-4465,2011.
    [55]张福华,碳纳米管-碳纤维多尺度增强体及其复合材料界面研究,2008.
    [56]X. D. He, F. H. Zhang, R. G. Wang,W. B. Liu, Preparation of a carbon nanotube/carbon fiber multi-scale reinforcement by grafting multi-walled carbon nanotubes onto the fibers, Carbon, 45 (13),2559-2563,2007.
    [57]L. Mei, Y. B. Li, R. G. Wang, C. Wang, Q. Y. Peng.X. D. He, Multiscale Carbon Nanotube-Carbon Fiber Reinforcement for Advanced Epoxy Composites with High Interfacial strength, Polymers & Polymer Composites,19 (2-3),107-112,2011.
    [58]F. Zhao.Y. D. Huang, Preparation and properties of polyhedral oligomeric silsesquioxane and carbon nanotube grafted carbon fiber hierarchical reinforcing structure, Journal of Materials Chemistry,21 (9),2867-2870,2011.
    [59]F. Zhao,Y. D. Huang, Grafting of polyhedral oligomeric silsesquioxanes on a carbon fiber surface:novel coupling agents for fiber/polymer matrix composites, Journal of Materials Chemistry,21(11),3695-3703,2011.
    [60]F. Zhao, Y. D. Huang, L. Liu, Y. P. Bai,L. W. Xu, Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites, Carbon,49 (8),2624-2632,2011.
    [61]Z.-G. Zhao, L.-J. Ci, H.-M. Cheng,J.-B. Bai, The growth of multi-walled carbon nanotubes with different morphologies on carbon fibers, Carbon,43 (3),663-665,2005.
    [62]S. H. Jo, J. Y. Huang, S. Chen, G. Y. Xiong, D. Z. Wang,Z. F. Ren, Field emission of carbon nanotubes grown on carbon cloth, Journal of Vacuum Science & Technology B,23 (6), 2363-2368,2005.
    [63]徐东彦,王海振,郭庆杰,甲烷还原Ni基催化剂化学气相沉积法制备碳纳米管,Journal of Qingdao University of Science and Technology,31 (3),228-231,2010.
    [64]安玉良,袁霞,邱介山,化学气相沉积法碳纳米管的制备及性能研究,炭素技术,25(5),5-9,2006.
    [65]赵建国,刘.朗,郭全贵,史景利,翟更太,宋进仁,炭纤维表面生长碳纳米管,新型磺材料23(1),12-16,2008.
    [66]杜亮,罗雪方,白战,魏忠,王晓川,程克梅,化学气相沉积法制备单壁碳纳米管研究进展,carbon,1,39-43,2009.
    [67]周永生杜高辉,许并社,化学气相沉积法合成碳纳米管及其导电性能研究,材料导报,24(3),26-30,2010.
    [68]曹伟,李克智,张东生,李贺军,CVD制备各向同性热解炭的微观结构表征及沉积机制研究,carboh techniques,29,21-24,2010.
    [69]王贤保,李琴,许杨,万丽,李少卿,王世敏,化学气相沉积法合成碳纳米管的研究进展,中国材料科技与设备,9-12,2006.
    [70]E. T. Thostenson, W. Z. Li, D. Z. Wang, Z. F. Ren,T. W. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites, Journal of Applied Physics,91 (9),6034,2002.
    [71]S. P. Sharma,S. C. Lakkad, Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinforced polymer matrix composites, Composites Part a-Applied Science and Manufacturing,42 (1),8-15,2011.
    [72]S. P. Sharma,S. C. Lakkad, Anchoring Effect on the Mechanical Properties of CNTs Grown Carbon Fiber/Polymer Matrix Multi-Scale Composites, Current Nanoscience,5 (3),306-311, 2009.
    [73]P. Agnihotri, S. Basu,K. K. Kar, Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites, Carbon,49 (9), 3098-3106,2011.
