用户名: 密码: 验证码:
纳米微晶纤维素的制备、改性及其增强复合材料性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米微晶纤维素(CNCs)作为一种新型的生物质基高分子材料,在多个领域成为当前的研究前沿和热点,如何更好的发掘纳米微晶纤维素在这些领域中的应用,需要对其性质进行系统研究。结合水性聚氨酯和聚己内酯在众多领域中的应用及其所表现出的特殊性能,有效构建纳米微晶纤维素与这两种高聚物的复合材料,可以拓宽纳米微晶纤维素的应用领域及应用性能。论文研究了纳米微晶纤维素的制备及其改性方法,并将其与水性聚氨酯、聚己内酯两种可降解高聚物进行复合,通过研究复合材料的性能提出其应用潜力。
     首先以微晶纤维素(MCC)为原料,采用酸解法制备得到CNCs,通过对CNCs的酸解工艺条件的优化,得到酸解的最佳工艺条件为:MCC:H2SO4=1:8.75g/mL.硫酸浓度为63.5%(w/w)、酸解温度为45℃、酸解时间为110min,此工艺条件下得到的CNCs产率为37.09%。TEM照片显示CNCs长度基本在100-200nm之间,直径在10~20nm之间,多为棒状颗粒,且颗粒大小分布均匀。并且CNCs在水分散体系中能形成稳定的带蓝光透明悬浮液,在室温下长期放置不会出现分层或者沉淀现象,这是MCC所不具备的。XRD和TGA结果表明,与MCC相比,CNCs的结晶度略有提高,但是热稳定性能下降。
     水性聚氨酯作为一种无氯防毡缩整理剂,能在羊毛表面形成薄膜而覆盖羊毛纤维表面鳞片,但由于其成膜性和力学性能较差,要获得良好的防毡缩效果使用量很大,整理后织物变硬,严重影响羊毛的手感,因此需要对其进行改性。我们采用溶液浇注法制得水性聚氨酯/纳米微晶纤维素复合膜(WBPU/CNCs),对复合膜的形貌、分子基团、结晶性、热稳定性、力学性能等进行分析,探讨水性聚氨酯与纳米微晶纤维素分子之间的作用机理。同时,将这种复合乳液对羊毛织物进行防毡缩整理,研究并评估WBPU/CNCs复合整理剂在羊毛防毡缩整理中的效果。DMA结果表明,加入CNCs能有效提高WBPU的拉伸强度、杨氏模量和储存模量,对WBPU的增强效果明显。此外由于CNCs的加入可能会破坏WBPU中软段分子和硬段分子间的相互作用,导致WBPU分子中相分离程度增加,从而导致复合材料玻璃化转变温度降低。我们还对WBPU/CNCs的粘弹性行为进行了研究。通过频率扫描发现,加入CNCs后复合材料的弹性性能比纯基体有一定程度的提高,特别表现在高频区。弹性的提高同CNCs与WBPU分子链之间的相互作用有关,由此可以推断出CNCs在WBPU基体中形成一个网络,这种网络阻挠了高分子链的运动,从而使得材料不易变形,在低频区,这种网络的增强作用比较明显。用Power Law模型对储存模量E'和损失模量E"与频率之间的关系进行了深入分析,可以发现CNCs的添加能够增加WBPU-CNCs复合薄膜的静态粘弹性,但降低了纳米复合材料的动态粘弹性,并且加入CNCs会降低WBPU膜对频率的敏感性,因此有望扩大WBPU/CNCs的应用范围。用Burger's模型进行数值模拟分析WBPU/CNCs复合材料的蠕变-回复性能,发现CNCs的加入可以增强复合材料的耐蠕变性能,这一结果再次说明了CNCs与WBPU之间存在着相互作用力。此外我们还发现,对于粘弹性高聚物来说,频率敏感性和蠕变-回复之间可能存在一定的关系。通过羊毛纤维表面的SEM图可以看到,WBPU/CNCs复合物在羊毛表面形成的膜更为饱满,甚至可以填充鳞片层的间隙,这说明CNCs的加入提高了聚氨酯成膜的力学性能,从而能提高羊毛的防毡缩性能和降低45%的WBPU防毡缩整理剂使用量,减少了对环境的污染,整理后纤维上膜变薄且强力提高,因此对织物的手感也有所改善。
     无法分散在有机溶剂中并且经冷冻干燥后会发生不可逆团聚是现在CNCs应用面不广的主要因素之一,鉴于此,我们研究了反胶束增溶CNCs和化学改性CNCs两种方法,以提高其在有机溶剂中的分散性。同时,又由于聚己内酯PCL机械性能较差,降解时间长,我们将改性后的CNCs与PCL共混成膜,研究CNCs对PCL性能的影响。
     反胶束内具有极性的“水池”,利用这个水池可以直接将浓缩的CNCs水分散液增溶在氯仿中,从而可以避免冷冻干燥引起的不可逆团聚。我们先通过研究最大增溶水量筛选表面活性剂和助表面活性剂的种类和浓度,确定了选用OP-7/正辛醇/氯仿为反胶束体系,表面活性剂OP-7的浓度为0.02g/mL,助表面活性剂为正辛醇,且与OP-7的质量比为3:2,此条件下增溶水量W0为237.36。然后根据粒径测试结果,我们提出CNCs在OP-7/正辛醇/氯仿反胶束体系中的状态模型:反胶束体系不同于常见的圆形体系而是棒状体系,因此可以将棒状的CNCs包裹在“水池”中,从而稳定分散在氯仿中。PCL/RCNCs复合膜XRD和热力学测试结果表明CNCs表面的羟基与PCL分子链的羰基形成了氢键,阻碍了分子链的运动,导致PCL结晶度的下降;DMA和力学测试结果表明CNCs对PCL复合膜具有增强效果。接触角测试结果表明,RCNCs的加入可以提高PCL膜的亲水性、加快PCL的降解速度。
     但是,受反胶束最大增溶水量的限制,CNCs在PCL中最多只能添加1.08%,为了提高CNCs在PCL中的含量,我们接下来又采用十八烷基异氰酸酯结合原位溶剂交换的方法对CNCs进行改性得到C18-CNCs,并将改性后的CNCs与PCL溶液浇注成膜,制得一系列不同C18-CNCs含量的PCL/C18-CNCs纳米复合膜,通过研究复合膜的性能探讨其应用潜力。首先采用元素分析法计算不同反应条件下产物的取代率,确定了十八烷基异氰酸酯与CNCs反应的温度和时间分别为110℃,40min,此时取代率最高,为0.0923。TEM照片显示十八烷基异氰酸酯对CNCs的改性没有改变CNCs的形貌和晶型,仍为棒状,长度在200nm左右直径在10-20nm之间;并且由于采用的溶剂交换过程,避免了事先对CNCs进行干燥,因此C18-CNCs在氯仿中分散均匀,没有明显团聚现象。力学性能测试发现C18-CNCs含量在PCL/C18-CNCs复合膜中含量不超过6wt%时,其分散性较好,复合膜拉伸强度增加了约148%;当含量高于6wt%时,C18-CNCs易发生团聚,导致复合膜强力下降。接触角测试结果表明C18-CNCs的添加能提高PCL膜的疏水性能,增强复合膜对水蒸汽的阻隔性能。
As a novel biomass-based polymer material, cellulose nanocrystals (CNCs) is becoming one of the current research frontiers in many areas. In order to explore its application in these areas, we need to make a systematic study on its properties. Combined exceptional performance of water-borne polyurethane (WBPU) and polycaprolactone (PCL) in many fields, we composite cellulose nanocrystals with these two kind of polymers which can broaden the application areas of cellulose nanocrystals. Preparation and modification methods of cellulose nanocrystals are studied in this paper and we raised its potential applications by researching properties of its reinforced composites.
