用户名: 密码: 验证码:
宏/微驱动高速高精度定位系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着IC制造中芯片光刻与封装、MEMS制造中的器件封装与组装、生物医学工程中的高速点样移液、高速精密加工及高速扫描检测等领域的迅速发展,对定位系统的行程、速度、加速度和精度提出了极高的要求。高速高精度定位系统的研究应运而生。IC制造是高速高精度定位系统典型的应用领域,它是关系国家利益和安全的基础性和战略性产业。芯片封装是影响IC制造产品性能和生产效率的关键环节,芯片封装等领域的迅速发展对定位系统的行程、速度、加速度和精度的极限性提出挑战。由此产生了在常规工况下未曾遇到的许多新现象、新规律和新矛盾,向高性能运动定位的理论方法研究和实际系统设计制造提出了极大的需求。
     我国芯片封装设备工业水平与国外先进水平仍有较大差距,国内芯片封装设备的85%依赖进口,在西方发达国家技术封锁下,高端的封装设备引进受到制约;单纯依靠引进,我国芯片封装设备只能是“代代引进、代代落后”,难以达到世界先进水平。因此,我国迫切需要开展面向芯片封装等领域的高速高精度定位系统的研究,为开发具有市场竞争力和自主技术创新的新装备,实现我国IC制造产业的跨越式发展提供重要的理论和技术基础。
     本文针对芯片封装等领域对高速高精度作业的实际需求,在全面分析国内外高速高精度定位系统研究现状的基础上,基于宏/微驱动和跨尺度(宏/微测量尺度切换与合成)测量的思想,研制出一种新型的高速高精度XY定位系统。音圈电机驱动的宏动平台完成系统大行程、高速、高加速度的微米级定位;再由安装在宏动部件上压电陶瓷驱动的柔性铰链微位移机构实现抑振控制和精密定位,完成纳米级的分辨率和定位精度;利用新型弹性无间隙解耦机构降低了机构的运动惯量,改善了系统的动态特性;系统由基于跨尺度测量原理的双光栅尺作为闭环位置反馈。本文从机构设计、系统的动力学建模、跨尺度位移测量新原理和新方法、宏/微控制策略等问题进行深入的探讨研究。
     在机构设计方面,利用弹性力学原理,建立柔性环节的刚度模型;在高加速运动状态下,将有限元分析方法用于系统关键部件的结构分析,并通过固定界面子结构模态综合法与机械系统仿真方法结合,进行机构尺度参数的动态设计。
     在系统的动力学建模方面,高动态下引入柔性环节,建立更为完整精确
With the application of high-speed/high-precision positioning system extending to IC/MIMS manufacturing, high speed precision machining and so on, there are great demand of the system performance with stroke, speed, acceleration and accuracy. High-speed/high-precision positioning system is needed to study deeply. Thereinto, IC manufacturing is a classic application, and it is a basic and strategic industry concerning national property and safety. Die bonding plays a key role in effecting the quality and efficiency of IC production. The rapid development brings a challenge to the system in utmost stroke, speed, acceleration and accuracy. Many new phenomena, rules and contradiction are emerged. So the research of high performance motion positioning theory and system design are in great demand.
     There is a great gap between our country’s die bonding equipments and foreign advanced equipments. 85% packaging equipments rely on import. Advanced equipments importing are restricted due to the western developed countries’technology blockade policy. In this condition, the situation of“importing and falling behind generation by generation”is appeared. Therefore, the research of high speed and accuracy positioning system for die bonding is urgent.
     In this dissertation, on the basis of understanding for the latest domestic and overseas situation of high speed/high precision positioning system, macro-micro driving and cross-scale measurement method, a novel high speed/high precision positioning system is presented. The macro table, driven by VCM, achieves micrometer order positioning with long stroke and high speed and acceleration; the micro table, driven by PZT, achieves nanometer order positioning. The mechanism inertia was reduced by adopting a novel flexible gapless decoupling mechanism. The system uses the dual grating as close-loop position feedback. This paper carried out research in these areas: mechanism dynamic design, dynamic modeling, cross-scale measurement theory, macro/micro control strategies.