    [74]F. An, C. X. Lu, Y. H. Li, J. H. Guo, X. X. Lu, H. B. Lu, S. Q. He,Y. Yang, Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite, Materials & Design,33,197-202,2012.
    [75]P. Lv, Y. Y. Feng, P. Zhang, H. M. Chen, N. Q. Zhao.W. Feng, Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers, Carbon,49 (14),4665-4673,2011.
    [76]Q. Zhang, J. Liu, R. Sager, L. Dai,J. Baur, Hierarchical composites of carbon nanotubes on carbon fiber:Influence of growth condition on fiber tensile properties, Composites Science and Technology,69 (5),594-601,2009.
    [77]Q.-J. Gong, H.-J. Li, X. Wang, Q.-G. Fu, Z.-w. Wang,K.-Z. Li, In situ catalytic growth of carbon nanotubes on the surface of carbon cloth, Composites Science and Technology,67 (14), 2986-2989,2007.
    [78]R. B. Mathur, S. Chatterjee.B. P. Singh, Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties, Composites Science and Technology,68 (7,Ai8),1608-1615,2008.
    [79]K. H. Huang, W. S. Kuo, T. H. Ko, S. S. Tzeng.C. F. Yan, Processing and tensile characterization of composites composed of carbon nanotube-grown carbon fibers, Composites Part a-Applied Science and Manufacturing,40 (8),1299-1304,2009.
    [80]Valdirene Gonzaga de Resende, Erica Freire Antunes, Anderson de Oliveira Lobo, Deiler Anto'nio Lima Oliveira, Vladimir Jesus Trava-Airoldi,E. J. Corat, Growth of carbon nanotube forests on carbon fibers with an amorphous silicon interface, carbon,48,3635-3658,2010.
    [81]曹建军,高畅,卢潇冰,张勇,纳米微晶纤维素的制备及应用研究进展,华南理工大学学报,35(10),54-57,2007.
    [82]吴开丽,徐清华,谭丽萍,秦梦华,纳米纤维素晶体的制备方法及其,造纸科学与技术,29(1),55-60,2010.
    [83]李金玲,陈广祥,叶代勇,纳米纤维素晶须的制备及应用的研究进展,林产化学与工业,30(2),121-125,2010.
    [84]李增富,静电纺丝法制备醋酸纤维素纳米纤维,吉林化工学院学报,25(4),19-22,2008.
    [85]Y. Habibi, L. A. Lucia,O. J. Rojas, Cellulose Nanocrystals:Chemistry, Self-Assembly, and Applications, Chemical Reviews,110 (6),3479-3500,2010.
    [86]R. J. Moon, A. Martini, J. Nairn, J. Simonsen.J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Reviews,40 (7),3941-3994,2011.
    [87]K. Oksman, J. A. Etang, A. P. Mathew.M. Jonoobi, Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production, Biomass & Bioenergy,35 (1),146-152,2011.
    [88]S. C. Fox, B. Li, D. Q. Xu,K. J. Edgar, Regioselective Esterification and Etherification of Cellulose:A Review, Biomacromolecules,12 (6),1956-1972,2011.
    [89]P. Satyamurthy, P. Jain, R. H. Balasubramanya.N. Vigneshwaran, Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis, Carbohydrate Polymers,83 (1),122-129,2011.
    [90]S. Beck-Candanedo, M. Roman.D. G. Gray, Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions, Biomacromolecules,6 (2), 1048-1054,2005.
    [91]R. Rusli, K. Shanmuganathan, S. J. Rowan, C. Weder,S. J.Eichhorn, Stress Transfer in Cellulose Nanowhisker Composites-Influence of Whisker Aspect Ratio and Surface Charge, Biomacromolecules,12(4),1363-1369,2011.
    [92]G. Morandi, L. Heath,W. Thielemans, Cellulose Nanocrystals Grafted with Polystyrene Chains through Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP), Langmuir,25 (14),8280-8286,2009.
