用户名: 密码: 验证码:
适用于微小型燃烧式半导体温差发电机的热源设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温差发电技术是利用热电转换材料直接将热能转化为电能,是一种全固态能量转换方式,无噪声、无动力装置,轻巧灵便,虽然转化率比较低,但是对于回收中低温热能而言具有很重要的意义。如果将温差发电技术应用于燃烧式热电转换,因为碳氢燃料的能量密度约为40~50MJ/kg ,即使转换效率只有5%,其能量密度有2~2.5MJ/kg(555~700Wh/kg),对于微尺度燃烧/热电发生装置,即使它的能量转化率处于3%以下,其功率密度也比锂电池有优势。
     对于微小型燃烧式半导体温差发电机而言,能量利用采用火焰燃烧的方式,处于熄火直径范围内的相同管径,燃气不会在其中燃烧,从燃烧室内部带出热量也很少,导致燃烧产生的热量过于集中在燃烧室内部,使温度场的分布不均匀,进而产生新的问题:首先,半导体材料的发电功率不稳定;其次,半导体材料内部温度梯度过大,则相应的热应力必然很大,寿命降低;再者,由于存在温度极值点,会直接烧毁半导体材料,而若为了避免烧毁材料,则只能减少燃料,致使发电效率以及功率都下降,燃烧也失去稳定性。
     本论文对热源结构进行了单燃烧室和多燃烧室的设计,然后采用计算流体动力学软件CFD模拟了各种模型下的甲烷与空气混合燃气的二维和三维的微燃烧情况,得到了更适合于温差发电材料的热源结构。本论文研究内容主要分为以下几个部分:
     1.基于微热源的特点,选择合理的物理模型和数学计算方法,包括控制方程、化学反应动力学、物质传输理论、数值算法及合理的边界条件等。提出了单燃烧室和多燃烧室变通道结构的初步设想以及具体实施方式。
     2.在此思想基础上,对单燃烧室的进出口做了四种结构假设,并依据理论上能使用的热源条件设定某一预混气体流量和相同边界条件,然后仿真得到了合适的单燃烧室变通道模型,接着研究了此模型的可燃极限以及安全燃烧范围,并与恒通道单燃烧室结构进行了温度场和内部换热数值比较。按照多燃烧室的结构设想,对四燃烧室热源进行数值仿真,比较其变通道与横通道的温度场均匀度,同时也发现在变通道基础上四燃烧室较单燃烧室温度场分布更加均匀。
     3.对单燃烧室热源进行三维建模,更多地结合实际因素,按照不同流速下对三维结构数值模拟,结果发现在同一对流换热系数情况下,三维结构同样存在安全燃烧范围,只是相对二维平面有一定差别。
     4.尝试了线切割与雕刻两种加工方法,最后选用数控雕刻加工出单燃烧室变通道热源,搭建实验台,实验进行了初步调试。
Modern military equipments are changing into this direction: more electroniclize, miniaturization and invisible, and the demands for smaller generators are increasing. Currently, the most common military power generation equipment is mainly composed of diesel generators, gasoline generators, fuel cells, batteries and other components. Micro Electro Mechanical System(MEMS) is in the frontiers of scientific research, and it has great potential value in many fields, such as MAV(Micro Air Vehicles),UAVs(Micro-Unmanned Aerial Vehicles), portable energy(the battery systems of portable computer, mobile phones, GPS receivers), the future war(meet the goal of Land Warrior System battery weight), at the same time as for energy density characteristics , it is also 20~30 times better than the current best battery systems . The demand for micro-power with small size, light weight and long life is due to the appearance of micro-electronic mechanical system.
     Because of the development of the semiconductor thermoelectric generation materials and the superiority of thermal energy devices, military generator using semiconductor thermoelectric generation system attain more and more attention. As for the small-sized chamber of semiconductor thermoelectric generation, the energy is utilized by the way of flame combustion. Within the scope of the same diameter of flameout, the gas will not burn out, and the heat taken out from the combustion chamber is limited, so it causes the combustion heat too centralized in the combustion chamber inside, and it makes the temperature distribution non-uniform. And then creat new problem: firstly, the generation power using semiconductor materials is unstable; secondly, the internal temperature gradient of semiconductor material is too large, and the corresponding, thermal stress is large, so the life-span is lower. Moreover, due to temperature extreme point, it will directly burn semiconductor materials, the fuel needs to be reduced, but at the same time, generation efficiency and power are decreased, and burning also loses stability.
     The paper is based on the Swiss-roll model which is studied by Li Junwei and Zhong Beijing. In the paper, in order to acquire the heat structure which is suitable for the thermoelectric generation material, the structure of single combustion chamber and multi combustion chamber was designed. Then we used computational fluid dynamics software FLUENT to simulate the 2d and 3d micro-combustion of the mixture of gas and air in various models. The contents of this paper are divided into the following section:
     1. Based on the characteristics of micro combustor, the right physical model and mathematical calculation method were needed, including control equations, chemical reaction kinetics, material transfer theory, numerical algorithms and reasonable boundary conditions, and then the initial ideas and the specific implementation ways about the mutative pipe structure of single-chamber and multi chamber were proposed.
