用户名: 密码: 验证码:
面向纳米压印光刻设备的精密定位工作台的设计方法与实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以用于纳米压印光刻技术的精密定位工作台的开发为目标,深入系统地研究了一种具有3平动自由度的空间柔性并联定位机构的创新结构设计、运动学分析、刚度分析、静动力学分析、误差建模等关键技术,并建造了由压电陶瓷驱动器驱动的精密定位工作台样机。取得了如下主要研究成果:
     以改进的DELTA并联机构为基础,将机构中的转动副用单自由度柔性铰链代替,研制了一台具有3平动自由度的精密定位工作台。该定位工作台采用多个压电陶瓷驱动器驱动方式,可实现末端位置的主动调整。
     采用“伪刚体模型”方法将该精密定位工作台分别等效为偏置式伪刚体模型和非偏置式伪刚体模型,并利用齐次坐标变换方法和矢量闭环方法构建其正、逆运动学模型,结合有限元分析比较两种模型的优劣,并以非偏置式伪刚体模型作为后续分析的依据,以柔性铰链允许转角范围为约束条件分析工作台可达工作空间,并以工作空间最大为目标进行机构参数的优化设计。
     考虑工作台重力势能和柔性铰链的弹性应变能,建立支链驱动刚度模型,为压电陶瓷驱动器的选择提供依据。针对从动臂平行四边形结构,讨论不同约束方式下,上下端连接横梁柔度特性对其输出刚度的影响。利用柔度矩阵和位置变换矩阵相结合的方法,建立定位工作台输出刚度模型,分别讨论了杆长、柔性铰链切口半径等几何参数的影响规律,并利用有限元仿真加以验证。
     利用虚功原理方法建立了机构的静力学模型,讨论了各构件质量、柔性铰链刚度对动平台位置的影响作用。利用虚功原理方法和拉格朗日方程方法建立机构的动力学模型,讨论了构件质量、柔性铰链刚度对驱动力矩的影响规律,并结合不同的运动轨迹,将根据两种方法得到的动力学逆解模型进行对比,说明其有效性。讨论了几何参数、柔性铰链刚度对系统固有频率的影响。
     综合考虑包括理论建模误差、杆长误差、柔性铰链加工误差、装配误差等多种误差源形式,并以采用递推方式得到的运动学模型为基础,建立了定位工作台全参数误差辨识模型,并进行了计算机仿真。
     最后,利用所建造的精密定位工作台样机,进行了运动学、静态刚度以及固有频率试验,将试验结果与理论模型以及有限元仿真模型结果进行比较表明所建立的理论模型以及所进行的相关理论分析是合理且有效的。
In order to develop a precision positioning stage for nanoimprint lithography, this dissertation deals with the key issues relevant to mechanical design, kinematic modeling, stiffness analysis, static and dynamic modeling and kinematic calibration. As a result, a prototype machine of 3-DOF piezo-driven compliant stage has been developed. The following research achievements have been completed. Replacing the revolute joints of the modified DELTA mechanism with single-axis flexure hinges and adjusting the length of the links, a new-type precision positioning stage with three translation degrees of freedom has been achieved. Three piezoelectric actuators are used to carry out the passive position adjustment of the platform.
     The Pseudo-Rigid-Body (PRB) Model methodology is utilized to investigate the kinematical characteristics of the stage, and two kinds of PRB models with effsets and non-effsets are developed. By the homogeneous coordinate transformation methodology and the vector-loop equation respectively, the forward and inverse kinematics modeling are achieved. The comparison of the two PRB model is done by the finite element simulation and the PRB model with non-effsets is adopted for the subsequent works. The workspace of the stage is evaluated in term of the constraints due to the allowable rotation range at the flexure hinges. And in order to achieve a maximum workspace subjected to the given dexterity indices, kinematic optimization of the design parameters is carried out, which results in a stage satisfying the operational requirements.
     Considering the energy stored as elastic deformation of the flexure hinges and the gravitational potential of the platform and the links, the stiffness at driving point of the active arm is modeled based on the Castigliano’s first theorem. For the influence of the stiffness of the compliant prismatic pair, that constructed as a planar four-bar parallelogram, in the flexure-based precision positioning stage, the mathematics model of the stiffness matrix of the compliant prismatic pair is established using the compliant matrix and matrix transformation method. Discussions are developed about the influences of the constraints and the compliance of the connecting rods on the flexibility characteristics of the prismatic pair, the geometric parameters are changed to show the variation of stiffness. After that, the system stiffness of the flexure-based stage is analytically modeled on the same methodology, and the influence of the geometry parameters on three stiffness factors has been graphically evaluated as well. Furthermore, the finite-element simulation has been undertaken to validate the analytical model.