     The cellulose nanocrystals were prepared by acid hydrolysis of cellulose microcrystalline (MCC). We used single factor experiments-orthogonal experiment-single factor experiment method to optimize CNCs acid hydrolysis process conditions. The finally optimized conditions were:MCC:H2SO4=1:8.75g/mL, H2SO4concentration was63.5wt%, temperature was45℃, and acid hydrolysis time was110min, CNCs yield was37.09%in this condition. TEM images showed that the CNCs was in rod form with lengths of70-150nm and diameters of10-20nm in aqueous suspension, respectively. CNCs dispersed stably in aqueous dispersion with blue transparent, long-term placement at room temperature which is not available in MCC. XRD and TGA results show that compared with the MCC, the degree of crystallinity of CNCs increased, but its thermal stability decreased.
     As a chlorine-free polymer and coating agent, WBPU has a better anti-felting effect for wool fabrics. However, the higher concentration of WBPU was usually employed in practice in order to form a durable film and cover the scales of the surface of wool fibers. So that the WBPU concentration is high and the handle of finished fabric is hard, which limits its application. After the two aqueous suspensions were mixed homogeneously, cellulose nanocrystal reinforced polyurethane composite (nanocomposite) films were prepared and evaluated by means of transmission electron microscopy, scanning electron microscopy and dynamic mechanical analysis. Then the nanocrystal films were applied onto surfaces of wools by a pad-dry-cure process with nanocomposites containing different cellulose nanocrystal contents.
     DMA results showed that storage modulus and loss modulus of WBPU/CNCs composites films increased with CNCs content increasing. And because the CNs can improve the microphase separation between soft and hard segments in WBPU, Tg decreased with increasing of CNs content. Besides that, we studied viscoelastic properties of WBPU/CNCs composites films. In frequency sweep tests, the E1and E" were recorded and modeled by the Power Law equation. CNCs precipitation significantly increased the steady state viscous properties of cellulose nanocomposites films but decreased the dynamic viscoelastic properties of nanocomposites and frequency sensitivity. In the creep-recovery tests, the data were fitted to Burger's model. The E2value and η1value in Burger's model were increased by incorporating CNs. To the contrary, however, the relaxation time t2was decreased. It means CNs can improve WBPU's creep resistance property. This result showed interactions existed between CNCs and WBPU once again. In additional, we also found that the frequency sensitivity and creep-Replies may exist between certain relationship.
     The anti-felting results indicated that with increasing cellulose nanocrystal content from0to1.0wt%, the area-shrinking rate of the treated wool fabrics was decreased from5.24%to0.70%, and the tensile strength of the fabric was increased by14.95%and decreased about45%use of waterborne polyurethane. The pure WBPU of concentration in50g/L covered surfaces of the fibers reveal a thin layer covering the scales of wool fibers, which improves the smoothness of the fibers. The WBPU coating the cellulose nanocrystals provided a relatively intact layer of coating covering the surfaces of the wool fibers, higher amounts nanoparticles absorbed on the surface of wool and, consequently, the ups and downs of the surface of wool covered completely which could further decrease Directional Frictional Effect (DEF) of wool fabrics and improve antifelting effect.
     Dispersed in organic solvent poorly is one of main problems of CNCs which restrict its application. So, we modified CNCs using a reverse micelle method and the chemical surface modification method in order to improve its dispersibility in organic solvents. At the same time, because PCL has poor mechanical properties and degradation for a long time, it can't meet the bone defect repair and fracture fixation material mechanical requirements, we blended modified CNCs and PCL to form nano-composite films and studied these films' performance.