    [93]N. S. Cetin, P. Tingaut, N. Ozmen, N. Henry, D. Harper, M. Dadmun.G. Sebe, Acetylation of Cellulose Nanowhiskers with Vinyl Acetate under Moderate Conditions, Macromolecular Bioscience,9(10),997-1003,2009.
    [94]G. J. Chen, A. Dufresne, J. Huang,P. R. Chang, A Novel Thermoformable Bionanocomposite Based on Cellulose Nanocrystal-graft-Poly(epsilon-caprolactone), Macromolecular Materials and Engineering,294 (1),59-67,2009.
    [95]J. M. Felix,P. Gatenholm, THE NATURE OF ADHESION IN COMPOSITES OF MODIFIED CELLULOSE FIBERS AND POLYPROPYLENE, Journal of Applied Polymer Science,42 (3),609-620,1991.
    [96]S. J. Eichhorn, Cellulose nanowhiskers:promising materials for advanced applications, Soft Matter,7 (2),303-315,2011.
    [97]杨建校,章丽萍,左宋林,曹云峰,皮成忠,TEMPO氧化法制备氧化纤维素纳米纤维,东北林业大学学报,39(3),96-99,2011.
    [98]Y. Habibi,M. R. Vignon, CELL 239-TEMPO-mediated oxidation of cellulose substrates, Abstracts of Papers of the American Chemical Society,235,239-CELL,2008.
    [99]Y. Habibi, H. Chanzy,M. R. Vignon, TEMPO-mediated surface oxidation of cellulose whiskers, Cellulose,13 (6),679-687,2006.
    [100]V. Favier, G. R. Canova,J. Y. Cavaille, Nanocomposites materials from latex and cellulose whisker, Polym. Adv. Technol,6,351-355,1995.
    [101]M. N. Angles,A. Dufresne, Plasticized starch/tunicin whiiskers nanocomposites:structural analysis, Macromolecules,33 (22),8344-8353,2000.
    [102]M. Roohani, Y. Habibi, N. M. Belgacem, G. Ebrahim, A. N. Karimi,A. Dufresne, Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites, European Polymer Journal,44 (8),2489-2498,2008.
    [103]M. S. Peresin, Y. Habibi, A. H. Vesterinen, O. J. Rojas, J. J. Pawlak,J. V. Seppala, Effect of Moisture on Electrospun Nanofiber Composites of Poly(vinyl alcohol) and Cellulose Nanocrystals, Biomacromolecules,11 (9),2471-2477,2010.
    [104]X. D. Cao, Y. Habibi.L. A. Lucia, One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites, Journal of Materials Chemistry,19 (38),7137-7145,2009.
    [105]S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund,T. Peijs, Review:current international research into cellulose nanofibres and nanocomposites, Journal of Materials Science,45 (1),1-33,2010.
    [106]E. Ten, J. Turtle, D. Bahr, L. Jiang.M. Wolcott, Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites, Polymer, 51 (12),2652-2660,2010.
    [107]A.-L. Goffin, J.-M. Raquez, E. Duquesne, G. Siqueira, Y. Habibi, A. Dufresne.P. Dubois, From Interfacial Ring-Opening Polymerization to Melt Processing of Cellulose Nanowhisker-Filled Polylactide-Based Nanocomposites, Biomacromolecules, null-null,2011.
    [108]S. Harrisson, G. L. Drisko, E. Malmstrom, A. Hult,K. L. Wooley, Hybrid Rigid/Soft and Biologic/Synthetic Materials:Polymers Grafted onto Cellulose Microcrystals, Biomacromolecules,12(4),1214-1223,2011.
    [109]C. Huiqun, Z. Meifang,L. Yaogang, Decoration of carbon nanotubes with iron oxide, Journal of Solid State Chemistry,179(4),1208-1213,2006.
    [110]R. I. Murakami, H.Yamamoto,e. a. C.K. Kim, Eletromagneticwave shielding microwave-hydrother-al process, International Journal of Electrochemical Science,17,8-9, 2003.
