用户名: 密码: 验证码:
微纳薄膜传热及微气泡动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来自然科学和工程技术发展的一个重要趋势是朝微型化迈进,微器件尤其是微电子机械系统正被应用于各个新兴行业。在器件的微型化过程中,发现了诸多宏观流体力学和传热学难以解释的现象,这些现象称为微尺度效应,由于微器件中存在大量的传热和传质交换,因此微尺度热效应是微尺度效应的一个重要分支。
     本文在微流体控制的应用背景下,以微传感器、微执行器等微器件广泛采用的薄膜微加热器为对象,从如下三个角度探讨薄膜微加热器的微尺度效应与微气泡动力学现象:
     1.气泡产生前薄膜微加热器的温度场研究
     由于微尺度效应薄膜微加热器的温度具有与常规尺度下的加热器不同的温度场分布,而目前薄膜加热器上的温度主要根据加热膜的电阻-温度校正曲线,通过获取通过加热膜的电阻来间接测得薄膜加热器上的温度,而此温度为薄膜上的平均温度值。本文通过数学理论推导,获得了方形薄膜微加热器上温度的数学分析解,并据此得到了加热膜上的三维温度场分布。经过与现有的实验结果进行对比后证明此分析解符合物理实际。
     2.微气泡底层的薄液膜研究
     对薄膜微加热器表面加热后,所产生气泡与加热膜之间存在一层薄液膜.有关薄液膜方面主要集中在对管内产生的气弹和管壁之间的液膜研究,有关微加热膜表面受热后产生气泡和加热膜表面之间薄液膜的研究还比较少。本文在气泡动力学的基础上,通过数学分析,采用高阶runge-kutta方法对一定加热热流密度下的薄液膜进行了计算,并对所得结果进行分析,得到了较好的效果。
     3.强制对流条件下的微气泡动力学研究
     理解和认识微加热器上的汽泡动力学特性对于微流控系统中微汽泡执行器的设计和运行都具有重要的指导意义。目前,微加热器上的汽泡动力学特性研究仍是国际研究的前沿热点,而对强制对流条件下的微气泡动力学方面的研究比较欠缺。本文采用MEMS工艺,设计并制作了一种尺寸为~(100μm×20μm)的Pt薄膜微加热器,并置于硅通道内。对在液体工质的冲刷和脉冲加热条件下产生的气泡型态进行了分类,并研究了不同参数,如脉冲频率、占空比、液体工质流速等对微气泡动力学的影响;对脱离加热膜后通道内的气泡流型进行了分析;将微加热膜上的沸腾曲线与常规沸腾曲线进行对比,并对其异同进行了归纳总结。
Devices Minimization is a new research field for sciences and engineering technologies.Micro devices such as MEMS are widely used in many industries. However,it is investigated that many phenomenon are difficult to be explained by regular physical mechanism,which are called microscale effects.Since great amount of heat and mass are transferred through micro devices,microscale heat transfer is critical for understanding the microscale effects.
     Since devices such as microsensors and microactuators use thin film microheaters as the heating-driven component,it has been studied by many researchers.In this paper,the investigation focuses on the following aspects:
     1.the temperature field of thin film microheater under pulse heating before bubble nucleation
     The temperature field on a thin film microheater differs from that of a normal-sized film heater.Regularly the thin film temperature is indirectly measured, and it is often an averaged value.In chapter 2,an analytical solution is deduced for the temperature of the thin film microheater,thus the three dimensional temperature distribution is available.The analytical results are compared with the existed experimental values and are proved reasonable.
     2.The thin liquid film study under micro bubble
     As the thin film microheater is heated,bubbles are generated from above,and there is a thin liquid film between bubble and the microheater underneath.The existed studies mainly focus on the liquid film between vapor slug and the heated channel wall,and seldom is discussed on thin liquid film between heated surface and boiling bubble.A high order runge-kutta method is used to calculate the film thickness and under given heat flux,and the data were analyzed with good results.
     3.Micro bubble dynamics under forced convection
     To design a better microactuator in a microfluidic system,it is important to understand the bubble dynamics on the microheaters.At present micro bubble dynamics under forced convection is not fully studied.Based on MEMS technology,a platinum film microheater fabricated with the size of 100μm×20μm×10nm is placed in the silicon channel.With working liquid flowing through the pulse heated microheater,the bubble patterns generated are classified,and the effect of parameters such as pulse frequency f,τ_1/τ_(cycle) as well as the working liquid flow rate on micro bubble dynamics is discussed.Moreover,the flow patterns after bubble detachment is analyzed,and the boiling curves are compared with those pool boiling ones.