     Firstly, the flexible element stiffness model was built by using elastic
引文
1 雷源忠等. 先进电子制造中的重要科学问题. 中国科学基金. 2002, 16(4): 204~225
    2 雷源忠等. 计算机制造中的重要科学技术问题. 机械工程学报. 2002, 38(11): 1~6
    3 丁汉等. 面向芯片封装的高加速度运动系统的精确定位和操作. 自然科学进展. 2003, 13(6): 568~574
    4 汪劲松等. 我国“十五”期间 IC 制造装备的发展战略研究. 机器人技术与应用. 2002, (2): 5~9
    5 史长虹等. 用于微电子制造的高速高精度运动系统关键技术. 半导体技术. 2003, 28(3): 37~39
    6 童志义. 高密度封装技术现状及发展趋势. 电子工业专用设备. 2000, 29(2): 1~9
    7 鲜飞. 微电子封装技术的发展趋势. 电声技术. 2002, (4): 45~47
    8 李枚. 微电子封装技术的发展与展望. 半导体技术. 2000, 25(5): 1~3
    9 Mario Barp, Dieter Vischer. Achieving a World Record in Ultra High Speed Wire Bonding Through Novel Technology. International Electronics Manufacturing Technology (IEMT) Symposium, 2002
    10 M.W. Roberson, P.A. Deane, S. Bonafede, et al. Conversion Between Standard and Low-alpha Lead in Solder Bumping Production Lines. Journal of Electronic Materials, 2000, 10(29): 1274~1278
    11 Hong Meng Ho, Wai Lam, Serguei Stoukatch, et al. Direct Gold and Copper Wires Bonding on Copper. Microelectronics Reliability, 2003, 43: 913~923
    12 Y. Yao, T.Y Lin, K.H. Chua. Improving The Detection of Wire Bonds in Stacked Chip Scale Package (CSP). Microelectronics Reliability, 2003, 43: 2039~2045
    13 Christian Schuster, Gotz Leonhardt, Wolfgang Fichtner. Electromagnetic Simulation of Bonding Wires and Comparison with Wide Band Measurements. IEEE Transactions on Advanced Packaging, 2000, 1(23): 69~79
    14 Michael Mayer, Oliver Paul, Daniel Bolliger, Henry Baltes. Integrated Temperature Microsensors for Characterization and Optimization of Thermosonic Ball Bonding Process. IEEE Transactions on Components and Packaging Technologies, 2000, 2(23): 393~398
    15 H.K. Charles, K.J. Mach, S.J. Lehtonen, et al. Wirebonding at Higher Ultrasonic Frequencies: Reliability and Process Implications. Microelectronics Reliability, 2003, 43: 141~153
    16 http://www.meau.com/eprise/main/Web_Site_Pages/Public/Products/Robots/P-Robots
    17 H. Asada and K. Youcef-Toumi. Direct-Drive Robots. Massachusetts: The MIT Press, 1987
    18 T.H. Lee, K.K. Tan. Intelligent control of precision linear actuators. Engineering Applications of Artificial Intelligence. 2000, 13: 671~684
    19 M. Kurosawa, S. Ueha. Hybrid Transducer Type Ultrasonic Motor. IEEE Transaction on UFFC. 1991, 38(2): 89~92
    20 Manabu Aoyagi, Yoshiro Tomikawa, Takehiro Takano. Simplified Equivalent Circuit of Anultrasonic Motor and Its Applications. Ultrasonics. 1996, (34): 275~278
    21 Kazumasa Ohnishi, et al. X-Y stage with ultrasonic actuator. U.S. Patent, No.5,013,958, 1991, May 7
    22 Chen You, Yong Liao. Driving Means to Position a Load. U. S. Patent, No.US200410,083,929 A1, 2004, May 6
    23 http://www.beikimco.com
    24 B. Sprenger. Planar High Speed Linear Direct Drive with Submicron Precision. Swiss Federal Institute of Technology ETH Zurich. 1999
    25 崔晶. 2-DOF 平面并联机器人控制方法的研究. 哈尔滨工业大学博士论文. 2004
    26 A. Sharon, N. Hogan, D. Hardt. Enhancement of Robot Accuracy Using Endpoint Feedback and Macro-Micro Manipulator System. America Control Conference Proc. , San Digo, California, June, 1984: 1836~1842