     2. Based on this thinking, four structure assumptions about the inlet and outlet of single chamber were made. Theoretical basis of the heat source could be used to set a premixed gas flow conditions and the same boundary conditions, then conclused the appropriate model. Meanwhile, studied the equivalence ratio and the range of this model, compared the temperature field and internal heat transfer traits with non-mutative pipe. According to the structure assumption of multi-chamber, simulated the four combustors. Then the comparison of the temperature uniformity was also performed between non-mutative pipe and mutative pipe, meanwhile found that: based on the changed passage, the temperature field of four combustors was more even than the single one.
     3. With more practical factors, 3d model was applied to the burner of single combustion chamber. According to different flow velocities, we made the numerical simulation for the 3d model. As a result, we found that in the same case of heat transfer coefficient, the scope of security combustion exited 3d model which is different from 2d plane.
     4. Tried two kinds of methods for the fabrication of burners, and finally selected CNC engraving as an appropriate way. Then set up the experiment rig and proceeded the debugging of the test.
引文
[1] A.H.Epstein and S.D.Senturia, Micro engineering-Macro power from micro machinery, Science, 1997, 276: 1211~1211.
    [2]张永生.微尺度燃烧及其热电转化基础研究:博士论文.杭州:浙江大学,2006.
    [3] G.J.Snyder, J.R.Lim, C.K.Huang, and J.P.Fleurial, Fabrication and test of a MEMS combustor and reciprocating device, Journal of Micromechanics and Micro engineering, 2002(12)36~34.
    [4] J,Warnatz, U, Mass, R.W. Dibble, Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation: Springer, 2001.
    [5]国家自然基金委员会工程与材料科学部机械工程科学技术前沿编委会.《机械工程科学技术前言》.北京:机械工业出版社,1996.
    [6]张力,徐宗俊,余成龙.基于微型涡轮发动机实现超高能量密度Power MEMS的研究.中国机械工程,2003.14(15):1272~1274.
    [7] Epstein A.H, Jacobason S A, Protz J M, et al.Shirtbotton-sized gas turbine: The engineering challenges of micro high speed rotating machinery.In:Proc. 8th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-8). Honolulu: HI, March 2000.
    [8] Spadaccini C M,Mehra A,Lee J,et al.High power density silicon combustion systems for micro gas turbine engines.Transactions of the ASME.Journal of Engineering for Gas Turbines and Power, 2003.125(3): 709~719.
    [9] Fu K,Knobloch A J,Martinez F C,et al.Design and experimental results of small-scale rotary engines. In: Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition.New York, NY: ASME, November 2001.
    [10] Fernandez-Pello A C, Pisano A P, Fu K.MEMS rotary engine power system.Transactions of the Institute of Electrical Engineers of Japan, 2003.123(9):326~330.
    [11] Yang, W, Bonne.MEMS free-piston knock engine.Technical Proposal, DARPA Contract F30602-99-C-0200.Honeywell Technology Center,12001 State Highway 55,Plymouth, MN55441,1999.
    [12] Yang, W., Bonne, U., and Johnson, B.R.Micro combustion engine/generator.U.S.Patent 6, 2001, 276~313.
    [13] Allen, M.et al.Research topics-miniature MEMS free-piston engine generator.Georgia Institute ofTechnology Internet Document.URL.
    [14] Whalen S, Richards R, Bahr D.Operation and testing of a micro heat engine.In:2003 Nanotechnology Conference and Trade Show-Nanotech 2003.San Francisco, CA: Computational Publications, February 2003:404~407.
    [15] Frechette L G, Lee C, Arslan S, et al.Design of a micro fabricated rankine cycle steam turbine for power generation.In: Micro-Electromechanical Systems Division Publication (MEMS). Washington, DC: ASME, November, 2003:335~344.
    [16] Jacobson S A, Epstein A H.An informal survey of Power MEMS.In:Proc.the International Symposium on Micro-mechanical Engineering.Chicago: IL, December 2003.
    [17] Seo Y H, Cho Y H.Mems-based direct methanol fuel cells and their stacks using a common electrolyte sandwiched by reinforced micro column electrodes.In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS).Maastricht, Netherlands:IEEE,January 2004.
    [18] D’Arrigo G, Spinella C, Rimini E.Miniaturized Proton Exchange Fuel Cell in micro machined Silicon surface.In: Proceedings of SPIE.San Jose, CA: The International Society for Optical Engineering, January 2004:163~174.
    [19] Alan H.Epstein,Stuart A.Jacobson,Jon M.Protz,Luc G.Frechette,“SPTRTBUTTON-SIZED GAS TURBINS:THE ENGINEERING CHALLENGES OF MICRO HIGH SPEED ROTATING MACHINERY,”presented at Proceedings of the 8th Int’Symposium on Transport Phenomena and Dynamics of Rotating Machinery(ISROMAC’8),Honolulu,Hawaii,2000.
    [20] C.H.Lee, X C.Jiang, P.Jin, and P.D.Prewett,“Design and fabrication of a micro Wankel engine using MEMS technology”Microelectronic Engineering, 2004, vol.73-74, pp.529~534.