引文
[1]Gad-el-Hak M.1999.The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture[J].J.Fluids Engineering,121:5-33.
    [2]Feynman R P.1992.There is Plenty of Room at the bottom[J].J.MEMS.1(1):60-66.
    [3]Koumura N,Zijlstra R W J,van Delden R A,Harada N,Feringa B L.1999.Light-driven monodirectional molecular rotor[J].Nature,401:152-155.
    [4]Chapman S and Cowling T G.1970.The mathematical theory of non-uniform gases[M].3rd ed.Cambridge,UK:Cambridge Press.
    [5]Majumdar A.1998.Microscale energy transport in solids[M].Tien C L,Majumdar A,Gerner F M.Microscale Energy Transport.Taylor & Francis,3-93.
    [6]Nwobi O C,Long L N,Micci M M.1998.Molecular dynamics studies of properties of supercritical fluids[J].J.Thermophysics and Heat Transfer,12:322-327.
    [7]Xiong D X,Guo Z Y,Li Z X,1996.Heat propagation study by molecular dynamics approach[C].International Symosium on Heat Transfer.Beijing:Tsinghua Univ.,306-311.
    [8]Flik M I,Tien C l.1990.Size effect on the thermal conductivity of high-Tc thin-film superconductors[J].ASME J.Heat Transfer,112:872-881.
    [9]Majumdar A.1993.Microscale heat conduction in dielectric thin films[J].ASME J.Heat Transfer,115:7-16.
    [10]Jen C P,Chieng C C.1998.Microscale thermal characterization for two adjacent dielectric thin film[J].J.Thermophysics and Heat Transfer,12:146-152.
    [11]Nakayama W.1997.Forced convective/conductive conjugate heat transfer in microelectronic equipment[C]//Tien C L.Annual Review of Heat Transfer.8:1-48.
    [12]Cotter T P.1984.Principles and prospects for micro heat pipe[C]//Proceedings of 5th International Heat Pipe Conference.Tsukuba,Japan,416-420.
    [13]Akachi H,Polasek F,Stulc P.1996.Pulsating heat pipe[C]//Proceedings of the 5th International Heat Pipe Symposium.Melbourne,Australia,208-217.
    [14]Waltz I A,Gauba G,Tzeng Y S.1998.Combustors for micro-gas turbine engines[M].ASME J.of Fluids Engineering,120:109-117.
    [15]徐泰然主编.2004.MEMS和微系统-设计与制造[M].第二版.北京:机械工业出版社.
    [16]方肇伦主编.2005.微流控分析芯片的制作及应用[M].第一版.北京:化学工业出版社.
    [17]Manz A,Graber N,Widmer H M.1990.Miniaturized total chemical analysis system:a novel concept for chemical sensing[J].Sensors and Actuators B,1:244-248.
    [18]Shoji S,Esashi M.1994.Microflow devices and systems[J].J.Micromechanics and Microengineering,4(4):157-171.
    [19]Harrison D J,Manz A,Glavina P G.1991.Electroosmotic pumping within a chemical sensor system integrated on silicon[C]//Proceedings of Thansducers'91,the 6~(th) international conference on solid-state Sensors and Actuators,San Francisco,792-795.
    [20]Patrick L M,David J,Quiram,James F R.2007.Microreactor technology and process miniaturization for catalytic reactions-A perspective on recent developments and emerging technologies[J].Chemical Engineering Science,62(24):6992-7010.
    [21]Nguyen N T,Huang X Y,Toh K C.2001.Thermal flow sensor for ultra-low velocities based on printed circuit board technology[J].Measurement Science and Technology,12(12):2131-2136.
    [22]章春笋,徐进良.2005.时域式PCR生物芯片中温度动力学研究进展[J].现代科学仪器,3:13-15.
    [23]Norton D G,Wetzel E D,Vlachos D G.2006.Thermal management in catalytic microreactors[J].Ind.Eng.Chem.Res.,45(1):76 -84.
    [24]Ferziger J,Peric M.2002.Computational methods for fluid dynamics[M].3~(rd) ed.Berlin:Springer.
    [25]张健,方杰,范波芹.2005.VOF方法理论与应用综述[J].水利水电科技进展,25(2):67-70.
    [26]Osher S,Sethian J A.1998.Fronts propagating with curature-dependent speed:algorithms based on Hamilton-Jacobi formulations[J].J.Computational Physics,79(1):12-49.
    [27]李会雄,杨冬,陈听宽,罗毓珊,汤敏.2001.Level set方法及其在两相流数值模拟 研究中的应用[J].工程热物理学报,22(1):233-236.
