用户名: 密码: 验证码:
煤矿爆破地震效应对巷道稳定性影响及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钻眼爆破法仍是目前煤矿井下巷道施工的主要破岩手段,随着煤炭开采规模的扩大,爆破施工作业时的起爆药量和引发的振动强度也增大,频繁的爆破振动对巷道围岩和支护结构的安全性产生了影响。多年来,国内外对爆破振动的传播规律、危害机制和控制对策等进行了大量的研究工作,取得了丰硕的成果,主要集中在地面工程爆破地震效应对周边临近建筑物的影响、隧道(包括公路、铁路和水工隧道)施工爆破地震效应对相邻隧道和周边围岩的影响以及大型基坑、地下厂房开挖爆破地震效应对围岩的损伤、露天矿山开采爆破振动等方面,而在爆破地震效应对巷道稳定性影响方面的研究很少。在查阅国内外相关研究资料的基础上,本文通过对不同条件下煤矿巷道掘进爆破和工作面过断层岩石深孔松动爆破施工时产生的振动进行测试和分析,并基于Matlab软件应用HHT变换和小波包变换,对煤矿井下爆破振动特性及其对巷道围岩、支护结构的影响等问题进行较为深入的研究。论文的主要研究工作及成果如下:
     从理论上分析了爆破能量的分布和爆破地震波的形成、传播规律以及影响因素。建立了炮孔不耦合装药爆破试验模型,对不同不耦合介质和不耦系数时模型不同位置处爆破应力波峰值压力和爆破振动速度进行了测试和分析,应力波峰值压力和地震波振速随不耦合系数的增大而减小,且水不耦合时二者的值大于空气不耦合时。
     根据不同现场爆破施工情况,对其爆破作业引发的振动进行了监测和分析,发现振动速度三个方向分量峰值中水平径向方向(巷道走向方向)最大,得到了相应的爆破振动合速度和各方向分量的衰减规律,分析了其与地面爆破时的差异;巷道掘进爆破时底板岩石的破碎是影响其传播规律的主要原因;振动速度的大小与爆破时的炮孔深度、单孔药量和岩性直接相关。
     采用HHT变换和小波包变换分别对典型振动信号进行对比分析,得到了不同爆破条件下振动信号的频谱、能量分布特征:软岩巷道掘进爆破振动的主振频率在90~260Hz,而主要能量集中在160-260Hz,振动的持续时间在150ms左右。由于采用微差爆破,振动的瞬时能量出现多个峰值;与质点振动的幅值相对应,瞬时能量最大的是崩落眼装药起爆。深孔松动爆破振动速度只存在一个峰值,主振频率在40-80Hz,振速大于1cm/s的频率分布在45~60Hz,70~100Hz两个范围;而EMD分解表明:主要能量集中在50-100Hz,根据相对能量的大小,整个频率范围内可分成若干个“子频带”。
     结合现场巷道施工实际情况和岩石物理力学性能测试结果,运用FLAC3D建立了爆破地震波作用下大、小两种巷道计算模型,得到了不同初始地应力、断面尺寸和支护结构条件下开挖后巷道围岩、支护结构的应力和变形特征。结果表明,爆破动载作用下,围岩的应力和位移有所增大,增幅在15%~20%;围岩的应力和变形随初始地应力和巷道断面尺寸的增大而增大,随支护锚杆的长度增加而减小,喷射混凝土的厚度对围岩的应力和变形影响甚微。围岩塑性区的大小同巷道断面和初始地应力最为相关,断面越大、地应力越高,塑性区范围越大;对于高应力状态下,围岩拱顶主要受剪切作用;混凝土喷层的厚度影响着围岩塑性区的发展。混凝土喷层的最大变形出现在拱顶沿巷道走向分布逐渐减小,而最后开挖支护直墙下部拐角处的变形最小;最大弯曲应力是最后开挖支护的截面,受围岩剪应力SXY影响。
     通过围岩松动范围的声波测试和分析,从另一方面证明了爆破地震效应对软岩巷道围岩的松动范围的影响。对于研究巷道,开挖后围岩松动范围在1.6~1.65m,在爆破地震效应作用下围岩松动范围增大了0.2m左右,约占围岩稳定后松动圈半径的10%。
     根据爆炸能量和爆破地震波衰减规律、影响因素及其对巷道影响,详细地从爆破能量控制和巷道围岩及支护结构两个方面提出相应的控制对策。
The drilling and blasting procedure was still the present main construction method of coalmine, along with the exploitation scale expansion, detonation charge of blasting construction work and the intensity of vibration also increases, the frequent blasting vibration has had influence to security of roadway wall rock and the support structures. For many years, domestic and foreign researchers had did massive research work on the direction law of blasting vibration, the harm mechanism and the control countermeasure and so on, has yielded substantial result, mainly concentrates in the ground project blasting vibration effect influence on the peripheral buildings, blasting vibration effect of tunnel (including road, railroad and hydraulic tunnel) construction to the neighboring tunnel and the wall rock influence, as well as damage caused by excavates blasting vibration effect of large-scale building foundation and underground workshop construction to the wall rock, open-air mine mining blasting vibration and so on, and research of blasting seismic effect on the roadway stability rarely. In the foundation of domestic and foreign correlation research material consults, through vibration monitor on dissimilar conditions of coal mine roadway excavation blasting and deep hole loose blasting, applies the HHT and Wavelet Packet Transform based on the Matlab software, researched questions about vibration characteristic of coal mine construction blasting, it's influence on roadway wall and support structures and so on. Main researched work and achievements of this paper are as follows:
     Analysis formation, spread rule and influence factors of blasting energy distribution and blasting seismic wave by theoretically. Establish blast hole decoupling charge blasting model, pressure peak value of blasting stresswave and velocity of blasting vibration on different decouple medium and coefficient were tested and analysised, pressure peak value of blasting stresswave and velocity of blasting vibration decreased along with increasing of decouple coefficient, and both value of water-decouple charge were greater than air-decouple charge.