     Reverse micelle has a polar "pool", we make use of this "pool" to solubilize concentrated CNCs aqueous dispersion in chloroform so that irreversible agglomeration was avoided which was caused by freeze-drying process. Firstly, the OP-7/n-octanol/chloroform reversed micelle system was chose by investigating the influences of the type and concentration of surfactants cosurfactant on the water solubilization of the reversed micelle system. The concentration of OP-7was0.02g/mL, octanol was cosurfactant and its mass ratio with OP-7was3:2, the solubilization Wo was237.36. Then, according to particle size test, we proposed CNCs in OP-7/n-octanol/chloroform reverse micelles state model:rod CNCs wrapped in rod reverse micelles. Finally, the XRD and mechanical test results show that with the increasing of RCNCs content, the degree of crystallinity, melting temperature of RCNCs/PCL composite material were decreased; With the increasing of the RCNCs, the degradation rate and the hydrophilic of RCNCs/PCL composite material increased.
     But, due to the limitation of the reversed micelle system's solubilization, the adding amount of modified RCNCs was very small, no more than1.08%, so the chemical-in situ solvent exchange method was used to modify CNCs, choosing octadecyl isocyanate as chemical modification reagent. The CNCs chemical modification process was studied through the calculation of the graft rate of the product. By means of infrared spectrum analysis and static method, the properties of C18-CNCs were characterized. The results showed that C18-CNCs has good dispersion in chloroform. C18-CNCs/PCL composite material was prepared by compounding C18-CNCs and PCL. By means of Fourier transform infrared spectrum, X-ray diffraction, DSC test analysis, scanning electron microscopy (SEM) analysis, mechanical properties test and hydrophilic test, the properties of PCL/C18-CNCs composite material were characterized, and the content of C18-CNCs influence on PCL/C18-CNCs composite material performanee was also investigated. The results showed that with increasing of C18-CNCs, the tensile strength and the hydrophilic of PCL/C18-CNCs composite material increased, but the degree of crystallinity, glass transition temperature, melting temperature of PCL/C18-CNCs composite material first dropped down, when the content of C18-CNCs was6.0%, all reached the minimum value, with the content of C18-CNCs going on increasing, the degree of crystallinity, melting temperature of C18-CNCs/PCL composite material raised up. Scanning electron microscopy (SEM) analysis showed that, when the content of C18-CNCs was below6.0%, it can be evenly distributed on the surface of C18-CNCs/PCL composite membrane, when the content of C18-CNCs was more than6.0%, it gathered together on surface of C18-CNCs/PCL composite membrane.
引文
[1]张俐娜,陈国强,蔡杰等.基于生物质的环境友好材料[M].北京:化学工业出版社,2011,21.
    [2]闵恩泽,吴巍.绿色化学与化工[M].北京:化学工业出版社,2000,47.
    [3]Didenko YT, Suslick KS. Chemical aerosol flow synthesis of semiconductor sanoparticles[J]. Journal of the American Chemical Society,2005,127 (35): 12196-12197.
    [4]Li LS, Alivisatos AP. Semiconductor nanorod liquid crystals and their assembly on a substra.te[J]. Advanced Materials,2003,15 (5):408-411.
    [5]Li LS, Walda J, Manna L, Alivisatos AP. Semiconductor nanorod Liquid Crystals[J].Nano Letters,2002,2 (6):557-560.
    [6]Vroege GJ, Thies-WeeSie DME, Petukhov AV, Lemaire BJ, Davidson P. Smectic liquid-crystalline order in suspensions of highly polydisperse goethite nanorods[J]. Advanced Materials,2006,18:2565-2568.
    [7]Pochard I, Boisvert JP, Persello J, Foissy A. Surface charge, effective charge and dispersion/aggregation properties of nanoparticles[J]. Polymer International,2003, 52:619-624.
    [8]Gabriel J-CP, Davidson P. New trends in colloidal liquid crystals based on mineral moieties[J]. Advanced Materials,2000,12 (1):9-20.
    [9]Davidson P, Batail P, Gabriel JCP, Livage J, Sanchez C, Bourgaux C. Mineral liquid crystalline polymers[J]. Progress in Polymer Science,1997,22:913-936.
    [10]Wang Y, Iqbal Z, Mitra S. Rapidly functionalized water-dispersed carbon nanotubes at high concentration[J]. Journal of the American Chemical Society,2006, 128 (1):95-99.
    [11]Lee CL, Wan CC, Wang YY. Synthesis of metal nanoparticles via self-regulated reduction by an alcohol surfactant[J]. Advanced Functtional Materials,2001,11(5): 344.347.
    [12]Lijima S. Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58.
    [13]Rinaudo M. Chitin and chitosan:properties and applications[J]. Progress in Polymer Science,2006,31:603-632.
    [14]Milkowski K, Clark JH, Doi S. New materials based on renewable resources: chemically modified highly porous starches and their composites with synthetic monomers[J]. Green Chemistry,2004,6 (4):189-190.
    [15]Cui D, Gao H. Advance and prospect of bionanomaterials[J]. Biotechnology Progress,2003,19 (3):683-692.
    [16]Ramzi M, Borgstrpm J, Piculell L. Effects of added polysaccharides on the isotropic/nematic phase equilibrium of K-Carrageenan[J]. Macromolecules,1999,32 (7):2250-2255.
    [17]Inomata K, Ohara N, Shimizu H, Nose T. Phase behaviour of rod with flexible Side chains/coil/solvent systems:poly(e,1-glutamate)with tri(ethylene glycol)side chains, poly(ethylene glycol), and dimethylformamide[J]. Polymer,1998,39(15): 3379-3386.
    [18]Stupp SI, Braun PV. Molecular manipulation of microstructures:biomaterials, ceramics, and semiconductors[J]. Science,1997,277:1242-1247.