    27 A. Sharon, N. Hogan, D. Hardt. High Bandwidth Force and Inertia Reduction Using a Macro/Micro Manipulator System. In Proc IEEE Int Conf on Robotics and Automation, 1985: 126~132
    28 A. Sharon, N. Hogan, D. The Macro/Micro-Manipulator: an Improved Architecture for Robot Control. Robotics & Computer-Integrated Manufacturing. 1993, (10): 209~221
    29 K. Sangjoo, K.C. WAN, Y. Youngil. On the Coarse/Fine Dual-stage Manipulators with Perturbation Compensator. Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea, 2001: 121~126
    30 S.J. Kwon, W.K. Chung. Robust and Time-optimal Control Strategy for Coarse/Fine Dual-stage Manipulators. Proceedings of IEEE International Conference on Robotics & Automation, San Francisco, CA, 2000: 4051~4056
    31 J.P. Heui, S.L. Dong, H.P. Jong. Ultra Precision Positioning System for Servo Motor-piezo Actuator Using the Dual Loop and Digital Filter Implementation. International Journal of Machine Tool & Manufacture. 2001, 41: 51~63
    32 楚中毅. 高速高精度平面并联机器人动力学建模及主动抑振的研究. 哈尔滨工业大学博士论文. 2003: 4~10
    33 陈启军, 王月娟, 等. 激光作业的宏—微机器人及其控制系统. 机器人. 1999, 21(3): 128~133
    34 晏祖根. 面向 IC 封装的精密定位平台误差补偿及主动抑振的研究. 哈尔滨工业大学博士论文. 2006
    35 D.W. Cannon, D.P. Magee. Experimental Study on Micro/Macro Manipulator Vibration Control. Proceedings of the IEEE International Conference on Robotics and Automation, 1996: 2549~2554
    36 J.Y. Lew, D.J. Trudnowski. Vibration Control of a Micro/Macro-Manipulator System. IEEE Control Systems Magazine. 1996, (16): 26~31
    37 孙绍云. 宏/微结合双重驱动的高精度定位系统的研究. 哈尔滨工业大学博士论文. 2004
    38 孙立宁, 孙绍云, 曲东升, 王力, 蔡鹤皋. 大行程高精度宏/微双重驱动机器人系统的研究. 高技术通讯. 2004, 14(4): 50~52
    39 S.B. Chang, S.H. Wu, Y.C. Hu, et al. Submicrometer Overshoot Control of Rapid and Precise Positioning. Precision Engineering. 1997, 20(3): 161~170
    40 E. Furukawa, M. Mizuno, et al. Development of a Flexure-hinged Translation Mechanism Driven by Two Piezoelectric Stacks. JSME. 1995, 38(4): 743~748
    41 刘延杰. 高速高精度平面并联机器人及其控制方法的研究. 哈尔滨工业大学博士论文. 2003
    42 J. Dong, C. Yuan, J. A. Stori, P. M. Ferreira. Development of a High-Speeds-axis Machines Tool Using a Novel Parallel-kinematics X-Y table. International Journal of Machine Tools & Manufacture. 2004, 44: 1355~1371
    43 Musa Jouaneh, Renyi Yang. Modeling of Flexure-hinge Type Lever Mechanisms. Precision Engineering. 2003, 27: 407~418
    44 D.M. Alter and T.C. Tsao. Control of Linear Motors for Machine Tool Feed Drives: Design and Implementation of H∞ Optimal Feedback Control. ASME Journal of Dynamic Systems, Measurement, and Control. 1996, 118(12): 649~656
    45 李庆雷等. 永磁交流同步直线电机位置伺服控制系统设计. 中国机械工程, 2001, 12(5): 577~581
    46 丛爽. 两种补偿动态摩擦力的先进控制策略. 自动化学报. 1998, 24(2): 236~240
    47 M. Tomizuka and H.S. Lee. Robust High-speed/High-accuracy Motion Controller. Proc. of the 27th CIRP International Seminar on Manufacturing Sytems - Design, Control and Analysis of Manufacturing Systems, Ann Arbor, MI, May 1995, 119~127
    48 A. Shabana. Computer Imple-mentation of the Absolute nodal Coordinate Formulation for Flexible Multibody Dynamics. Nonlinear Dynamics. 1998, 16: 293~306
    49 T.N. Chang and R. Caudill. Vibration Control on Linear Robots with Digital Servocompensator. Proceedings of the American Control Conference, Chicago, Illinois, 2000: 2523~2527