     According to the different situation of blasting construction, blasting vibration monitoring and analysis has been carried on, discovered that peak value of horizontal radial direction (roadway moves towards direction) component was the biggest of three direction components in the vibration velocity three, obtained attenuation rule of vibration resultant velocity and its components in all directions, and difference to blasting on ground.
     Comparative analysis of typical vibration signal by the HHT Transform and Wavelet Packet Transform respectively, obtained frequency spectrum, obtained under the different demolition condition to vibrate the signal the frequency spectrum, energy distribution characteristic of vibration signal under different conditions:master vibration frequency of soft rock roadway excavation in90-260Hz, and the main energy concentrates in160-260Hz, the vibration duration was about150ms. For short-delay blasting, the vibration instantaneous energy appears many peak values, corresponds with the particle vibration peak value, the biggest instantaneous energy was caused by detonated breakage-hole charge. Vibration velocity of deep hole loose blasting only have a peak value, master vibration frequency o in40-80Hz, the frequency of vibration velocity value bigger than1cm/s distributed in two scopes:45-60Hz and70-100Hz; and the EMD decomposition indicated that, main energy concentrates in50-100Hz, according to the relative energy value, the entire frequency range can be divided into three "sub-frequency band", and internal energy value of each frequency band experiences three stages:wave trough→wave crest→new wave trough.
     According to the roadway construction actual situation and the rock physics mechanics performance test results, two roadway computation models under the blasting dynamic load had established by FLAC3D, obtained stress and deformation characteristic of roadway wall rock and support structure of different initial ground stress, cross section size and support structure conditions under blasting dynamic load. The result indicated that, under blasting dynamic load, stress and displacement of wall rock has increases, increased range in15%~20%; stress and deformation of wall rock increases along with increases of initial ground stress and the roadway section size, reduces along with the increases of support anchor rod length, shotcrete thickness have micro influence to stress and distortion of wall rock. The wall rock plastic area size is most related with the roadway cross section and the initial ground stress, the bigger cross section, the higher ground stress, plastic area scope is bigger; the roadway arch is at the elastic condition, but before has received cutting and tension failure, the side wall is at shearing failure condition, and the floor receives cuts and stretch dual function, certain depth only receives shear action; regarding high ground stress condition, arch of wall rock mainly shear action; thickness of shotcrete affect wall rock plastic area development. The biggest deformation of shotcrete appear in the arch, distribution reduce along the roadway gradually, and the smallest deformation appear in straight wall down corner of latest excavates section; the most flexural stress appear in the latest excavates section, influenced by shearing stress SXY.