    [19]Park S, Brown KA, Hamad-Schifferli K. Changes in oligonucleotide conformation on nanoparticle surfaces by modification with mercaptohexanol[J].Nano Letters,2004,4 (10):1925-1929.
    [20]Dujardin E, HSin L-B, Wang CRC, Mann S. DNA-driven self-assembly of gold nanorods[J]. Chemical Communications,2001,1 (14):1264-1265.
    [21]Strzelecka TE, Davidson MW, Rill RL. Mutilple liquid crystal phases of DNA at high concentrations[J]. Nature,1988,331:457-460.
    [22]Ranby, B. G. Aqueous colloidal solutions of cellulose micelles[J]. Acta Chemica. Scandinavica,1949,3:649-650.
    [22]Wada M. In situ observation of the crystalline transformation from cellulose ⅡⅡ to Ⅰ[J]. Macromolecules,2001,34 (10):3271-3275.
    [23]Zugenmaier P. Conformation and packing of various crystalline cellulose fibers[J]. Progress in Polymer Science,2001,26 (9):1341-1417.
    [24]O'Sulliban A.C. Cellulose:the structure slowly uravels[J]. Cellulose,1997,4: 173-207.
    [25]Langan P, Nishiyama Y, Chanzy H. X-ray structure of mercerized cellulose Ⅱ at 1A resolution[J]. Biomacromolecules,2001,2:410-416.
    [26]Sarko A, Southwick J, Hayashi J. Packing analysis of carbohydrates and polysaccharides 7-Crystal structure of cellulose Ⅲ1 and its relationship to other cellulose polymorphs[J]. Macromolecules,1976,9:857-863.
    [27]Gardiner E, Sarko A. Packing analysis of carbohydrates and polysaccharides-the crystal structure of cellulose ⅣⅠ and ⅣⅡ[J], Canadian Journal of Chemistry,1985, 63:173-180.
    [28]Gardner K H, Blackwell J. The structure of native cellulose[J]. Biopolymers, 1974,13:1975-2001.
    [29]Gilberto Siqueira, Julien Bras, Alain Dufresne. Cellulosic bionanocomposites:a review of preparation, properties and applications[J]. Polymers,2010,2:728-765.
    [30]Rowland S.P. Modified cellulosics[M]. New York:Academic Press Inc.,1978: 147-167.
    [31]Bose J.L., Roberts E.J., Rowland S.P. The availability of hydroxyl groups in native and mercerized cotton celluloses[J]. Journal of Applied Polymer Science, 1971,15 (12):2999-3007.
    [32]赵艳锋.微晶纤维素的改性技术及进展[J].天津化工,2006,20(2):11-13.
    [33]Yuan H, Nishiyama Y, Wada M, Kuga S. Surface acylation of cellulose whiskers by drying aqueous emu\Sion[J]. Biomacromolecules,2006,7 (3):696-700.
    [34]龚蕾,杨建中,杨成,刘晓亚,陈明清.阳离子型纤维素醚溶液性质的研究[J].高分子材料科学与工程,2007,(05):108-110.
    [35]张光华,朱军峰,徐晓凤.纤维素醚的特点、制备及在工业中的应用[J].纤维素科学与技术,2006,(01):60-65.
    [36]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1999,71.
    [37]Beck-Candanedo S, Roman M, Gray D G Effect of reaction condition on the properties and behavior of wood cellulose nanocrystal suspensions[J]. Biomacromolecules,2005,6 (2):1084-1054.
    [38]Bondeson D, Mathew A, Oksman K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis[J].Cellulose,2006, 13 (2):171-180.
    [39]MatheW A P, Dufresne A. Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers [J]. Biomacromolecules,2002,3: 609-617.
    [40]Petersson L, Kvien I, Oksman K. Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials[J]. Composites Science and Technology,2007,67:2535-2544.
    [41]Pu Yunqiao, Zhang Jianguo, Elder T, et al. Investigation into nanocellulosics versus acacia reinforced acrylic films[J]. Composites:Part B,2007,38:360-366.
    [42]Yano H, Sugiyama J, Nakagatio AN, et al. Optically transparent composites reinforced with networks of bacterial nanofibers[J]. Advanced Materials,2005,17 (2):153-155.
    [43]Taniguchi T, Okamura K. New films produced from microfibrillated natural fibres[J]. Polymer International,1998,47 (3):291-294.
    [44]袁莉,马晓燕.分子复合材料的研究进展[J].高分子材料科学与工程,2004, 20(5):45-50.
    [45]Beck-Candanedo S, Roman M, Gray D G Effect of reaction condition on the properties and behavior of wood cellulose nanocrystal suspensions[J]. Biomacromolecules,2005,6 (2):1084-1054.
    [46]Mathew A P, Dufresne A. Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers [J], Biomacromolecules,2002,3: 609-617.
    [47]Nancy L G, Wim T, Alain D. Sisal cellulose whiskers reinforced polyvinyl acetatenanocomposites[J]. Cellulose,2006,13 (3):261-270.
    [48]Gregory C, Laurent H, Rachid A, et al. Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy[J]. Biomacromolecules,2005,6 (4):2025-2031.
    [49]王能,丁恩勇.酸碱处理后纳米微晶纤维素的热行为分析[J].高分子学报,2004,12(6):925-928.
    [50]熊建华,王双飞,叶志青.纤维素的改性技术及进展[J].西南造纸,2004,6(33):24-26.
    [51]叶代勇,黄洪,傅和青等.纤维素化学研究进展[J].化工学报,2006,8(57):1782-1792.
    [52]P S Chang, J F Robyt. Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-tetramethyl-l-piperidine oxoammonium Ion[J]. Carbohydrate Chemistry,1996,15 (7):819-830.
    [53]S Montanari, M Roumani, L Heux, et al. Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-Mediated Oxidation[J]. Macromolecules,2005,38 (5):1665-1671.
