用户名: 密码: 验证码:
基于弱信号特征提取的早期诊断方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业自动化水平的提高对设备提出了早期故障诊断的需求。由于复杂的工作环境和现场噪声的干扰,设备的故障信号容易被噪声污染,如何有效的从低信噪比监测信号中提取弱故障特征成为故障诊断领域迫切需要解决的问题。结合故障信号自身的特点,运用弱信号特征提取方法和早期故障诊断理论解决机械故障诊断中信号降噪和弱特征加强等问题以及进行设备的早期故障诊断是当前机械故障诊断领域迫切需要研究的重要课题之一。本文研究了信号的降噪方法、设备故障的弱特征提取、早期故障诊断理论及其在轴承故障诊断中的应用。
     (1)采用小波分析的多分辨率算法,信号被分解为不同尺度上的低频分量和高频分量,信号中的微弱特征随着尺度因子的递进变化逐渐被放大。在每个分解尺度上,将变换系数与通过阈值规则设置的门限因子进行比较处理,实现了信号的降噪处理,提高了信噪比和加强了信号中弱特征。
     (2)基于信号的局部特征分析,经验模态分解采用包络分析理论将故障信号分解为频率从高到低变化的固有模态分量。针对经验模态分解过程的边界效应问题和传统延拓方法的缺陷,本文采用了基于奇异值分解和支持向量回归机的端点预测延拓方法。奇异谱分析方法能够有效地检测信号中的周期特征,为确定支持向量回归机延拓点的数目提供了一种可行的方法。通过阈值扫描法剔除了分解产生的“伪”分量,分析表明该方法能够有效地抑制边界效应和提取信号中的弱特征分量。
     (3)针对设备早期故障特征不明显、可分性差的特点,采用支持向量机建立最优分类决策模型。采用高斯核函数增加样本的可分性,实现了故障特征空间的映射变换。本文以轴承故障为研究对象,系统地研究了故障类别、训练样本数目和故障诊断精度之间的关系,分析表明该方法能够有效地解决小样本情况下故障诊断精度低的问题。
     (4)基于Matlab语言和VB环境的混合编程技术开发了信号的特征提取和设备的早期故障诊断可视化操作系统,提供了一个操作方便、可扩展性强的特征提取和早期故障诊断平台。
The development of industrial automatization results in the increasing demand of early fault diagnosis. While the fault features may easily be contaminated for serious noise interference and complex working condition, how to detect weak fault features from low signal noise ratio (SNR) vbration signals becomes an urgent problem that need to be solved. Applying weak signal processing method and incipient fault diagnosis theory to conduct signal denoising and early fault diagnosis is a hot topic in mechanical fault diagnosis. This dissertation studied vibration signal processing, weak fault features detecting and incipient fault diagnosis method.
     (1) Vibration signal was decomposed into a set of low frequency parts and high frequency parts by adopoting the multi-resolution analysis method. Weak signal features at any point of the signal can be revealed with the changing of scale factor and translation factor. At each decomposition level, the wavelet coefficients were compared to the threshold that was preset according to threshold rules, and the denoising signal can be constructed by the new wavelet coefficients. Simulation results show that this method can effectively improve SNR of the orignal signal and reveal weak fault features.
     (2) Based on analysis local characteristics of the signal, vibration signal can be descomposed into a series of intrinsic mode functions (IMFs) ranging from high frequency to low frequency. Taking into account the defects of empirical mode decomposition (EMD) shifting processing and shortages of traditional extension methods, this dissertation proposed a novel methodology based on singular value decomposition (SVD) and support vector regression (SVR), periodic features can be detected effectively according to SVD, which provided an approach to determain signal extension length in SVR method. Meanwhile, a scanning method was employed to get rid of the redundant IMFs, simulation results show effectiveness of the proposed method.
     (3) Support vector machine (SVM) was employed to construct the optimal hyperplane, it can obtain the minimum structure risk and maximum generalization ability and outreach capacity. Meanwhile, introducing Gaussian kernel function, fault features can transform from low dimension space to high dimension space, which can significantly improve separability of training samples. This method was employed to conduct bearing fault diagnosis, realationship between fault categories, training samples and diagnostic accuracy was studied, results show that the proposed method can effectively identify early fault features even when the training samples are insufficient.
     (4) The dissertation developed a visual fault diagnosis system based on Matlab and Visual Basic, which provided an easy operation and high expansibility fault diagnosis tool.