     Loose scope of wall rock tested by sound wave and analyzed, proved influence of blasting vibration effect on wall rock loose scope of soft rock roadway on the other hand. For the researched roadway, the wall rock loose scope in1.6-1.65m after excavates, has increased about0.2m under the blasting vibration effect, it was about10%.
     According to the decay laws, effect factors and influence of roadways of explosion energy and blasting seismic wave, control plan were given from two aspects of blasting energy control and surrounding rock, supporting structure in detaile.
引文
[1]钱鸣高.煤炭的科学开采[J].煤炭学报,2010,35(4):529-534
    [2]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813
    [3]波林格GA.爆炸振动分析[M].刘锡荟,熊建国译.北京:科学出版社,1975
    [4]亨利奇.爆炸动力学及其应用[M].熊建国等译.北京:科学出版社,1987
    [5]U. Longerfors, Westerberg, Kihlstrom. Ground vibration in blasting. Water Power,1958. 335-421
    [6]U. Langefors, B. Kihlstrom. The modern technique of rock blasting[M]. Stockholm: AWE/GEBERS,1978
    [7]M.A.萨道夫斯基.地震预报[M].陈英方等译.北京:地震出版社,1986
    [8]H.Y.Fang, R.M.Koerner, H.Sutherland. Instrumentation and monitoring criteria to determine structural response from blasting. Proceedings of the Second Conference on Explosives and Blasting Techniques.Louisville, Kentucky,1976.148-154
    [9]I.Farhoomand, E.Wilson. A nonlinear finite element code for analyzing the blast response of underground structures. University of California Berkeley, California.1970
    [10]谢毓寿,王耀文.工业爆破地震效应[J].地球物理学报,1962,11(2):24-31.
    [11]张雪亮,黄树棠.爆破地震效应[M].北京:地震出版社,1981
    [12]孟吉复,惠鸿斌.爆破测试技术[M].北京:冶金工业出版社,1992
    [13]卢文波,李海波,陈明,等.水电工程爆破振动安全判据及应用中的几个关键问题[J].岩石力学与工程学报,2009,28(8):1513-1520
    [14]卢文波,陈明,严鹏,等.高地应力条件下隧洞开挖诱发围岩振动特征研究[J].岩石力学与工程学报,2007,26(增1):3329-3334.
    [15]卢文波,董振华,朱传云.爆破地震波传播过程中衰减参数的确定[J].工程爆破,1997(12):12-16.
    [16]易长平,卢文波,张建华,等.爆破振动作用下城门洞形衬砌的临界振速研究[J].岩土力学,2008,29(8):2203-2208
    [17]易长平,卢文波,张建华,等.爆破振动对任意形状地下洞室的影响研究[J].岩土力学,2007,28(11):2451-2455
    [18]李洪涛,杨兴国,舒大强,等.不同爆源形式的爆破地震能量分布特征[J].四川大学学报(工程科学版),2010,42(1):30-34
    [19]李洪涛,卢文波,舒大强,等.P波作用下衬砌混凝土的爆破安全振动速度研究[J].爆炸与冲击,2007,27(1):34-39
    [20]李洪涛,卢文波,舒大强,等.爆破地震波的能量衰减规律研究[J].岩石力学与工程学报,2010,29(增1):3364-3369
    [21]傅洪贤.条形药包在隧道爆破中产生的应力场的实测分析[J].岩土力学,2009,30(2):483-486
    [22]徐全军,王希之,季茂荣,等.柱状装药近源场爆破振动峰值预报研究[C].成都:第七届工程爆破学术会议论文集,2001.10:733-738