    [54]Y Habibi, H Chanzy, M R Vignon. TEMPO-mediated surface oxidation of cellulose whiskers[J]. Cellulose,2006,13 (6):679-687.
    [55]林松.纤维素纳米晶的乙酰化及改性聚氨酯材料的研究[D].武汉理工大学硕士论文.
    [56]My Ahmed Said Azizi Samir. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field[J]. Biomacromolecules, 2005,6:612-626.
    [57]Heux L., Chauve, G, Bonono, C. Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals supensions in nonpolar solvents[J]. Langmuir,2000,16:8210.
    [58]De Nooy, A. E. J., Besemer, A. C., van Bekkum, H. Recl. Trav. Nitroxyl radical TEMPO:an organocatalyst for highly efficient and selective oxidation of alcohol[J]. Chim. Pays-Bos,1994,113:165-169.
    [59]Habibi, Y, Chanzy, H., Vignon, M. R. TEMPO-mediated surface oxidation of cellulose whiskers[J], Cellulose,2006,13:679-687.
    [60]Habibi Y., Lucian A., Orlando J., Rojas I.. Cellulose nanocrystals:chemistry, self-assembly, and applications[J]. Chemical Reviews,2010,110(5):3479-3500.
    [61]Sophie Berlioz, Sonia Molina-Boisseau, Yoshiharu Nishiyama, Laurent Heux. Gas-Phase surface esterification of cellulose microfibrils and whisker[J]. Biomacromolecules,2009,10:2144-2151.
    [62]Sassi, J.-F. Chanzy, H. Ultrastructural aspects of the acetylation of cellulose[J]. Cellulose,1995,2:111-127.
    [63]Michizoe J, Goto M, Furusaki S. Catalytic activity of laccase hosted in reversed micelles[J]. Journal of Bioscience and Bioengineering,2001,92 (1):67-71.
    [64]Sheiko SS, Sumerlin BS, Matyjaszewski K. Stimuli-responsive molecular brushes[J]. Progress in polymer science,2008,33:759-785.
    [65]Lindqvist, J., Nystrom, D., Ostmark, E., Antoni, P., Carlmark, A., Johansson, M., Hult, A., Malmstrom, E.. Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP[J]. Biomacromolecules,2008,9:2139-2145.
    [66]Singh, N., Chen, Z., Tomer, N., Wickramasinghe, S. R., Soice, N., Husson, S.M. Modification of regenerated cellulose ultrafiltration membranes by surface-initiated atom transfer radical polymerization[J]. Journal of Membrane Science,2008,311:225-234.
    [67]Lonnberg, H., Zhou, Q., Brumer, H., Teeri, T.T, Malmstrom, E., Hult, A.. Grafting of cellulose fibers with poly(epsilon-caprolactone) and poly(L-lactic acid) via ring-opening polymerization[J]. Biomacromolecules,2006,7:2178-2185.
    [68]Barsbay, M., Guven, O., Davis, T. P., Bamer-Kowollik, C., Bamer, L, RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via gamma-radiation[J]. Polymer,2009,50:973-982.
    [69]Habibi, Y, Goffin, A. L., Schiltz, N., Duquesne, E., Dubois, P., Dufresne, A.. Bionanocomposites based on poly(epsilon-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization[J]. Journal of Material Chemistry, 2008,18:5002-5010.
    [70]Morandi, G, Heath, L., Thielemans, W., Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP) [J]. Langmuir,2009,25:8280-8286.
    [71]Favier, V., Chanzy, H., Cavaille, J.Y. Polymer nanocomposites reinforced by cellulose whiskers[J].Macromolecules,1995,28:6365-6367.
    [72]Saito, T., Kirrmra, S., Nishiyama, Y, Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose[J]. Biomacromolecules,2007,8: 2485-2491.
    [73]Sturcova, A., Davies, G. R., Eichhom, S. J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers[J]. Biomacromolecules,2005,6:1055-1061.
    [74]Bergshoef, M. M., Vancso, G J. Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement[J]. Advanced Materials,1999,11: 1362-1365.
    [75]Halpin, J.C., Kardos, J.L. Modules of crystalline polymers employing composites theory [J]. Journal of Applied Physics,1972,43:2235-2241.
    [76]Xiaodong Cao, Hua Dong, Chang Ming Li. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethanes[J]. Biomarcomolecules,2007,8:899-904.
    [77]Lima, M. M. D., Borsali, R., Rodlike cellulose microcrystals:structure, properties, anda.pplications[J].Macromolecular Rapid Communications,2004,25: 771-787.
    [78]Sehaqui, H., Zhou, Q., Berglund, L. A. Nanostructured biocomposites of high toughness-a wood cellulose nanofiber network in ductile hydroxyethyl cellulose matrix[J]. Soft Matter,2011,7:7342-7350.
    [79]Ljungberg, N., Bonini, C., Bortolussi, F., Boisson, C.,Heux, L., Cavaille, J. Y.New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene:Effect of surface and dispersion characteristics[J]. Biomacromolecules,2005,6:2732-2739.
    [80]Takayanagi, M., Uemura, S., Minami, S. Application of equivalent model method to dynamic rheo-optical properties of a crystalline polymer[J]. Journal of Polymer Scencei,1964, J:113-122.
    [81]Ouali, N., Cavaille, J.Y, Perez, J.. Elastic, viscoelastic and plastic behavior of multiphase polymer blends[J]. Plastic Rubber Composite Process Application, 1991,16:55-60.
    [82]Dufresne, A. Comparing the mechanical properties of high performances polymer nanocomposites from biological sources[J]. Journal nanoscence and nanotechnology,2006,6:322-330.