    [111]P. Hojati-Talemi, J. Azadmanjiri,G. P. Simon, A simple microwave-based method for preparation of Fe3O4/carbon composite nanoparticles, Materials Letters,64 (15),1684-1687, 2010.
    [112]X. Meng, Y. Wan, Q. Li, J. Wang,H. Luo, The electrochemical preparation and microwave absorption properties of magnetic carbon fibers coated with Fe3O4 films, Applied Surface Science,2011.
    [113]T. M. Zima, N. I. Baklanova.A. T. Titov, Ferromagnetic composite coatings on carbon fibers, Inorganic Materials,47 (4),385-389,2011.
    [114]高文,冯志海,涂层改性碳纤维复合材料的微波性能研究,宇航材料工艺,30(5),53-57,2000.
    [115]J. Xu, H. B. Yang, W. Y. Fu, Y. M. Sui, H. Y. Zhu, M. H. Li,G. T. Zou, Preparation and characterization of carbon fibers coated by Fe3O4 nanoparticles, Materials Science and Engineering B-Solid State Materials for Advanced Technology,132 (3),307-310,2006.
    [116]C. W. Qiang, J. C. Xu, Z. Q. Zhang, L. L. Tian, S. T. Xiao, Y. Liu.P. Xu, Magnetic properties and microwave absorption properties of carbon fibers coated by Fe(3)O(4) nanoparticles, Journal of Alloys and Compounds,506 (1),93-97,2010.
    [117]L. Wang, F. He,Y. Z. Wan, Facile synthesis and electromagnetic wave absorption properties of magnetic carbon fiber coated with Fe-Co alloy by electroplating, Journal of Alloys and Compounds,509 (14),4726-4730,2011.
    [118]M. Abe, Ferrite-plating in aqueous solution; a new nethod for preparing magnetic thin film Jpn JAppl Phys,22,511-518,1983.
    [119]M. Abe, ferrite plating:a chemical method preparing oxide magnetic films at 24-100 degrees and its applications, Electrochimica Acta,45 (20),3337-5636,2000.
    [120]M. Abe, oxide feeromagnetic films and fine particles prepared by ferrite plating and theri applications, electrochemistry,70 (10),815-820,2002.
    [121]I. T. Kim, G. A. Nunnery, K. Jacob, J. Schwartz, X. T. Liu.R. Tannenbaum, Synthesis, Characterization, and Alignment of Magnetic Carbon Nanotubes Tethered with Maghemite Nanoparticles, Journal of Physical Chemistry C,114 (15),6944-6951,2010.
    [122]Z.L.Wang, R.X.Zhao.e. a. F.Y. Zhao, Facile synthesis of porous FeCo3/carbon nanocomposites and their applications as magnetically separable adsorber and catalyst support Langmuir,26 (12),10135-10140,2010.
    [123]W. W. Cao, B. Zhu, M. Jing,C. G. Wang, Raman Spectra of PAN-Based Carbon Fibers during Surface Treatment, Spectroscopy and Spectral Analysis,28 (12),2885-2889,2008.
    [124]张福华,王荣国,刘文博,赫晓东,MWCNTs/CF多尺度增强体制备及表征,哈尔滨工业大学学报,2007.
    [125]吴小利,岳涛,陆荣荣,朱德彰,朱志远,碳纳米管的表面修饰及FTIR,Raman和XPS光谱表征,光者学与光谱分析,25(10),1595-1598,2005.
    [126]M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus,R. Saito, Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy, Nano Letters,10 (3),751-758,2010.
    [127]J. Hodkiewicz, Characterizing Carbon Materials with Raman Spectroscopy,2010.
    [128]M. Zhang, B. Zhu, C. G. Wang.H. X. Wei, Raman Spectra of Carbon Fibers during Electrochemical Treatment, Spectroscopy and Spectral Analysis,30 (1),105-108,2010.