    [23]唐海,李海波,周青春,等.预裂爆破震动效应试验研究[J].岩石力学与工程学报,2010,29(11):2277-2284
    [24]林从谋,陈礼彪,蒋丽丽,等.高速公路扩建大断面特小净距隧道爆破稳定控制技术研究[J].岩石力学与工程学报,2010,29(7):1371-1378
    [25]龚建伍,夏才初,郑志东,等.鹤上三车道小净距隧道爆破振动测试与分析[J].岩石力学与工程学报,2007,26(9):1882-1887
    [26]吴亮,钟冬望.不同布置条件下邻近隧道掘进爆破对既有隧道的影响[J].煤炭学报,2009,34(10):1339-1343
    [27]李飞,陈卫忠,李术才,等.高速公路浅埋大跨度双跨连拱隧道爆破振动影响研究[J].岩石力学与工程学报,2004,23(增2):4744-4748
    [28]王明年,潘晓马,张成满,等.邻近隧道爆破振动响应研究[J].岩土力学,2004,25(3):412-414
    [29]刘艳青,钟世航,卢汝绥,等.小净距并行隧道力学状态的试验研究[J].岩石力学与工程学报,2000,19(5):590-594
    [30]阳生权,周健,李雪健.小净距公路隧道爆破震动观测与分析[J].工程爆破,2005,11(3):62-65
    [31]赵东平,王明年.小净距交义隧道爆破振动响应研究[J].岩土工程学报,2007,29(1):116-119
    [32]P. K. Singh, M. P. Roy. Characterization of blast vibration generated from open-pit blasting at surface and in belowground openings[J]. Ming Technology,2008, Vol.117, No.3,122-127
    [33]D.Deb, A.K.Jha. Estimation of blast induced peak particle velocity at underground mine structures originating from neighboring surface mine[J]. Ming Technology,2010, Vol.119, No. 1:14-21
    [34]Ali Kahriman. Prediction of particle velocity caused by blasting for an infrastructure excavation covering granite bedrock[J].Mineral Resources Engineering,2001, Vol.10, No.2,205-218
    [35]Ak Hakan, Konuk Adnan. The effect of discontinuity frequency on ground vibrations produced from bench blasting a case study [J]. Soil Dynamics & Earthquake Engineering;,2008, Vol.28 Issue 9,686-694
    [36]宗琦,汪海波,周胜兵.爆破地震效应的监测和控制技术研究[J].岩石力学与工程学报,2008,27(5):938-945
    [37]孟达,孟祥冲,赵援.边坡的开挖及其地震动力响应分析[J].煤炭工程,2009,(1):77-80
    [38]谭文辉,璩世杰,毛市龙,等.边坡爆破振动高程效应分析[J].岩土工程学报,2010,32(4):619-623
    [39]蔡路军,马建军,周余奎,等.大冶铁矿东露天高陡边坡爆破震动监测[J].武汉科技大学学报(自然科学版),2006,29(1):51-54
    [40]许名标,彭德红.某露天石材矿开采爆破震动测试与分析[J].矿业研究与开发,2006,26(1):62-64
    [41]史秀志,董凯程,陈小康,等.高应力条件下爆破振动对岩石破坏研究[J].爆破器材,2008,37(5): 23-25
    [42]Hulshizer A. J., Desai A J. Shock Vibration Effects on Freshly Placed Concrete[J]. Construction Engineering and Management,1984,110(2):266-285.
    [43]Hulshizer A. J., Acceptable Shock and Vibration Limits for Freshly Placed and Maturing Concrete[J]. ACI Materials Journal,1996,93(6):524-533.
    [44]Worsey P., Giltner S., Drechsler T.. Formulation of Production Blasting Criteria for the Construction of a Lime Plant at a Major Crushed Stone Operation[J]. Int J for Blasting and Fragmentation,1998,2(2):181-194.