    [83]Dubief D, Samain E, Dufresne A. Polysaccharide microcrystals reinforced amorphous poly(hydroxyoctanoate) nanocomposites Materials[J]. Macromolecules, 1999,32 (18):5765-5771.
    [84]Van den Berg, O., Schroeter, M., Capadona, J. R., Weder, C. Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers[J]. Jouranl of Material Chemistry,2007,17:2746-2753.
    [85]Syverud, K., Stenius, P. Stretch and barrier properties of MFC films[J]. Cellulose,2009,16:75-85.
    [86]Gilberto Siqueira, Julien Bras, Alain Dufresne. Cellulosic bionanocomposites:a review of preparation, properties and applications[J]. Polymers,2010,2:728-765.
    [87]Rira Jung, Yeseul Kim, Hun-Sik Kim, Hyoung-Joon Jin, Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles[J]. Journal of Biomaterials Science, Polymer Edition,2009,20(3):311-324.
    [88]Nicolas Drogat, Robert Granet, Vincent Sol, et al. Antimicrobial silver nanoparticles generated on cellulose nanocrystals[J]. Journal of Nanoparticle Research,2011,13 (4):1557-1562.
    [89]Khaled A. Mahmoud, Keith B.Male, Sabahudin Hrapovic, John H. T. Luong. Cellulose nanocrystal/gold nanoparticle composite as a matrix for enzyme immobilization[J]. ACSApplied Materials&Interfaces,2009,1 (7):1383-1386.
    [90]R Yang, H Tan, F Wei, S Wang. Peroxidase conjugate of cellulose nanocrystals for the removal of chlorinated phenolic compounds in aqueous solution[J]. Biotechnology,2008,7:233-241.
    [91]Capadona, J. R., Shanmuganathan, K., Tyler, D. J., Rowan, S. J., Weder, C. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis[J]. Science,2008,319:1370-1374.
    [92]R Yang, H Tan, F Wei, S Wang. Peroxidase conjugate of cellulose nanocrystals for the removal of chlorinated phenolic compounds in aqueous solution[J]. Biotechnology,7:233-241.
    [93]Ciprian M. Cirtiu, Alexandre F. Dunlop-Briere, Audrey Moore. Cellulose nanocrystallites as an efficientsupport for nanoparticles of palladium:application for catalytic hydrogenation and Heck coupling under mild conditions[J]. Green Chemistry,2011,3:288-291.
    [94]Yano, H., Sugiyama, J., Nakagaito, A. N., Nogi, M., Matsuura, T, Hikita, M., Handa, K.. Optically transparent composites reinforced with networks of bacterial nanofibers[J]. Advanced Materials,2005,17:153-155.
    [95]Nogi, M., Yano, E..Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry[J]. Advanced Materials,2008,20:1849-1852.
    [96]Iwamoto, S., Nakagaito, A. N., Yano, H., Nogi, M.. Optically transparent composites reinforced with plant fiber-based nanofibers[J]. Applied Physics A:Materials Sciience & Processing,2005,81:1098-1112.
    [97]Jin, H., Kettunen, M., Laiho, A., Pynnonen, H., Paltakari, J., Marmur, A., Ikkala, O., Ras, R. H. A.. Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil[J]. Langmuir,2011, 27:1930-1934.
    [98]Paakko, M., Vapaavuori, J., Silvennoinen, R., Kosonen, H., Ankerfors, M., Lindstrom, T., Berglund, L. A., Ikkala, O.. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities[J]. Soft Materials,2008,4:2492-2499.
    [99]Gao, X. F., Jiang, L.. Water-repellent legs of water striders[J]. Nature,2004, 432:36-36.
    [100]肖进新,赵振国,表面活性剂应用原理[M].北京:化学工业出版社,2003,45.
    [101]崔正刚等,微乳化技术及应用[M].北京:中国轻工业出版社,1999,89.
    [102]夏仕文.反胶束的酶催化研究进展[J].化学通报,1998,(2):8-13.
    [103]Faeder J, Ladanyi B M. Molecular, dynamics, simulations of the interior of aqueous reverse micelles[J]. The Journal of Physical Chemistry B,2000,104 (5): 1033-1046.
    [104]Boutonnet M, Kizhig J, Stenius P. The preparation of monodisperse colloidal metal particles from microemulsions[J]. Journal of Colloid and Interface Science, 1982,5:209-225.
    [105]殷亚东,张志成,徐相凌等;纳米材料的辐射合成法制备[J].化学通报,1998,12:21-25.
    [106]Zhong Cao, Lixian Sun, Xueqiang Cao, Yinghe He. Adsorption of Acid Dyes onto Wool in TX-100 Reverse Micelles[J]. Advanced Materials Research,2011, 233-235:1366-1369.
    [107]Maria Ann Woodruff, Dietmar Werner Hutmacher. The return of a forgotten polymer—polycaprolactone in the 21st century. [J]. Progress in Polymer Science, 2010,10 (35):1217-1256.
    [108]Laura Elomaa, Sandra Teixeira, Risto Hakala. Preparation of poly(s-caprolactone)-based tissue engineering scaffolds by stereolithography[J]. Acta Biomaterialia,2011,11 (7):3850-3856.
    [109]HaeYong Kweon, Mi Kyong Yoo, In Kyu Park. A novel degradable polycaprolactone networks for tissue engineering[J]. Biomaterials,5 (24):801-808.
    [110]Xinghou Gong, Chak Yin Tang, Ling Pan, Zhonghua Hao, et.al. In vitro degradation of porous poly(lactic acid)/quantum dots scaffolds[J]. Composites Part B: Engineering,2013,55:234-239.
    [111]刘琦.可生物降解聚己内酯的共混及纳米改性[D].东华大学,硕士论文.