引文
[1] Zvokelj M, Zupan S, Prebil I. Non-Linear Multivariate and MultiscaleMonitoring and Signal Denoising Strategy Using Kernel PrincipalComponent Analysis Combined with Ensemble EnIn Press, Corrected Proof
    [2]曹冲锋.基于EMD的机械振动分析与诊断方法研究[D].浙江:浙江大学学位论文. 2009:1-2
    [3]李强.机械设备早期故障预示中的微弱信号检测技术研究[D].天津:天津大学学位论文. 2008:1-5
    [4]汪彦君.旋翼结冰数字相关检测系统的设计[D].武汉:华中科技大学学位论文. 2008:12-13
    [5] Wang Z, Li M. Early Fault Self-Recovery Model and Fault Self-RecoveryMethods on Aircraft[C]. 2008 Control and Decision Conference, 2008:487-489
    [6] Lee J. E-Manufact[7 Wang W, Carr M, Xu W, et al. A Model for Residual Life Prediction Based onBrownian Motion with an Adaptive Drift[J]. Microelectronics Reliability.2011, 51(2):285-293
    [7] Wang W, Carr M, Xu W, et al. A Model for Residual Life Prediction Based on Brownian Motion with an Adaptive Drift[J]. Microelectronics Reliability. 9.011. 51 m:
    [8] Carr M J, Wang W. An Approximate Algorithm for Prognostic ModellingUsing Condition MonitoriOperational Research. 2011, 211(1):90-96
    [9]黄文虎,纪常伟,姜兴渭等.基于故障树模型[J].机械强度1995, (2)
    [10] Venkatasubramanian V, Rengaswamy R, Yin K, et al. A Review of Process Fault Detection and Diagnosis: Part I: Quantitative Model-Based Methods [J]. Computers & Chemical Engineering. 2003, 27(3): 293-311
    [11]贾希.用于脑-机接口的脑电信号特征提取及分类的研究[D].河北:河北工业大学学位论文. 2007:12-13
    [12] Schreiber T. Interdisciplinary Application of Nonlinear Time SeriesMethods[J]. Physics Reports. 1999, 308(1): 1-64
    [13] Canuet L, Ishii R, Iwase M, et al. Meg-Sam Kurtosis Analysis in theLocalization of the Epileptogenic Tuber in Tuberous Sclerosis: A CaseReport[J]. International Congress Series. 2007, 1300: 653-656
    [14] Hadjileontiadis L J, Douka E. Kurtosis Analysis for Crack Detection in ThinIsotropic Rectangular Plates [J]. Engineering Structures. 2007, 29(9) :2353-2364
    [15] Huang S, Lee M, Hsiao C K. Nonlinear Measures of Association withKernel Canonical Correlation Analysis and Applications [J]. Journal ofStatistical Planning and Inference. 2009, 139(7): 2162-217'4
    [16] Dalpiaz G, Rivola A, Rubini R. Effectiveness and Sensitivity of VibrationProcessing Techniques for Local Fault Detection in Gears [J]. MechanicalSystems and Signal Processing. 2000, 14(3): 387-412
    [17] Zhan Y M, Jardine A K S. Adaptive Autoregressive Modeling ofNon-Stationary Vibration Signals under Distinct Gear States. Part 1:Modeling[J]. Journal of Sound and Vibration. 2005, 286(3): 429-450
    [18] Bao C, Hao H, Li Z, et al. Time-Varying System Identification Using aNewly Improved HHT Algorithm[J]. Computers & Structures. 2009,87(23-24): 1611-1623
    [19] Liu B. Selection of Wavelet Packet Basis for Rotating Machinery FaultDiagnosis [J]. Journal of Sound and Vibration. 2005, 284(3-5): 567-582
    [20] Gentile C, Gallino N. Ambient Vibration Testing and Structural Evaluationof an Historic Suspension Footbridge [J]. Advances in Engineering Software.2008, 39(4): 356-366
    [21] Gagnol V, Le T P, Ray P. Modal Identification of Spindle-Tool Unit inHigh-Speed Machining[J]. Mechanical Systems and Signal Processing. 2011,In Press, Corrected Proof
    [22] Yang J, Abubakar A, Vanden Berg P M, et al. A CG-FFT Approach to theSolution of a Stress-Velocity Formulation of Three-Dimensional ElasticScattering Problems[J]. Journal of Computational Physics. 2008, 227(24):10018-10039
    [23] Rai V K, Mohanty A R. Bearing Fault Diagnosis Using FFT of IntrinsicMode Functions in Hilbert-Huang Transform[J]. Mechanical Systems andSignal Processing. 2007, 21(6): 2607-2615
    [24] Jardine A K S, Lin D, Banjevic D. A Review on Machinery Diagnostics andPrognostics Implementing Condition-Based Maintenance[J]. MechanicalSystems and Signal Processing. 2006, 20(7): 1483-1510
    [25] Faisal M, Mohamed A, Shareef H, et al. Power Quality Diagnosis UsingTime Frequency Analysis and Rule Based Techniques [J]. Expert Systemswith AtJtjlications. 2011. In Press. Accented Manuscript