    [45]Nateghi R, Kiany M, Gholipouri O.Control negative effects of blasting waves on concrete of the structures by analyzing of parameters of ground vibration[J]. Tunneling & Underground Space Technology,2009, Vol.24 Issue 6:608-616
    [46]Chen Ming, Lu Wenbo, Yi Changping. Blasting vibration criterion for a rock-anchored beam in an underground powerhouse[J]. Tunneling & Underground Space Technology,2007, Issue 1 Vol.22:69-79
    [47]卢文波,陈明.爆破震动作用下新浇基础混凝土的安全震动速度研究[J].长江科学院院报,2003,20(增):8-10
    [48]卢文波.新浇筑基础混凝土爆破安全震动速度的确定[J].爆炸与冲击,2002,22(4):327-332
    [49]丁泰山,李万喜.爆破施工对新喷射混凝土的损伤影响分析[J].地下空间与工程学报,2006,5(2):834-838
    [50]舒大强.爆破震动对新浇混凝土质量的影响及控制[J].武汉水利电力大学学报,1999,32(4):5-12
    [51]Kuzu Cengiz, Guclu Erim. The problem of human response to blast induced vibrations in tunnel construction and mitigation of vibration effects using cautious blasting in half-face blasting rounds[J]. Tunneling & Underground Space Technology,2009, Vol.24 Issue 1:53-61
    [52]S. K. Roy, R. R. Singh, R. Kumar, et al. Studies into possible use of air decking in solid blasting in Indian underground coal mines[J]. Ming Technology,2008, Vol.117, No.2:83-92
    [53]S. K. Mandal, M. M. Singh, N. K. Bhagat, et al.. Model for energy-based evaluation of blast waves to assess safety of structures[J]. International Journal of Mining, Reclamation and Environment,2007, Vol.21, No.2:111-125
    [54]M.Ataei. Evaluation of blast induced ground vibrations from underground excavation at Karoun 3 area[J]. Ming Technology,2010, Vol.119, No.1:7-13
    [55]Bakhshandeh Amnieh H, Mozdianfard, M.R, Siamaki, A. Predicting of blasting vibrations in Sarcheshmeh copper mine by neural network[J]. Safety Science,2010, Vol.48 Issue3:319-325
    [56]E. N. Sher, A. G.Chernikov. Seismic vibrations in bulk blasting with high-precise electronic and nonelectric blasting systems at quarries[J]. Journal of Mining Science,2009, Vol.45, No.6: 563-568
    [57]S. K. Mandal, M. M. Singh, R. B. Singh. Segregation of coal by single-shot blasting of composite strata in opencast mines[J]. Trans. Instn Min. Metall. (Sect. A),2001,110:69-72
    [58]Wahyudi Sugeng, Shimada Hideki, Simangunsong, Ganda Marihot, et al.. A review study of predictive model blast vibration attenuation equation by using neural network as an evaluator[J]. International Journal of Mining, Reclamation & Environment,2011, Vol.25 Issue 1:69-85
    [59]言志信,言浬,江平,等.爆破振动峰值速度预报方法探讨[J].振动与冲击,2010,29(5):179-1863
    [60]陈德志,朱瑞赓,徐顺香.基于BP神经网络的路堑爆破对邻近民房安全预测的研究[J].岩石力学与工程学报,2002,21(增2):2554-2557
    [61]史秀志,周健,杜坤,等.爆破振动对民房破坏效应预测的BDA模型及应用[J].振动与冲击,2010,29(7):60-65