    [21] WenminQu,MatthiasP16tner,Wolf-JoaehimFiseher. Mierofabrieation of Thermo eleetric generators on flexible foil substrate sasa Pwoersouree for Autonomous Mierosystems[J].Miermoeeh.Mieroeng,2001(11)146~152.
    [22] VienaB.F. Gajdeezko. Development of a Microreactor used as a Thermal Source for MEMS Power Generation[C].New Conception of Combustion Technology. The 29th symposium (International) on Combustion,Sapporo,2002.
    [23] 3D monolithieally-Fabrieated Thermo eleetric Mierogenerator, DARPA/MTO MEMS Pl Meeting,2000(l)12~14.
    [24] PaulD.Ronney.Analysis of nonadiabatic heat-recirculating combustors [J]. Combustion and Flame.2002,6:Submit.
    [25] Kaoru Maruta PaulD.Ronney. Catalytie Combustion Microchannel for MEMS Power Generation[C].TheThird Asia Pacific Confereneeon Combustion,Seoul,Korea,2001.
    [26] Kaoru Maruta PaulD.Ronney. Combustion Microscale Heat-Recirculating Burners[C].The Third Asia-Paeifie Confereneeon Combustion,Seoul,Korea,2001.
    [27] LarsSitzki , KevinBorer , Ewald Sehusternad PaulD.Ronney. Combustion Microscale Heat-Recirculating Burners[C].TheThird Asia-Pacific Conferenes.
    [28] John W. Fairbanks Freedom CAR and Vehicle Technologies Energy Efficiency and Renewable Energy US Department of Energy Washington, D.C. Diesel Engine-Efficiency and Emissions Research (DEER) Conference Detroit, MI August 24, 2006.
    [29] JONES A R,LLOYD S A,WEINBERG F J. Combustion in heat exchanges[J].Mathematical and Physical Sciences,1978,360:97~l15.
    [30] RONNEY P D. Analysis of non-adiabatic heat-recirculating combustors [J] .Combustion and Flam e2003, 135:421~439.
    [31] KUO CH , RONNEY P D . Numerical modeling of non-adiabatic heat . recirculating eombustors[J].Proceedings of the Combustion Institute,2007.31:3277~3284.
    [32] AHN J,EASTWOODC,SITZKI,et a1.Gas-phase and catalytic combostion in heat-recirculating bumers[J].Proceedings of the Combustion Institute,2005,30:2463~2472.
    [33] KIM N,KATO S,TAKUYA K.Flame stabilization and emission of small swiss-roll combustors as heaters[J].Combustion and Flame, 2005,141:229~240.
    [34] T. J. Zhu, X.B. Zhao, S. H. Hu, Phase transition of FeSi2 and FeSi2 based alloys prepared by melt spinning, J Mater. Sci. Lett.
    [35]朱铁军,赵新兵,β? FeSi2:热电材料的性能优化及测试方法[J].材料科学与工程,1999,17(4):55~59.
    [36]朱铁军,赵新兵,胡淑红等.快速凝固β? FeSi2热电半导体的电学性能[J].功能材料,2001,32(3):280~281.
    [37]李伟文,赵新兵,周邦昌等.掺N的β? FeSi2基热电材料电学性能的研究[J].有色金属,2002,54(3):9~11.
    [38]李伟文,赵新兵,乌肠震泰等.含Sm和Cr的P型FeSi2基热电材料的电学特性〔J〕有色金属,2002,54(2):5~7
    [39]崔教林,赵新兵.P型FeSi2 /Bi2 T e3梯度热电材料的伏值推证与界面温度优化[J].稀有金属材料与T程,2002,31(2):118~121
    [40] T.J. Zhu, X.B. Zhaoetal. Transport properties ofβ? Zn4 Sb3semiconductor prepared by vacuummelting [J], Meter.Lett, 2000, 469(1):44~48
    [41]王为,张建中等.由一维纳米线阵列结构温差热电材料构制的微温差电池[P].知识产权出版社,2002.公开号CN1352468A
    [42]陈忠,陈允成,吕迎阳,林玉兰,梁广.热水温差电照明器.实用新型专利,申请号:200520105040.9.
    [43]钱卫强,低品位热源半导体小温差发电器性能研究,大连理工大学网刊.2006.12
    [44]钢现东,利用车辆尾气余热的红外隐身方法研究,南京理工大学论文,2006.6
    [45]杨灿军,李伟,钱剑锋,宋瑞银,甘霖一种微型热电式电源.申请号:(03117035名)
    [46]贾磊,江斌,陈则韶.利用低温冷能温差发电及电解水制氢氧的实验研究.中国工程热物理学会第十一届年会论文集(工程热力学与能源利用).2005.891~895.
    [47]王国锋,钟北京.微细通道中甲烷预混火焰传播的实验[J].清华大学学报(自然科学版),2006,46(2):276~279
    [48] Hachert CL, Ellzey JL, Ezekoye OA.Effects of thermal boundary conditions on flame shape and Quenching in ducts [J].Combustion and Flame, 1998, 112:73~84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700