    [26] Rehorn A G, Sejdic E, Jiang J. Fault Diagnosis in Machine Tools Using Selective Regional Correlation [J]. Mechanical Systems and Signal Processing. 2006, 20(5): 1221-1238
    [27] Rosero J A, Romeral L, Ortega J A, et al. Short-Circuit Detection by Means of Empirical Mode Decomposition and Wigner-Ville Distribution for Pmsm Running under Dynamic Condition [J]. Industrial Electronics, IEEE Transactions on. 2009, 56(11): 4534-4547
    [28] Sawalhi N, Randall R B, Endo H. The Enhancement of Fault Detection and Diagnosis in Rolling Element Bearings Using Minimum Entropy Deconvolution Combined with Spectral Kurtosis[J]. Mechanical Systems and Signal Processing. 2007, 21(6): 2616-2633
    [29] Hadad K, Pourahmadi M, Majidi-Maraghi H. Fault Diagnosis and Classification Based on Wavelet Transform and Neural Network[J]. Progress in Nuclear Energy. 2011, 53(1): 41-47
    [30] Purushotham V, Narayanan S, Prasad SAN. Multi-Fault Diagnosis of Rolling Bearing Elements Using Wavelet Analysis and Hidden Markov Model Based Fault Recognition^]. NDT & E International. 2005, 38(8): 654-664
    [31] Saravanan N, Ramachandran K I. Incipient Gear Box Fault Diagnosis Using Discrete Wavelet Transform (Dwt) for Feature Extraction and Classification Using Artificial Neural Network (ANN)[J]. Expert Systems with Applications. 2010, 37(6): 4168-4181
    [32] Mohammed O A, Abed N Y, Ganu S. Modeling and Characterization of Induction Motor Internal Faults Using Finite-Element and Discrete Wavelet Transforms [J]. Magnetics, IEEE Transactions on. 2006, 42(10): 3434-3436
    [33] Rajagopalan S, Aller J M, Restrepo J A, et al. Analytic Wavelet Ridge Based Detection of Dynamic Eccentricity in Brushless Direct Current (Bide) Motors Functioning under Dynamic Operating Conditions [J]. Industrial Electronics, IEEE Transactions on. 2007, 54(3): 1410-1419
    [34] Zanardelli W G, Strangas E G, Aviyente S. Identification of Intermittent Electrical and Mechanical Faults in Permanent-Magnet Ac Drives Based on Time-Frequency Analysis[J]. Industry Applications, IEEE Transactions on. 2007,43(4): 971-980
    [35] Yu Y, Yu D, Cheng J. A Roller Bearing Fault Diagnosis Method Based on EMD Energy Entropy and ANN[J]. Journal of Sound and Vibration. 2006, 294(1-2): 269-277
    [36] Huang N E, Shen Z, Long S R. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis [J].Proceedings of The Royal Society of London A. 1998, 454: 903-995
    [37] Ong K C G, Wang Z, Maalej M. Adaptive Magnitude Spectrum Algorithmfor Hilbert-Huang Transform Based Frequency Identification [J]. EngineeringStructures. 2008, 30(1): 33-41
    [38] Huang N E, Wu Z. A Review on Hilbert-Huang Transform: Method and ItsApplications to Geophysical Studies [J]. Reviews of Geophysics. 2008, 46,RG2006
    [39] Cheng J, Yu D, Tang J, et al. Application of Frequency Family SeparationMethod Based Upon EMD and Local Hilbert Energy Spectrum Method toGear Fault Diagnosis [J]. Mechanism and Machine Theory. 2008, 43(6):712-723
    [40] Qian T, Chen Q, Li L. Analytic Unit Quadrature Signals with NonlinearPhase[J]. Physica D: Nonlinear Phenomena. 2005, 203(1-2): 80-87
    [41] Li Q S, Wu J R. Time-Frequency Analysis of Typhoon Effects on a79-Storey Tall Building [J]. Journal of Wind Engineering and IndustrialAerodynamics. 2007, 95(12): 1648-1666
    [42] Hwang P A, Huang N E, Wang D W. A Note on Analyzing Nonlinear andNonstationary Ocean Wave Data[J]. Applied Ocean Research. 2003, 25(4):187-193
    [43] Blanco V, Manuel., Weng B, Barner K E. Ecg Signal Denoising andBaseline Wander Correction Based on the Empirical Mode Decomposition[J].Computers in Biology and Medicine. 2008, 38(1): 1-13
    [44] Feldman M. Hilbert Transform in Vibration Analysis [J]. MechanicalSystems and Signal Processing. 2011, 25(3): 735-802