    [62]凌同华,廖艳程,张胜.岩体爆破震动损伤评估的多元判别分析模型[J].中南大学学报(自然科学版),2010,41(1):322-327
    [63]张艺峰,姚道平,谢志招,等.爆破地震效应主控因素分析及减震措施探讨[J].岩土力学,2010,31(1):304-308
    [64]吴从师,吴其苏.爆破地震模拟初探[J].爆炸与冲击,1990,10(2):170-175
    [65]刘军,吴从师,高全臣.建筑结构对爆破震动的响应预测[J].爆炸与冲击,2002,20(4):333-337
    [66]Crenwelge Otto E Jr. Overburden Blasting Vibrations:Analysis, Prediction, and Control[C]. Proceedings of the Conference on Explosives and Blasting Technique,1986:269-283
    [67]Chui C K. An Introduction of Wavelets. New York Academic Press Inc.1992
    [68]Ling T H, Li X b. Influence of maximum decking charge on intensity of blasting vibration. Journal of Central South University of Technology,2006,13(3):286-289
    [69]何军,于亚伦,梁文基.爆破震动信号的小波分析[J].岩土工程学报,1998,20(1):47-50
    [70]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society of London, Series A,1998,454:903-995
    [71]Schlurmann T. Spectural frequency analysis of non-linear water waves based on the Hilbert-Huang transformation. Proceedings of OMAE'01,20th International Conference on offshore Mechanics and Arctic Engineering, Riode Janeiro, Brazil,2001,3(8):411-418
    [72]Aldas G.G.U., Ecevitoglu B.. Waveform analysis in mitigation of blast-induced vibrations[J]. Journal of Applied Geophysics,2008, Vol.66 Issue 1/2,25-30
    [73]李夕兵,凌同华,张义平.爆破震动信号分析理论与技术[M].北京:科学出版社,2009,6-10,132-133,197
    [74]张义平,李夕兵,赵国彦,等.爆破震动信号的时频分析[J].岩土工程学报,2005,27(12):1472-1477
    [75]张义平.爆破震动信号的HHT分析与应用研究[D].长沙:中南大学博士学位论文,2006
    [76]李夕兵,凌同华.单段与多段微差爆破地震的反应谱特征分析[J].石力学与工程学报,2005,24(4):2409-2413
    [77]李夕兵,张义平,左宇军,等.岩石爆破振动信号的EMD滤波与消噪[J].中南大学学报(自然科学版),2006,37(1):150-154
    [78]凌同华,李夕兵,王桂尧,等.爆心距对爆破振动信号频带能量分布的影响[J].重庆建筑大学学报,2007,29(2):53-55
    [79]凌同华,李夕兵.单段爆破振动信号频带能量分布特征的小波包分析[J].振动与冲击,2007,26(5):4145
    [80]宋光明,曾新吾,陈寿如,等.基于小波包分析的爆破振动危害评价初探[J].安全与环境学报,2002,2(4):23-26
    [81]宋光明,曾新吾,陈寿如,等.爆破条件对爆破震动信号分析中小波包时频特征的影响[J].工程爆破,2002,8(3):5-12
    [82]宋光明,曾新吾,陈寿如,等.传播介质特性对爆破震动信号分析中小波包时频特征的影响[J].工程爆破,2003,9(1):64-68
    [83]林大超,施惠基,白春华,等.爆炸地震效应的时频分析[J].爆炸与冲击,2003,26(1):31-36
    [84]林大超,施惠基,白春华,等.爆破震动时频分布的小波包分析[J].工程爆破,2002,8(2):1-5
    [85]吴湘晖,张亦农.基于爆破信号的小波分析[J].采矿技术,2005,5(1):74-75
    [86]马瑞恒,李钊,王伟策,等.基于小波变换模极大的爆破震动信号奇异谱分析[J].爆炸与冲击,2004,24(6):529-533
    [87]马瑞恒,钱汉明,娄建武,等.时频分布在爆破震动信号处理中的应用[J].工程爆破,2004,10(2):8-12
    [88]Stump B W. The Characteristic Property of Near-source. AD-A150 741MF,1987
    [89]唐德高,毕佳,孙乃光,等.常规武器爆炸作用下地震动的试验研究[J].爆炸与冲击,1997,17(3):207-213
    [90]Quiroga-Goode, Padilla-Hernandez, Jimenez-Hernandez. Seismic wave properties in time-dependent porosity homogeneous media [J]. Geophysical Journal International,2007,170 (3):1227-1242.