    [112]Georgette L. Siparsky, Kent J. Voorhees, John R. Dorgan, Kevin Schilling. Water transport in polylactic acid (PLA), PLA/polycaprolactone copolymers, and PLA/polyethylene glycol blends[J]. Journal of environmental polymer degradation, 1997,3 (5):125-136.
    [113]C.R. di Franco, V.P. Cyras, J.P. Busalmen, R.A. Ruseckaite, A. Vazquez. Degradation of polycaprolactone/starch blends and composites with sisal fibre[J]. Polymer Degradation and Stability,2004,1 (86):95-103.
    [114]鲁越,熊左春,李庆等.聚(L-丙交酯-CO-ε-己内酯)力学性能和降解性能研究[J].塑料工业,2010,8(38):34-37.
    [115]张龙彬,朱光明.可生物降解淀粉/PCL共混物性能研究[J].化工新型材料,2005,6(33):30-32.
    [116]杨德娟,刘孝波,朱方华,含ε-己内酯链节的聚酯-氨酯的合成与性能[J].研究与开发,2000,17(3):19-21.
    [117]Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers[J]. Biomaterials. 2005,26 (19):4139-47.
    [118]支剑,聂俊,何勇.聚己内酯三元醇双固化聚氨酯丙烯酸酯的合成及其固化膜性能研究[J].涂料工业,3(40):10-17.
    [119]Devalckenaere N, Alexandre M, Dana K, et al. Poly (s-caprola-ctone)/ claynanocomposites by in-situ intercalative polymerization catalyzed by dibutyltin dimethoxide[J]. Macromolecules,2002,35:8385-8389.
    [120]Jean Philippe, Tessonnierali Rinaldi, Sylvia Reiche, M.G. Kutty. Chemically Modified Multi-walled Carbon Nanotubes (MWCNTs) with Anchored Acidic Groups[J]. SainsMalaysiana,2012,41 (5):603-609.
    [121]唐圣奎,熊杰,谢军军等.多壁碳纳米管/聚己内酯超细复合纤维的制备及性能.复合材料学报[J],2010,6(3):10-15.
    [122]常海波,马聪鹤,李小红等.可反应性纳米SiO2/聚己内酯杂化材料的制备和结晶性能研究[J].河南大学学报,2011,9:478-481.
    [123]段亮,徐志飞,孙康等.甲壳素短纤维增强聚己内酯复合材料体外降解实验研究[J].生物医学工程学杂志,2007,24(3):582-585.
    [124]张龙彬,朱光明.可生物降解淀粉/PCL共混物性能研究[J].化工新型材料,2005,6:30-32
    [125]刘训堃,滕翠青,余木火.苎麻织物增强PLA-PCL复合材料的制备及其性能研究[J].塑料工业,2007,35(1):21-23.
    [126]李仙会,陈瑞珠,吴驰飞.嵌段共聚酯的合成及对聚碳酸酯的改性[M].亚太塑料加工研讨会论文集,2004,103.
    [127]Hyun Jeong Jeon, Jin Sook Kim, Tae Gon Kim. Preparation of poly(□-caprolactone)-based polyurethane nano fibers containing silver nanoparticles[J]. Applied Surface Science,2012,18 (254):5886-5890.
    [128]Mohanty A K, Misra M, Drzal L T. Sustainable bio-composites from renewable resources:Opportunities and challenges in the green materials world[J]. Journal of Polymer Envirment,2002,10:19-26.
    [1]Youssef H, Henri C, Michel R V. TEMPO-mediated surface oxidation of cellulose whiskers[J]. Cellulose,2006,13 (6):679-687.
    [2]Keiran Fleming, Derek G. Gray, Stephen Matthews. Cellulose Crystallies[J]. Chemistry-A European Journal,2001,7 (9):1831-1834.
    [3]唐丽荣,黄彪,李玉华等.纳米纤维素超微结构的表征与分析[J].生物质化学工程,2010,44(2):1-4.
    [4]高善民,乔青安,许璞等.,微晶纤维素的制备及性质研究[J].功能材料,2007,A07:2891-2894.
    [5]M.F.Rosa, E.S.Medeiros, J.A.Malmonge, et al. Cellulose nanowhiskers from coconut husk fibers:Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymer,2010,81:83-92.
    [6]Neng Wang, Enyong Ding, Rongshi Cheng. Thermai degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer,2007,48:3486-3493.
    [7]Daniel B., Aji M., Kristiina O.. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis [J]. Cellulose,2006, (13): 171-180.
    [8]Wen B., James H., Li K.. A technique for production of nanocrystalline cellulose with a narrow size distribution[J]. Cellulose,2009, (16):455-465.
    [9]李淑君.植物纤维水解技术[M].北京:化学工业出版社,2009.
    [1]杨海军,陆永良,何良等.羊毛条毡缩性能测试法研究[J].毛纺科技,2012,
    40(7):48-52.[2]常婷婷,赵澍.羊毛织物的环保防缩整理[J].轻纺工业与技术,2011,40(1):11-13.
    [3]杨世玉,阎克路,胡毅.聚氨酯溶胶型羊毛防毡缩整理剂的制与应用[J].毛纺 科技,2009,37(5):1-5.
    [4]Tang, L.M., Weder, C.Cellulose whisker/epoxy resin nanocomposites[J]. ACS Applied Materials & Interfaces,2010,2:1073-1080.
    [5]Samir, A., Alloin,M.A. S., Dufresne, A. F.. Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension[J]. Macromolecules,2004,37 (4):1386-1393.
    [6]吕明哲,李普旺,黄茂芳等.用动态热机械分析仪研究香蕉的低温动态力学性能[J].中国测试技术,2007,33(3):27-30.
    [7]Cao XD, Dong H, Chang ML. New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane[J]. Biomacromolecules, 2007,8:899-904.