    [25]Yang X F,James A J,Lowengrub J,Zheng X M,Cristini V.2006.An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids[J].J.Computational Physics,217:364-394.
    [29]Sussman M,Pucker E G.2000.A coupled level set and volume of fluid method for computing 3D and axisymmetric incompressible two-phase flows[J].J.Computational Physics,162:301-337.
    [30]甘云华,徐进良,周继军,陈勇.2004.微尺度相变传热的关键问题[J].力学进展,34(3):399-407.
    [31]林瑞泰主编.1988.沸腾换热[M].北京:科学出版社.
    [32]Ghiaasiaan S M,Chedester R C.2002.Boiling incipience in microchannels[J].Int.J.Heat and Mass Transfer,45:4599-4606.
    [33]Qu W L,Mudawar I.2002.Prediction and measurement of incipience boiling heat flux in micro-channel heat sink[J].45:3933-3945.
    [34]Zhang J T,Peng X F,Peterson G P.2000.Analysis of phase-change mechanism in microchannels using cluster nucleation theory Microscale[J].Thermophys.Eng.4:177-187.
    [35]Lin L,1998.Microscale thermal bubble formation:thermophysical phenomena and applications[J].Microscale Thermophys.Eng.,2:71-85.
    [36]Li J,Cheng P.2004.Bubble cavitation in a microchannel[J].Int.J.Heat Mass Transfer,47:2689-2698.
    [37]Mitrovic J,2001.Survival conditions of a vapor bubble in saturated liquid flowing inside a micro-channel[J].Int.J.Heat Mass Transfer,44(11):2177-2181
    [38]Wu H Y,Cheng P.2003.Visualization and measurements of periodic boiling in silicon microchannels[J].Int.J.Heat Mass Transfer,46:2603-2614.
    [39]Xu J L,Gan Y H,Zhang D C,Li X.2005.Microscale boiling heat transfer in a micro-timescale at high heat fluxes[J].J.Micromech.Microeng.,15:362-376.
    [40]Serizawa A,Feng Z P.2001.Two-phase flow in microchannels[C].International Conference of Multiphase Flows, Keynote Lecture, New Orleans, Louisiana.
    [41] Thome J R. 2004. Boiling in microchannels: a review of experiment and theory[J]. Int. J.Heat Fluid Flow, 25: 128-139.
    [42] Bao Z Y, Fletcher D F, Haynes B S. 2000. Flow boiling heat transfer of Freon R11and HFCFC123 in narrow passages[J]. Int. J. Heat Mass Transfer, 43: 3347-3358.
    [43] Lin S, Kew P A, Cornwell K. 2001. Two-phase heat transfer to a refrigerant in a lmm diameter tube[J]. Int. J. Refrig., 24: 51-56.
    [44] Kandlikar S G. 2004. Heat transfer mechanism during flow boiling in microchannels[J].ASME J. Heat Transfer, 126: 8-16.
    [45] Qu W, Mudawar I. 2003. Flow boiling heat transfer in two phase microchannel heat sinks-1.Experimental investigation and assessment of correlation methods[J]. Int. J. Heat Mass Transfer, 46: 2755-2751.
    [46] Xu J L, Sheng S, Gan Y H et al. 2005. Transient flow pattern based microscale boiling heat transfer mechanisms[J]. J. Micromech. Microeng., 15: 1344-1361.
    [47] Thome J R, Dupont V, Jacobi A M. 2004. Heat transfer model for evaporation in microchannels: Part I : Presentation of the model[J]. Int. J. Heat Mass Transfer, 47:3375-3385.
    [48] Gan Y H, Xu J L, Wang S F. 2008. Are the available boiling heat transfer coefficients suitable for silicon microchannel heat sinks?[J]. Microfluidics and Nanofluidics,4(6): 1613-4982.
    [49] Chen J C. 1966. Correlation for boiling heat transfer to saturated fluids in convective flow[J].I&EC Process Des. Dev., 5: 322-329.
    [50] Quan X J, Cheng P, Wu H Y. 2008. Transition from annular flow to plug/slug flow in condensation of steam in microchannels[J]. Int. J. Heat Mass Transfer, 51: 707-716.
    [51] Zhang K L, Chou S K, Ang S S. 2007. Fabrication, modeling and testing of a thin film Au/Timicroheater[J]. Int. J. Thermal Sciences, 46(6): 580-588.