    [91]Byungkyu Jeon, Seokwon Jeon. A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration[J]. Rock Mechanics & Rock Engineering; 2009, Vol.42 Issue 3: 449-473
    [92]刘艳,许金余.地应力场下岩体爆体的数值模拟[J].岩土力学,2007,28(11):2485-2488
    [93]姜鹏飞,唐德高,龙源.不耦合装药爆破对硬岩应力场影响的数值分析[J].岩土力学,2009,30(1):275-279
    [94]唐海,李俊如.凸形地貌对爆破震动波传播影响的数值模拟[J].岩土力学,2010,31(4):1289-1294
    [95]肖福坤.突加载荷法在模拟爆破中的应用[J].辽宁工程技术大学学报,2006,25(4):543-546
    [96]孙浩,蒋楠.大直径深孔采矿爆破震动对凿岩巷道围岩稳定性影响研究[J].爆破,2008, 25(3):32-35
    [97]蒋楠,郑晓硕,张磊,等.采矿爆破振动对巷道围岩影响的数值模拟研究[J].工程爆破,2010,16(3):21-24
    [98]史秀志,曾志林,田建军,等.深井开采爆破对巷道影响的数值模拟分析[J].工程爆破,2010,16(2):10-14
    [99]龚敏,黄毅华,王德胜,等.松软煤层深孔预裂爆破力学特性的数值分析[J].岩石力学与工程学报,2008,27(8):1674-1681
    [100]刘健.低透气煤层深孔预裂爆破增透技术研究及应用[D].淮南:安徽理工大学博士学位论文,2008
    [101]蔡峰.高瓦斯低透气性煤层深孔预裂爆破强化增透效应研究[D].淮南:安徽理工大学博士学位论文,2009
    [102]蔡峰,刘泽功.高瓦斯低透气性煤层深孔预裂爆破增透数值模拟分析[J].煤炭学报,2007,32(5):499-503
    [103]谢雄刚,冯涛,杨军伟,等.爆破地震效应激发煤与瓦斯突出的监测分析[J].煤炭学报,2010,35(2):255-259
    [104]马云昌,刘菁华,吕渊,等.煤矿井下微差爆破振动速度衰变研究[J].煤矿爆破,2010,(3):18-20
    [105]徐飞,任庆峰,宗琦.煤矿井下巷道掘进爆破振动监测与分析[J].煤矿爆破,2010,(4):9-11
    [106]单仁亮,周纪军,夏宇,等.粘结式锚杆在爆炸动载下轴向应力分布研究[J].岩土力学,2011,32(10):2965-2972
    [107]汪海波.岩巷掘进爆破地震效应及围岩稳定性影响研究[D].淮南:安徽理工大学硕士论文,2008
    [108]蒋复量,周科平,邓红卫,等.基于小波理论的井下深孔爆破振动信号辨识与能量衰减规律分析[J].煤炭学报,2011,36(增2):396400
    [109]徐颖,孙勇.硬岩爆破掘进对直角拐弯后巷道围岩中质点振速衰减规律的研究[J].南华大学学报(自然科学版),2009,23(1):15-18
    [110]张平松,刘盛东.工作面爆破振动对硐室稳定性的影响[J].采矿与安全工程学报,2007,24(2):208-211
    [111]王明洋,范鹏贤,李文培.岩石的劈裂和卸载破坏机制[J].岩石力学与工程学报,2010,29(2):234-241
    [112]范鹏贤,王明洋,钱七虎.深部非均匀岩体卸载拉裂的时间效应和主要影响因素[J].岩 石力学与工程学报,2010,29(7):1389-1396
    [113]杨小林,侯爱军,梁为民,等.隧道掘进爆破的损伤机理与振动危害[J].煤炭学报,2008,33(4):400-404
    [114]严鹏,卢文波,陈明,等.TBM和钻爆开挖条件下隧洞围岩损伤特性研究[J].土木工程学报,2009,42(11):121-128
    [115]杨自友,顾金才,陈安敏,等.爆炸波作用下锚杆间距对围岩加固效果影响的模型试验研究[J].岩石力学与工程学报,2008,27(4):757-764
    [116]杨自友,顾金才,陈安敏,等.锚杆长度对洞室抗爆性能影响的模型试验研究[J].振动与冲击,2009,28(1):24-30
    [117]杨自友,顾金才,杨本水,等.锚杆对围岩的加固效果和动载响应的数值分析[J].岩土力学,2009,30(9):2805-2809
    [118]余永强,顾金才,杨小林,等.动载下洞室加固锚杆受力的实验研究[J].兵工学报,2009,30(2):263-266
    [119]李青锋,谢雄刚,朱川曲.应力波在预应力锚杆内传播特性分析与工程应用[J].中国安全科学学报,2007,17(10):172-176
    [120]陈剑杰,孙钧,林俊德,等.强爆炸应力波作用下岩石地下洞室的破坏现象学[J].解放军理工大学学报(自然科学版),2007,8(6):582-588