     The static analysis of the compliant stage has been studied on the principle of virtue work, the influence of the mass of the platform and the links and the stiffness of the flexure hinges on the position of the platform are discussed. The dynamic modeling has been performed on the principle of virtue work and the Lagrangian equation respectively. The influences of the mass of the platform and the links and the stiffness of the flexure hinges on the driving torques are analyzed, and the numerical simulations with different movement modes are presented to verify the validity of both models. The natural frequencies are analyzed with the variation of the geometry parameters and the stiffness of the flexure hinges.
     The imperfect error characteristics of the stage such as the modeling and calculating errors, geometric errors of flexure hinges and links caused by machining imperfections, assembling errors, gravity’s effect are analyzed and discussed on the kinematic model deduced by the recursive matrix methodology, The all-parameter-error-identification model of the compliant stage is setup, and the computer simulation is made.
     Experiments results about the kinematics, the static compliance characteristics and the natural frequency confirmed that the mathematic modeling and the relative theoretic analysis is creditable.
引文
[1] Masaki Nakajima, Takashi Yoshikawa, Kenji Sogo et al. Fabricaitn of multi-layered nano-channels by reversal imprint lithography. Microelectronic Engineering. 2006, 83: 876~879.
    [2] Mingtao Li, Lei Chen, Stephen Y. Chou. Direct three-dimensional patterning using nanoimprint lithography. Applied Physics Letters. 2001, 78(21): 3322~3324.
    [3] A. Lebib, Y. Chen, J. Bourneix et al. Nanoimprint lithography for a large area pattern replication. Microelectronic Engineering. 1999, 46: 319~322.
    [4] S. C Johnson. Advances in Step and Flash imprint Lithography. Proceedings of SPIE-The International Society for Optical Engineering. 2003, 5037(1): 197~202.
    [5] L Jay Guo. Recent progress in nanoimprint technology and its application. Phys. D: Apply Phys. 2004, 37: 123~141.
    [6]李洪珠.纳米压印光刻技术及其发展现状.电子与封装. 2005, 12(5): 1~5.
    [7] Jun-ho Jeong, Young-suk Sim, Hyonkee Sohn et al. UV nanoimprint lithography using an elementwise embossed stamp. Proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS’04). 2004, 233~236.
    [8] Douglas J. Resnick, S. V. Screenivasn, C. Grant Willson. Step & flash imprint lithography. Materialstoday. 2005, 8(2): 34~42.
    [9]刘彦伯,顾长庚,乌建中等.下一代实用光刻技术——纳米压印技术.机电一体化. 2005, 6: 14~19.
    [10] Eung-sug Lee, Jun-ho Jeong, Young-suk Sim et al. High-throughput step-and-repeat UV-nanoimprint lithography. Current Applied Physics. 2006, 6S1: e92-e98.
    [11] Lawes R A. Future trends in high resolution lithography. Applied Surface Science. 2000, 154-155: 519~526.
    [12] Cohen Pinsky. Advanced lithography alternatives for IC fabrication below 0.1μm. Microelectronic Engineering. 2001, 41-42: 19~25.
    [13] Chou S Y, Chris Kelmel. Ultrafast and direct imprint of nanostructures in silicon. Nature. 2002, 417(6891): 835~838.
    [14]稽钧生. X射线光刻机中应用的精密定位工作台.航空精密制造技术. 1998, 34(3): 10~12.
    [15]朱煜,尹文生,段广洪.光刻机超精密工件台研究.电子工业专用设备. 2004, 109: 25~27.
    [16] Lee Deug Woo, Lee Chae Moon, Chee Dong Hwan. A study on auto alignment system of Nano Imprint Lithography (NIL) process. Proceedings of the 1st International Conference on Positioning Technology Japan: Hamamatsu, 2004. 97~101.
    [17] K.B. Choi, Kinematic analysis and optimal design of 3-PPR planar parallel manipulator. KSME International Journal, 2003, 17(4): 528~537.
    [18] G.J. Chung, K.B. Choi, C.H. Park. Development of planar parallel stage mechanism for nano order precision robot manipulator. In: Proceeding of 2005 IEEE International Conference on Robotics and Biomimetics, Hong Kong and Macau, June 29-July 3, 2005, 139~141.
    [19] L. J. Guo. Recent progress in nanoimprint technology and its applications. Journal of Physics D: Applied Physics. 2004, 37(2):123~141.
    [20] Hubert Schulz, Herbert Pavlicek, Norbert Reng. Step and Flash Nanoimprint Lithography in Europe. 2004 4th IEEE Conference on Nanotechnology. 2004: 655~656.