    
    [52] Avedisian C T, Osborne W S, Mcleod F D, Curley C M. 1999. Measuring bubble nucleation temperature on the surface of a rapid heated thermal ink-jet heater immersed in a pool of water[C]// Proceedings of Royal Society. London A. 455: 3875-3899.
    [53] Li J, Peterson G P. 2005. Microscale heterogeneous boiling on smooth surfaces-from bubble nucleation to bubble dynamics[J]. Int. J. Heat Mass Transfer, 48: 4316-4332.
    [54] Deng P G, Lee Y K, Cheng P. 2005. Measurement of micro bubble nucleature temperature in DNA solutions[J]. J. Micromech. Microeng, 15: 564-574.
    [55] Yin Z, Prosperetti A, Kim J. 2004. Bubble growth on an impulsively powered microheaer[J].Int. J. Heat Mass Transfer, 47: 1053-1067.
    [56] Deng P G, Lee Y K, Cheng P. 2006. An experimental study of heater size on microbubble generation[J]. Int. J. Heat Mass Transfer, 49: 2535-2544.
    [57] Chen T L, Klausner J F, Garimella S V, Chung J N. 2006. Subcooled boiling incipience on a highly smooth microheater[J]. Int. J. Heat Mass Transfer, 49: 4399-4406.
    [58] Cavicchi R E, Avedisian C T. 2007. Bubble nucleation and growth anomaly for a hydrophilic microheater attributed to metastable nanobuubels[J]. Phys. Rev. Lett, 98: 124501
    [59] Zhao Z, Glod S, Poulikakos D. 2000. Pressure and power generation during explosive vaporization on a thin-film micro-heater[J]. Int. J. Heat Mass Transfer, 43: 281-296.
    [60] Brennen C E. 1995. Cavitation and Bubble Dynamics[M]. 2~(nd) ed. New York: Oxford University Press.
    [61] Tai J H, Lin L W. 2002. Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump[J]. Sensors and Actuators A, 97-98: 665-671.
    [62] Olsson A, Stemme G, Stemme E. 1995. A valve-less planar fluid pump with two pump chambers[J]. Sensors and Actuators A, 45-47: 549-556.
    [63] Takahashi K, Weng J G, Tien C L. 1999. Marangoni effect in microbubble system[J].Microscale Thermophysical Engineering, 3: 169-182.
    [64] Takahashi K, Yoshino K, Hatano S, Nagayama K, Asano T. 2001. Novel application of thermally controlled microbubble driving system[C]//The 14th IEEE International Conference on Micro Electro Mechanical Systems, 286-289.
    [1]Lee J Y,Park H C,Jung J Y,Kwak H Y.2003.Bubble nucleation on micro line heaters[J].J.Heat Transfer Transactions of the ASME,125(4):687-692.
    [2]Lin L W.1998.Microscale thermal bubble formation:thermophysical phenomena and applications[J].Microscale Thermophysical Engineering,2(2):71-85.
    [3]Jung J Y,Kwak H Y.2006.Bubble nucleation and behavior on micro square heaters[J].Nanoscale and Microscale Thermophysical Engineering,10(2):95-107.
    [4]Li J,Peterson G P.2005.Microscale heterogeneous boiling on smooth surfaces-from bubble nucleation to bubble dynamics[J].Int.J.Heat and Mass Transfer,48(21-22):4316-4332.
    [5]Weng J G.2001.Nanoscale liquid-vapor interfaces and their role in microbubble formation[D]:[Ph.D.].Berkeley,CA,USA:U.C.Berkeley.
    [6]杨世铭主编.传热学[M].第三版.北京:高等教育出版社,130-205.
    [7]Guo Z Y,Li Z X.2003.Size effect on microscale single-phase flow and heat transfer[J].Int.J.Heat and Mass Transfer,46(1):149-159.
    [8]Lin L W.1993.Selective Encapsulations of MEMS:Micro Channels,Needles,Resonators and Electromechanical Filters[D]:[Ph.D.].Berkeley,CA,USA:U.C.Berkeley.
    [9]Blander M,Katz J L.1975.Bubble nucleation in liquids[J].AIChE Journal,21(5):833-848.
    [10]奥齐西克M N.主编.1983.热传导[M].俞昌铭译北京:高等教育出版社,31-57.
    [11]Blander M,Hengstenberg D,Katz J L.1971.Bubble nucleation in n-pentane,n-hexane,n-pentane,hexadecane mixtures and water[J].The Journal of Physical Chemistry,75(23):3613-3619.
    [12]Prosperetti A,Plesset M S.1978.Vapour-bubble growth in a superheated liquid[J].Journal of Fluid Mechanics,85(2):349 - 368.