    50 B. Sprenger. Design of a High Speed and High Precision 3 DOF Linear Direct Drive. Proc. of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Tokyo, Japan, 1997
    51 W. Singhose, N. Singer, W. Seering. Improving Repeatability ofCoordinate Measuring Machines with Shaped Command Signals. Precision Engineering. 1996, 18: 138~146
    52 H.T. Ho. Fast Servo Bang-bang Seek Control. IEEE Transactions on Magnetics. 1997, 33(6): 4522~4527
    53 H.W. Park, H.S. Yang, Y.P. Park, S.H. Kim. Position and Vibration Control of Flexible Robot Manipulator Using Hybrid Controller. Robotics and Autonomous System. 1999, 28: 31~41
    54 P. Van den Braembussche, J. Swevers, H. Van Brusse. Design and Experimental Validation of Robust Controllers for Machine Tool Drives with Linear Motor. Mechatronics. 2001, 11: 545~562
    55 R. Laura, R. Ashok, T. Jennifer. Adaptive Friction Compensation Using Extended Kalman-Bucy Filter Friction estimation. Control Engincemng Practice. 2001, 9(2): 169~179
    56 B. Armstrong, P. Dupont, C. Canudas Wit. A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction. Automatics, 1994, 30(7): 1083~1138
    57 P. Dahl. Solid Friction Damping of Spacecraft Oscillations. In Proc. AIAA Guidance and Contr Conf, Boston, MA, 1975, 75~1104
    58 D.A Haessig, B. Friedland. On the Modeling and Simulation of Friction. J Dyn Syst Meas Control Traps ASME. 1991, 113(3): 354~362
    59 G.. Brandenburg, U. Schafer. Stability Analysis and Optimization of a Position-controlled Elastic Two-Mass-System with Backlash and Coulomb Friction. Proc. 12th World Congress, IMACS, 1988: 220~223
    60 G.. Brandenburg, U. Schafer. Influence and Compensation of Coulomb Friction in Industrial Pointing and Tracking Systems. Proc. of the Indus. App. Soc. Annual Meeting, 1991: 1407~1413
    61 E. Tung, G.. Anwar, M. Tomizuka. Low Velocity Friction Compensation and Feedforward Solution Based on Repetitive Control. ASME Journal of Dynamic Systems, Measurement, and Control. 1993, 115: 279~284
    62 H.L. Du, S.S. Nair. Modeling and Compensation of Low-Velocity Friction with Friction. IEEE Trans. on Control Systems Technology. 1999, 7(1): 110~121
    63 C.A. Sciammarella. Overview of Optical Techniques that MeasureDisplacements: Murray Lecture. Experimental Mechanics. 2003, 43(1): 1~19
    64 J. Sun, W. Wang. An Optical Interferometry System for Measuring Three-Dimensional Displacements. Instrument and Experiment Technology. 2004, 47(5): 711~714
    65 L.A. Liew, R. Raj. Manufacturing and Applications of Polymer and Ceramic MEMS from a Novel Material-process for Harsh Environments. Smart Structures and Materials 2003 Conference, 2003: 02~06
    66 Y.F. Yao, et al. Improving the Deflection of Wire Bonds in Stacked Chip Scale Package. 2003: 2039~2045
    67 M.B. Silva, et al. An Overview and a Contribution To the Optical Measurement of Linear Displacement. IEEE Sensors Journal. 2001, 1(4): 322~332
    68 Volker Herold, Stefen Eckner. Piezo-Based Nanopositioning System with Large Movement Range in Three Degrees of Freedom. Proceedings of 1st International Conference of Euspen, 1999: 247~249