    [8]贾玉.碳纳米管热塑性聚合物复合材料的制备及蠕变行为研究[D].中国科学技术大学,博士论文:54.
    [9]Wang Y, Wang LJ, Li D. Effect of Drying Methods on RheologicaLProperties of Flaxseed Gum[J]. Carbohydrate Polymers,2009,78:213-219.
    [10]Jimenez-Avalos HA, Ramos-Ramirez EG, Salazar-Montoya JA. Viscoelastic Characterization of Gum Arabic and Maize Starch Mixture Using the Maxwell model[J]. Carbohydrate Polymers,2005,62:11-18.
    [11]Montazer, M., Pakdel, E., Behzadnia, A.. Novel feature of nano-Titanium dioxide on textiles:antifelting and antibacterial wool[J]. Journal of Applied Polymer Science, 2011,121:3407-3413.
    [12]Cao, X.D., Habibi, Y., Lucian, A.L..One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites[J]. Journal of Material Chemistry,2009,19:7137-7145.
    [1]Elisabeth Kloser, Derek G. Gray. Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media[J]. Langmuir,2010,26(16):13450-13456.
    [2]Maria L.Auad, Mirna A. Mosiewicki, Tara Richardson, Mirta I. Aranguren. Nanocomposites made from cellulose nanocrystals and tailored segmented polyurethanes[J]. Journal of Applied Polymer Science,2010,115:1215-1225.
    [3]Xiaodong Cao, Hua Dong, Chang Ming Li. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane[J]. Biomacromolecules,2007,8:899-904.
    [5]Limin Qi. Synthesis of inorganic nanostructures in reverse micelles[J]. Encyclopedia of Surface and Colloid Science,2006:6183-6206.
    [6]Marie-Christine Jonesa, Jean-Christophe Leroux. Reverse micelles from amphiphilic branched polymers[J]. Soft matter,2010,6:5850-5859.
    [7]Tran Thi Ngoc Dung, Ngo Quoc Buu, Dang Viet Quang et al. Synthesis of nanosilver particles by reverse micelle method and study of their bactericidal properties[J]. Journal of Physics:Conference Series,2009,187:1-9.
    [8]王素青.微乳液、胶束、反胶束(团)有序体系在化学分析与分离技术中的应用[J].潍坊学院学报,2007,2(7):80-85.
    [9]黄伟坤.食品检验与分析[M].北京:轻工业出版社,1989.
    [10]郭晓歌,赵俊廷.不同反胶束体系增溶水的比较[J].精细石油化工进展,2008,2(9):22-25.
    [11]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2003.
    [12]秦承宽,柴金岭,陈景飞.微乳液的研究及应用进展[J].山西化工,2006,26(10):21-25.
    [13]滕弘霓,孙镛,黄斌等.以非离子型表面活性剂形成微乳液的碳原子数相关性研究[J].高等学校化学学报,1999,20(5):772-776.
    [14]李雪梅,邵华,印志磊等.萃取体系中的分子有序现象及其对萃取的影响[J].化学通报,2001,9:559-663.
    [15]Manoj K M, Jagakuma R, Rakshits K. Physiochemical studies on reverse micelles of sodium bis (2-ethylhexyl) sulfosuccinate at low water content[J]. Langmuir,1996,12:4068-4072.
    [16]Zhao XiaoYan, Xue WenTong, Chen FuSheng. Li Lite. Factors affecting reverse micelle extraction of protein and mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering,2009,25 (11):354-360.
    [17]裘俊红,董树杰,谢海英.AOT/异辛烷反胶束体系含水量研究[J].高校化学工程学报,2008,22(3):515-518.
    [18]Sawada K., Ueda M. Dyeing of protein fiber in a reverse micellar system[J]. Dyes and Pigments,2003,2 (58):99-103.
    [19]My Ahmed Said Azizi Samir, Fannie Alloin, Jean-Yves Sanchez, Alain Dufresnec. Cellulose nanocrystals reinforced poly(oxyethylene) [J]. Polymer,2004, 45:4149-4157.
    [20]Jiang S C, Ji X L, An L J, et al. Crystallization behavior of PCL in hybride confined environment[J]. Polymer,2001,42:3901-3907.
    [21]唐圣奎,熊杰,谢军军,张红萍,肖红伟.多壁碳纳米管/聚己内酯超细复合纤维的制备及性能[J].复合材料学报,2010,3(27):10-15.
    [22]Sun L, Gan ZH, Xu XX, et al. Biodegration of polycarprolactone in vivo[J]. Chin J Exp Surg,1996,16 (2):169.
    [1]高振华,顾继友,李志国.利用DSC研究异氰酸酯与纤维素的反应机理[J].林业科学,2005,3(41):115-120.
    [2]Gilberto Siqueira, Julien Bras, Alain Dufresne. Cellulose Whiskers versus microfibrils:influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites[J]. Biomacromolecules,2009,10:425-432.
    [3]朱吕民.聚氨酯合成材料[M].南京:江苏科学技术出版社,2002.
    [4]Birgit Braun, John R. Dorgan. Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers[J]. Biomacromolecules,2009,10: 334-341.
    [5]My Ahmed Said Azizi Samir. Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field[J]. Biomacromolecules,2005,6:612-626.
    [6]Auad, M. L., Contos, V. S., Nutt, S., Aranguren, M. L, Marcovich, N. E., Characterization of nanocellulose-reinforced shape memory polyurethanes[J]. Polym. Int.2008,57:651-659.
    [7]Habibi, Y.; Dufresne, A. Highly filled bionanocomposites from functionalized polysaccharide nanocrystals[J]. Biomacromolecules,2008,9:1974-1980.
    [8]Syverud, K.; Stenius, P. Strench and barrier properties of MFC films[J]. Cellulose,2009,16:75-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700