    [1]Cooper M G,Lloyd A J P.1969.The microlayer in nucleate boiling[J].Int.J.Heat and Mass Transfer,12:895-913.
    [2]Schonberg J A,DasGupta S,Wayner Jr P C.1995.An augmented Young-Laplace model of an evaporating meniscus in a microchannel with high heat flux[J].Int.J.Experimental Thermal and Fluid Science,10(2):163-170.
    [3]Wayner P C.1992.Evaporation and stress in the contact line region[C].Proc.of the Engineering Fundamentals Conference on Pool and Flow Boiling,ASME,251-256.
    [4]Stephan P,Hammer J.1994.A new model for nucleate boiling heat transfer[J].Warme- und Stoffu|¨bertragung,Vol.30,pp.119-125.
    [5]Lay J H,Dhir V K.1995.Numerical calculation of bubble growth in nucleate boiling of saturated liquids[J].J.Heat Transfer,117:394-401.
    [6]周光炯.1993.流体力学:下册[M].第2版.北京:高等教育出版社,182-305.
    [1]Hsu Y Y.1962.On the size range of active nucleation cavities on a heating surface[J].J.Heat Transfer,84C(3):207-236.
    [2]Helfried S,Alexander K,Ludwig G.2005.A wall heat transfer model for subcooled boiling flow[J].Int.J.Heat and Mass Transfer,48:4161-4173.
    [3]Rohsenow W M.1953.Heat transfer with evaporation[C]//Heat Transfer-A Symposium held at the University of Michigan During the Summer of 1952.USA:University of Michigan Press,101-150.
    [4]Bowring R W.1962.Physical model based on bubble detachment and calculation of steam voidage in the subcooled region of a heated channel[R].OECD Halden Reactor Project Report HPR-10.
    [5]Bergles A E,Rohsenow W M.1963.The determination of forced convective surface boiling and heat transfer[C].The 6th National Heat Transfer Conference of the ASME-AIChE,Boston,August,11-14.
    [6]Chen J C.1963.A correlation for boiling heat transfer to saturated fluids in convective flow[C].The 6th National Heat Transfer Conference,Boston.
    [7]Butterworth D.1979.The correlation of cross flow pressure drop data by means of a permeability concept[R].UKAEA Report AERE-R9435.
    [8]Chen W,Mei R,Klausner J F.1996.Vapour bubble growth in highly subcooled heterogeneous boiling[M]. Chen J C. Convective Flow Boiling, Washington DC: Taylor &Francis, 91-98.
    [9] Peng X F, Wang B X. 1998. Forced-convection and boiling characteristics in microchannels [C] // Proc 11th Int Heat Transfer. Korea: Kyonju, 371-390.
    [10] Jiang L, Wong M, Zohar Y. 2001. Forced convection boiling in a microchannel heat sink[J].J. Microelectromech. Syst, 10(1): 80-87.
    [11] Han J L, Sang Y L. 2001. Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios [J]. Int. J. Multiphase Flow, 27(12): 2043-2062.
    [12] Qu W, Mudawar I. 2003. Flow boiling heat transfer in two-phase microchannel heat sinks-I:Experimental investigation and assessment of correlation methods [J]. Int. J. Heat and Mass Transfer, 46(15): 2755-2771.
    [13] Wu H Y, Cheng P. 2004. Boiling instability in parallel silicon microchannels at different heat flux [J]. Int. J. Heat and Mass Transfer, 47(17-18): 3631-3641.
    [14] Lee M, Wong Y Y, Wong M, Zohar Y. 2003. Size and shape effects on two-phase flow patterns in microchannel forced convection boiling[J]. J. Micromech. Microeng, 13(1): 155—164.
    [15] Xu J L, Zhang W. 2008. Effect of pulse heating parameters on the microscale bubble dynamics at a microheater surface[J]. Int. J. Heat and Mass Transfer, 51(1-2): 389-396.
    [16] Maity S. 2000. Effect of velocity and gravity on bubble dynamics[D]: [Ph.D.]. Los Angeles:University of California.
    
    [17] Yaws C L. 1999. Chemical Properties Handbook, New York: McGraw-Hill.
    [18] Evans D R, Craig V S J, Senden T J. 2004. The hydrophobic force: nanobubbles or polymeric contaminant?[J]. Physica A: Statistical Mechanics and Its Applications, 339(1-2):101-105.
    [19] Cavicchi R E, Avedisian C T. 2006. Bubble nucleation and growth anomaly for a hydrophilic[C]// Review of Scientific Instruments, 77, 063706.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700