    69 B. Zhao, et al. Micro-measurement Using Grating Microscopy. Sensors and Actuators. 2000, 80: 256~264
    70 Toni Poloso. Fibre Bragg Grating Optical Sensing Technology. Smart Materials Bulletin. 2001, 14(6): 8~10
    71 P.C. Peng, et al. Long-distance Fiber Grating Sensor System Using a Fiberring Laser with EDWA and SOA. Optics Communications. 2005, (252): 127~131
    72 赵惠英等. 纳米级大尺度超精密线位移测量方法的研究. 计量学报. 2004, 25(3): 215~218
    73 余文新等. 光栅纳米测量技术及应用. 计量技术. 2001, (7): 9~12
    74 Seoktae Kim, Cam Nguyen. A Displacement Measurement Technique Using Millimeter-Wave Interferometry. IEEE Transactions on Microwave Theory & Techniques. 2003, 51(6): 1724~1728
    75 T. Suzuki, M. Mitomi, O. Sasaki. Interferometric Displacement Measurement by Use of Time-shared Two-wavelength Laser Diode. Optical Society of America. 2003, 31(8): 24~25
    76 Yamashita Tadaoki, Nakashima Hirotaka, et al. Measuring Method ofPiezo-Element Displacement Characteristics as Nano-Meter Moving Means. Journal of the Japan. Society for Precision Engineering. 1993, 59(9): 1543~1548
    77 Futami Shigeru, Furutani Akihiro. Nanometer Positioning Using AC Linear Motor and Rolling Guide. (2nd report) System Set-up and Coarse/Fine Positioning. Journal of the Japan Society of Precision Engineering. 1991, 57(3): 556~561
    78 V.I. Teleshevsky. The Methods of Heterodyne Laser Interferometry for Nano and Micro Dimensional Measurements. Proc. of 9th IPES, 1997: 71~74
    79 P.M.B.S. Girao, et al. An Overview and a Contribution to the Optical Measurement of Linear Displacement.IEEE Sensors Journal. 2001, 1(4): 322~332
    80 曾爱军等. 基于光栅成像投影的微位移检测方法. 中国激光. 2005, 329(3): 394~398
    81 W.L. Wang, et al. Investigation of Nanometer X-Y Positioning Stage. IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, January, 2006: 322~326
    82 刘清等. 提高光栅测量精度和分辨率的技术研究与实现. 计量学报. 2003, 24(4): 275~278
    83 吕海宝. 光栅式大量程高分辨率位移测量研究. 中国机械工程. 2000, 11(8): 878~880
    84 谭为民. 差线栅位移传感器原理与参数设计准则及其实验研究. 重庆大学博士论文. 2004
    85 余文新等. 一种高分辨率和高频响的光栅纳米测量细分方法. 天津大学学报. 2002, 35(1): 1~4
    86 Main John, Garcia Ephrahim. Precision Position-control of Piezoelectric Actuators Using Charge Feedback. Proceedings of SPIE, 1995, 2441: 243~254
    87 Shulian Zhang, Ming Tang. Principle for Measurement of Micrometer and Nanometer Displacement and Air Refractivity Based on Laser Mode Split Technology and Lasing Action. Optical Engineering. 1994, 33(10): 3381~3387
    88 Zagar Bernhard. Laser-interferometer Measuring Displacement with Nanometer Resolution. IEEE Transactions on Instrumentation and Measurement. 1994, 43(2): 332~336
    89 H.S. Tzou. Design of a Piezoelectric Exciter/Actuator for Micro-displacement Control Theory and Experiment. Journal of the American Society of Precision Engineering. 1991, 13(2): 104~110
    90 孙立宁. 宏微驱动精密工作台的研究及其在机器人装配中的应用. 哈尔滨工业大学博士学位论文. 1993
    91 K. Seiichi, K. Carl. Recent development in control of direct-drive motors at NSK. Motion & Control. 1997, 3: 40~46
    92 刘伟. 直线电机在微电子领域中的应用. 光学精密工程. 2001, 9(4): 311~314
    93 王选择, 杨练根, 谢铁邦. 音圈电机与电感组合传感器的系统辨识与数字控制. 中国机械工程. 2004, 15(4): 252~254
    94 Peter M. Young, John C. Morris, Hai T. To. Servo Control of a Dual-stage Actrator for a High Performance Disk Drive Part 1: Modeling and Simulation. Proceedings of the American Control Conference, Denver, Colorado, June, 2003: 2523~2528