    [45] Pai P F. Time-Frequency Characterization of Nonlinear Normal Modes andChallenges in Nonlinearity Identification of Dynamical Systems [J].Mechanical Systems and Signal Processing. 2011, In Press, Corrected Proof
    [46] Rilling G, Flandrin P, Goncalves P. On Empirical Mode Decomposition andIts Algorithms [J]. IEEE-EURASIP Workshop on Nonlinear Signal and ImageProcessing. 2003, NSIP-03: 1-5
    [47] Kalogirou S A. Artificial Intelligence for the Modeling and Control ofCombustion Processes: A Review[J]. Progress in Energy and CombustionScience. 2003, 29(6): 515-566
    [48] Samanta B, Al-Balushi K R. Artificial Neural Network Based FaultDiagnostics of Rolling Element Bearings Using Time-Domain Features [J].Mechanical Systems and Signal Processing. 2003, 17(2): 317-328
    [49] Yang B S, Han T, An J L. Art-Kohonen Neural Network for Fault Diagnosisof Rotating Machinery[J]. Mechanical Systems and Signal Processing. 2004,18(3): 645-657
    [50] Yang Y, Yu D, Cheng J. A Roller Bearing Fault Diagnosis Method Based onEMD Energy Entropy and ANN[J]. Journal of Sound and Vibration. 2006,294(1-2): 269-277
    [51] Yang Y, Yu D, Cheng J. A Fault Diagnosis Approach for Roller BearingBased on Imf Envelope Spectrum and SVM[J]. Measurement. 2007,40(9-10): 943-950
    [52] Sohn H, Worden K, Farrar C R. Statistical Damage Classification underChanging Environmental and Operational Conditions [J]. Journal ofIntelligent Material Systems and Structures. 2002, 13(9): 561-574 [53] Mellit A, Kalogirou S A. Artificial Intelligence Techniques for PhotovoltaicApplications: A Review[J]. Progress in Energy and Combustion Science.2008,34(5): 574-632
    [54] Vapnik V N. The Nature of Statistical Learning Theory[M]. NewYork:Springer, 1999: 8-9
    [55] Sung C K, Tai H M, Chen C W. Locating Defects of a Gear System by theTechnique of Wavelet Transform[J]. Mechanism and Machine Theory. 2000,35(8): 1169-1182
    [56] Zhu K, Wong Y S, Hong G S. Wavelet Analysis of Sensor Signals for ToolCondition Monitoring: A Review and Some New Results [J]. InternationalJournal of Machine Tools and Manufacture. 2009, 49(7-8): 537-553
    [57]杨勇.基于GSM移动远程医疗系统中心电数据压缩算法研究[D].重庆:重庆大学学位论文. 2005:20-31
    [58] Sharman R, Tyler J M, Pianykh O S. A Fast and Accurate Method toRegister Medical Images Using Wavelet Modulus Maxima[J]. PatternRecognition Letters. 2000, 21(6-7): 447-462. 2006:31-33
    [59]徐剑.基于DSP的汽轮发电机转子匝间短路故障动态识别[D].河北:华北电力大学(河北)学位论文
    [60]李玉峰.小波分析在图像去噪与压缩中的应用研究[D].北京:中国科学院研究生院学位论文. 2005:38-39
    [61]刘蕾.基于双树复小波变换的图像去噪[D].北京:北京化工大学学位论文. 2010:31-34
    [62]杨凯.传动系统状态监测与故障诊断研究[D].南京:南京航空航天大学学位论文. 2008:24-27
    [63] Donoho D L. De-Noising Via Soft-Thresholding [J]. IEEE transactions on
    [64] http://www.eecs.case.edu/laboratory/bearing/download.htm
    [65] Rato R T, Ortigueira M D, Batista A G. On the HHT, Its Problems, and SomeSolutions[J]. Mechanical Systems and Signal Processing. 2008, 22(6):1374-1394 [[66]王春旭.基于希尔伯特—黄瞬时测频的DSP软件设计[D].西安:西安电子科技大学学位论文. 2009:14-17
    [67] Kanjilal P P, Bhattacharya J, Saha G. Robust Method for PeriodicityDetection and Characterization of Irregular Cyclical Series in Term ofEmbedded Periodic Components [J]. Physical Review E. 1999, 59(4): 4013 -4025
    [68] Chetverikov D, Axt A. Approximation-Free Running SVD and ItsApplication to Motion Detection[J]. Pattern Recognition Letters. 2010,31(9): 891-897
    [69]方瑞明.支持向量机理论及其应用分析[M].北京:中国电力出版社,2007:1-2
    [70] Xun J, Yan S. A Revised Hilbert-Huang Transformation Based on the Neural Networks and Its Application in Vibration Signal Analysis of a Deployable Structure[J]. Mechanical Systems and Signal Processing. 2008, 22(7): 1705-1723
    [71]冯雪.基于MATLAB与VB的工频波形分析系统[D].上海:上海交通大学学位论文. 2009:39-40
    [72]刘焕进. MATLAB N个实用技巧[M].北京:北京航空航天大学出版社, 2011:306-307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700