    [21] S. Y. Chou, P. R. Krauss. Imprint lithography with sub~10nm feature size and high throughput. Microelectronic Engineering. 1997, 35(1-4):237~240.
    [22] M. M. Alkaisi, W. Jayatissa, M. Konijn. Multilevel nanoimprint lithography. Current Applied Physics. 2004, 4(2-4): 111~114.
    [23] B. J. Choi, S. V. Sreenivasan, S. Jonhson et al. Design of orientation stage for step and flash imprint lithography. Precision Engineering. 2001, 25(3):192~199.
    [24]范细秋,张鸿海,胡晓峰等.宽范围高对准精度纳米压印样机的研制.中国机械工程. 2005, 16(增): 64~67.
    [25] JaeJong Lee, Kee-Bong Choi, Gee-Hong Kim. Design and analysis of the single-step nanoimptinting lithography equipment for sub-100 nm linewidth. Current Applied Physics 2006. 2006, 6: 1007~1011.
    [26] Jae-Jong Lee, Kee-Bong Choi, Gee-Hong Kim et al. The UV-Nanoimprint Lithography with Multi-head nanoimprinting Unit for Sub~50nm Half-pitch Patterns. SICEICASE International Joint Conference 2006 Oct. 18-21, 2006 in Bexco, Busan, Korea. 2006: 4902~4904.
    [27]董晓文,司卫华,顾文琪.气囊气缸式紫外纳米压印系统的设计.半导体光电. 2007, 28(5): 676~684.
    [28]严乐,卢秉恒,丁玉成等.冷压印光刻工艺精密定位工作台的研制.中国机械工程. 2004, 15(1): 75~78.
    [29] Hongbo Lan, Yucheng Ding, Hongzhong Liu et al. Review of the wafer stage for nanoimprint lithography. Microelectronic Engineering. 2007, 84: 684–688.
    [30] S. Harrer, J. K. W. Yang, K. K. Berggren. Pattern Generation by Using MultiStep Room-Temperature Nanoimprint Lithography. IEEE Transactions on Nanotechnology. 2007, 6(6): 639~644.
    [31] Zhou J. , Wutson L G, Zhang W J. On the comparison of the pseudo rigid body model method and the finite element method for a 3-DOF planar micro-motion stage. Proceedings of DETC’00, Baltimore, Maryland, 2000.
    [32]刘继刚.平面3-RRR全柔性机器人的微运动学分析.燕山大学学报. 2004, 28(4): 296~301.
    [33] Y. Tian, BShirinzadeh, D. Zhang et al. Design and forward kinematics of the compliant micro-manipulator with lever mechanisms. Precision Engineering. 2009, 33: 466~475.
    [34] Y. Tian, B. Shirinzadeh, D. Zhang et al. Design and forward kinematics of the compliant micro-manipulator with lever mechanisms. Precision Engineering. 2009, 33: 466~475.
    [35] Yanling Tian, Bijan Shirinzadeh, Dawei Zhang. Stiffness estimation of the flexure-based five-bar micro-manipulator. Proceedings of 2008 10th Intl. Conf. on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17-20 December 2008. 2008: 599~604.
    [36] Yanling Tian, Bijan Shirinzadeh, Dawei Zhang et al. Forward kinematics and solution methodologies for a flexure-based micro-manipulator. Intelligent Robotics and Applications. 2008, 5315: 250~259.
    [37] Yu Jingjun, Bi Shusheng, Zong Guanghua. Development of a 3-DOF in-parallel compliant micro-motion stage for micromanipulation. Proceedings of 5th International Symposium on Instrumentation and Control Technology. 2003, 5253: 915~920.
    [38]于靖军,毕树生,宗光华等.基于伪刚体模型法的全柔性机构位置分析.机械工程学报. 2002, 38(2): 75~78.
    [39] Y. Koseki, T. Tanikawa, N. Koyachi et al. Kinematic analysis of translational 3-DOF micro parallel mechanism using matrix method. Proceedings of the IROS, Kagawa, Japan. 2000: 786~792.
    [40]许意华,刘德忠,费仁元等. 3-PTT并联微操作机器人工作空间分析.机械科学与技术. 2003, 22(1): 102~104.
    [41] Qing Yao, J. Dong, P. M. Ferreira. Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage. International Journal ofMachine Tools & Manufacture. 2007, 47(6): 947~961.
    [42] Denny Oetomo, David Daney, Bijan Shirinzadeh et al. Certified workspace analysis of 3RRR parallel flexure mechanism. Proceedings of 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, May 19-23, 2008. 2008: 3838~3843.
    [43] Yangmin Li, Qingsong Xu. Design and analysis of a new 3-DOF compliant parallel positioning platform for nanomanipulation. Proceedings of 2005 5th IEEE Conference on Nanotechnology, Nagoya, Japan, July 2005. 2005(2): 861~864.