    95 http://www.smac-mca.com
    96 罗敢, 张芳, 王岳环, 等. 伺服图形光刻机调焦系统音圈电机设计. 电子计算机与外部设备. 1999, 23(2)
    97 杨建东, 裴先登, 梅松. 音圈电机力常数高精度测试技术研究. 电子计算机外部设备. 1993, 17(5): 46~48
    98 尹功勋. 直线式音圈电机 BL 测试仪的研制. 电子计算机外部设备1991, (5): 69~71
    99 曲东升. 纳米级精密定位系统关键技术德研究. 哈尔滨工业大学博士论文. 2003, 8: 45~78
    100 Koganezawa, et al. Development of Shear-Mode Piezoelectric Microactuator for Precise Head Positioning. FUJITSU Sci. Tech. J. 2001, 37(2): 212~219
    101 曾攀. 有限元分析及应用. 清华大学出版社, 2004, 6
    102 刘涛, 杨凤鹏. 精通 ANSYS. 清华大学出版社, 2002, 9
    103 沃国纬,王元淳. 弹性力学. 上海交通大学出版社, 1998
    104 郭仲衡. 非线性弹性理论. 科学出版社, 1980
    105 ADAMS 12.0 Help, 2001
    106 邵忍平. 机械系统动力学. 机械工业出版社, 2005: 1~50
    107 A.V. OppenHeim and R.W. Schafer. Discrete-Time Signal Processing. Englewood Clifs, N.J. Prentice-Hall, 1989: 458~562
    108 M.C. Hutley. Diffraction Gratings. New York Academic Press (London)INC, 1982: 45~50
    109 Yoshida S. Nanometrology. Metrologia. 1991, 28: 433~441
    110 陈智超. 基于双光栅尺的高速高精度跨尺度位移测量方法的研究. 哈尔滨工业大学硕士学位论文. 2006
    111 林鹏, 陈小强, 袁祥辉, 廖念钊. 粗光栅线位移测量系统细分误差补偿前后的精度分析. 计量学报. 2002, 23(1): 26~29.
    112 王跃琼. 高速莫尔条纹信号单片机细分的一种方法. 光学 精密工程. 1997, 5(1): 108~111
    113 袁小滨, 李怀琼. 光栅莫尔条纹数字细分技术及其误差分析. 西安公路交通大学学报. 2001, 1: 113~115
    114 魏安峰. 基于 EPLD 的光栅数据采集技术的研究. 2002, 7: 43~46
    115 赵雅兴. FPGA 原理、设计与应用. 天津大学出社, 2000: 37~38
    116 陆维佳, 潘玉. FPGA 设计中毛刺问题的研究. 电子技术. 2004, (3): 36~38
    117 Brian Armstrong-Helouvry, Pierre Dupont, Carlos Canudas De Wit. A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction. Automatic. 1994, 30(7): 1083~1138
    118 D. Garagic, K. Srinivasan. Adaptive Friction Compensation for Precision Machine Tool Drive. Control Engineering Practice. 2004, 12(11): 1451~1464
    119 M. Aberger, M. Otter. Modeling Friction in Modelica with the Lund-Grenoble Friction. Proc. of 2nd International Modelica Conference, 2002: 285~294
    120 M. Iwasaki, T. Shibata, N. Matsui. Disturbance Observer Based Nonlinear Friction Compensation in Table Drive System. Mechatronics, 1999, 4(1): 3~8
    121 J. Swevers, et al. An Integrated Friction Model Structure withImproved Presliding Behavior for Accurate Friction Compensation. IEEE Transactions on Automatic Control. 2000, 45(4): 675~686
    122 K.K. Tan, T.H. Lee, S.N. Huang, et a1. Friction Modeling and Adaptive Compensation Using a Relay Feedback Approach. IEEE Transaction on Industrial Electronics, 2001, 48(1): 169~176
    123 D.J. Mu, H.R. Wang, X. Wang, L.X. Wei. Obsever Based Friction Compensation in Robot Control. Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 2004: 401~405
    124 Makoto Iwasaki, Tomohiro Shibata, Nobuyuki Matsui. Disturbance Observer Based Nonlinear Friction Compensation in Table Drive System. IEEE/ASME Transactions on Mechatrorrics, 1999, 4(1): 3~8
    125 吕春兰, 王立国, 孟亚男, 姜德龙. 基于模糊自整定 PID 参数控制器的设计. 吉林化工学院学报. 2002, 19(2): 33~44
    126 E.H. Mamdani. Application of Fuzzy Algothms for Simple Dynamic Plant. Proc. IEE, 1974, D-121: 1585~1588
    127 胡包钢. 关于模糊 PID 控制器推理机维数的研究. 自动化学报. 1998
    128 李士勇. 模糊控制.神经控制和智能控制. 哈尔滨工业大学出版社, 1996: 263~298

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700