    [129]J. F. Snyder, E. L. Wong,C. W. Hubbard, Evaluation of Commercially Available Carbon Fibers, Fabrics, and Papers for Potential Use in Multifunctional Energy Storage Applications, Journal of the Electrochemical Society,156 (3), A215-A224,2009.
    [130]C.-T. Hsieh, W.-Y. Chen,F.-L. Wu, Fabrication and superhydrophobicity of fluorinated carbon fabrics with micro/nanoscaled two-tier roughness, Carbon,46 (9),1218-1224,2008.
    [131]C. T. Hsieh, W. Y. Chen,Y. S. Cheng, Influence of oxidation level on capacitance of electrochemical capacitors fabricated with carbon nanotube/carbon paper composites, Electrochimica Acta,55 (19),5294-5300,2010.
    [132]C. Y. Du, B. R. Wang,X. Q. Cheng, Hierarchy carbon paper for the gas diffusion layer of proton exchange membrane fuel cells, Journal of Power Sources,187 (2),505-508,2009.
    [133]C. Kaynak, O. Orgun,T. Tincer, Matrix and interface modification of short carbon fiber-reinforced epoxy, Polymer Testing,24 (4),455-462,2005.
    [134]X.-L. Xie, Y.-W. Mai,X.-P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix:A review, Materials Science and Engineering:R:Reports,49 (4),89-112,2005.
    [135]Y. Zhou, F. Pervin, L. Lewis.S. Jeelani, Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes, Materials Science and Engineering:A, 475 (1,Ai2),157-165,2008.
    [136]A. Godara, L. Mezzo, F. Luizi, A. Warrier, S. V. Lomov, A. W. van Vuure, L. Gorbatikh, P. Moldenaers,I. Verpoest, Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites, Carbon,47 (12),2914-2923, 2009.
    [137]J. G. Zhao, L. Liu, Q. G. Guo, J. L. Shi, G. T. Zhai,J. R. Song, Carbon nanotube growth on the surface of carbon Fibers by CVD, New Carbon Materials,23 (1),12-16,2008.
    [138]G. Zhang, S. Sun, D. Yang, J.-P. Dodelet,E. Sacher, The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment, Carbon,46 (2),196-205,2008.
    [139]T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin,N. M. D. Brown, High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs, Carbon, 43(1),153-161,2005.
    [140]G. M. Dorris,D. G. Gray, The surface analysis of paper and wood fiber by ESCA.1. Application to cellulose and lignin, Cellulose chemical technology,17,9-23,1978.
    [141]G. M. Dorris,D. G. Gray, The surface analysis of paper and wood fiber by ESCA.2. surface composition of mechanical pulps, Cellulose chemical technology,12,721-734,1978.
    [142]J. H. Zhu, S. Y. Wei, D. Rutman, N. Haldolaarachchige, D. R. Young,Z. H. Guo, Magnetic polyacrylonitrile-Fe@FeO nanocomposite fibers-Electrospinning, stabilization and carbonization, Polymer,52 (13),2947-2955,2011.
    [143]I. M. De Rosa, A. Dinescu, F. Sarasini, M. S. Sarto,A. Tamburrano, Effect of short carbon fibers and M WCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers, Composites Science and Technology,70 (I),102-109,2010.
    [144]T. Hyeon, S. S. Lee, J. Park, Y. Chung.H. Bin Na, Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process, Journal of the American Chemical Society,123(51),12798-12801,2001.
    [145]B. H. Sohn,R. E. Cohen, Processible optically transparent block copolymer films containing superparamagnetic iron oxide nanoclusters, Chemistry of Materials,9(1),264-269,1997.
    [146]A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh,R. L. Simpson, Use of epoxides in the sol-gel synthesis of porous iron(Ⅲ) oxide monoliths from Fe(Ⅲ) salts, Chem. Mater.,13,999-1007,2001.
    [147]A. Gash, J. Satcher, R. Simpson,B. Clapsaddle, Nanostructured energetci matreials with sol-gel chemistry, Chem. Mater.,18,887-996,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700