    [121]陈剑杰,孙钧,林俊德.深埋岩石洞室受爆炸应力波作用的破坏效应[J].辽宁工程技术大学学报(自然科学版),2001,20(4):402-404
    [122]胡隶贤.地震工程学[M].北京:地震出版社,1988
    [123]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992
    [124]徐芝纶.弹性力学[M].北京:人民教育出版社,1979
    [125]王文龙.钻眼爆破[M].北京:煤炭工业出版社,1980
    [126]Morlet J. Wave propagation and sampling theory[J]. Grophys,1982,47(2):203-236
    [127]张德丰Matlab小波分析[M].北京:机械工业出版社,2009
    [128]武海军,杨军,黄风雷,等.不同耦合装药下岩石的应力波传播特性[J].矿业研究与开发,2002,22(1):44-49
    [129]宗琦,罗强.炮孔水耦合装药爆破应力分布特性试验研究[J].实验力学,2006,21(3):393-398
    [130]杨小林,员小有,梁为民.不偶合装药爆炸作用机理及试验研究[J].煤炭学报,1998,23(2):130-134
    [131]徐国元,古德生,陈寿如.爆破破岩机理的实验研究[J].中南工业大学学报,1997,28 (6):522-525
    [132]汪旭光,于亚伦,刘殿中.爆破安全规程实施手册[M].北京:人民交通出版社,2004
    [133]董方庭,等.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001
    [134]肖建清,冯夏庭,林大能.爆破循环对围岩松动圈的影响[J].岩石力学与工程学报,2010,29(11):2248-2255.
    [135]ITASCA Consultinig Group Inc.. Fast Lagrangian analysis of Continua in 3 Dimensions, Version 3.0, User's mannual[M]. USA:Itasca Consultinig Group, Inc.,2005.
    [136]李维.隧道及地下工程FLAC解析方法[M].北京:中国水利水电出版社,2009
    [137]彭文斌.FLAC3D实用教程[M].北京:机械工业出版社,2009
    [138]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005
    [139]蔡美峰,乔兰,李华斌.地应力测量原理和技术[M1.北京:科学出版社,1995
    [140]倪兴华.地应力研究与应用[M].北京:煤炭业出版社,2007
    [141]Hoek. E, Brown E.T.. Underground excavations in rock. London:The Institute of Mining and Metallurgy,1980:382-395
    [142]Lysmer J, Kuhlemeyer R L. Finite dynamic model for infinite media[J].Journal of the Engineering Mechanics, ASCE,1972,98(1):85-105
    [143]宗琦.岩石炮孔预切槽爆破断裂成缝机理研究[J].岩土工程学报,1998,20(1):30-34
    [144]范天佑.断裂动力学引论[M].北京:北京理工大学出版社,1990
    [145]徐颖,宗琦.地下工程爆破理论及应用[M].北京,中国矿业大学出版社,2001
    [146]辜大志,谢圣权,陈寿如.孔底空气间隔装药改善爆破震动和效果研究[J].采矿技术,2004,4(4):64-66
    [147]金淳圭.分散装药爆破的震动效应[J].中国矿业,2000,9(1):202-205
    [148]李翼祺,马素贞.爆炸力学[M].北京:科学出版社,1992
    [149]林大超,白春华.爆炸地震效应[M].北京:地质出版社,2007
    [150]夏红兵,汪海波,宗琦.爆破震动效应控制技术综合分析[J].工程爆破,2007,13(1):24-27
    [151]钟冬望,林大泽,肖绍清.爆炸安全技术[M].武汉:武汉工业大学出版社,1992,42-43
    [152]方向,高振儒,李的林,等.降低爆破震动效应的几种方法[J].爆破器材,2003,32(3):22-25
    [153]何满潮,袁和生,靖洪文,等.中国煤矿锚杆支护理论与实践[M].北京:科学出版社,2004
    [154]陈宾,高明中.喷射混凝土在巷道支护中的作用[J].煤炭技术,2006,25(3):63-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700