    [44] Yangmin Li, Qingsong Xu. Optimal design of a new nanopositioner using genetic algorithm. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 18-21, 2006, Zhuhai, China. 2006: 357~362.
    [45] Yangmin Li, Qingsong Xu. Kinematic design of a novel 3-DOF compliant parallel manipulator for nanomanipulation. Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, Califormla, USA, 24-28 July, 2005. 2005, MA5-01: 93~98.
    [46] Salisbury J, Craig J. Aritificial hands: force controls and kinematic issues. International Journal of Robotic Research. 1983, 1(1): 4~17.
    [47] Gosselin C, Angeles J. A globe preference index for the kinematic optimization of robotic manipulator. ASME Journal of Mechanical Design. 1991, 113(3): 220~226.
    [48]高秀兰,鲁开讲,王娟平. Delta并联机构工作空间解析及尺度综合.农业机械学报. 2008, 39(5): 146~149.
    [49] Lung-wen Tsai, Sameer Joshi. Kinematics and optimization of a spatial 3-UPU parallel manipulator. Journal of Mechanical Design. 2000, 122: 439~446.
    [50] Huang T, Li M, Li Z, et al. Optimal kinematic design of 2-DOF parallel manipulator with well shaped workspace bounded by a specified conditioning index. IEEE transaction of Robotics and Automation. 2004, 20(3): 538~543.
    [51]孙立宁,丁庆勇,刘新宇. 2自由度高速高精度并联机器人的运动学优化设计.机械工程学报. 2005, 41(7): 94~98.
    [52] Huy Hoang Pham, I-Ming Chen. Optimal synthesis for workspace and manipulability of parallel flexure mechanism. Proceedings of the 11th World Congress in Mechanism and Machine Science, August 19-21, 2003, Tianjin, China. 2003, 4: 20040401~20040404.
    [53] Yangmin Li, Qingsong Xu. A novel design and analysis of a 2-DOF compliant parallel micromanipulator for nanomanipulation. IEEE Transactions on Automation Science and Engineering. 2006, 3(3): 248~254.
    [54]孙立宁,董为,杜志江.基于大行程柔性铰链的并联机器人刚度分析.机械工程学报. 2005,41(8): 90~95.
    [55]于靖军,毕树生,宗光华等. 3自由度柔性微机器人的静刚度分析.机械工程学报. 2002,38(4): 7~10.
    [56] Qingsong Xu, Yangmin Li. Stiffness modeling for an orthogonal 3-PUU compliant parallel micromanipulator. Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, June 25-28, 2006, Luoyang, China. 2006: 124~129.
    [57] Qingsong Xu, Yangmin Li. Stiffness modeling of a spatial 3-DOF compliant parallel micromanipulator. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 9-15, 2006, Beijing, China. 2006: 300~305.
    [58] Huy-Hoang Pham, I-Ming Chen. Stiffness modeling of flexure parallel mechanism. Precision Engineering. 2005, 29: 467~478.
    [59] Xu G, Qu L. Some analytical problems of high performance flexure hinge and micro-motion stage design. In: Proceedings of IEEE International Conference on Industrial Technology. 1996. p. 771–5.
    [60] W. Dong, L. N. Sun, Z. J. Du. Design of a precision compliant parallel positioner driven by dual piezoelectric actuators. Sensors and Actuators A. 2007, 135: 250~256.
    [61] Wei Dong, Lining Sun, Zhijiang Du. Stiffness research on a high-precision, large-workspace parallel mechanism with compliant joints. Precision Engineering. 2008, 32: 222~231.
    [62] Paros J. M, Weisbord L. How to design flexure hinges. Machine Design. 1965, 37:151~157.
    [63] Stuart T. Smith, Vivek G. Badami, Jami S. Dale et al. Elliptical flexure hinges. Revi. Sci. Instrum. 1997, 68(3): 1474~1483.
    [64] Lobontiu N, Paine J, Garcia E et al. Corner-filleted flexure hinges. ASME J of Mechanical Design. 2001, 123(3):346~352.
    [65]赵宏哲,毕树生,于靖军.三角形柔性铰链的建模与分析.机械工程学报. 2009, 45(8): 1~5.
    [66] Y. Tian, B. Shirinzadeh, D. Zhang et al. Three flexure hinges for compliant mechanism design based on dimensionless graph analysis. Precision Engineering. 2010, 34(1): 92~100.
    [67] Nicolae Lobontiu, Jeffrey S. N. Paine, Ephrahim Garcia et al. Corner-filleted flexure hinges. ASME Journal of Mechanical Design. 2001, 123: 346~352.
    [68] Nicolae Lobontiu, Jeffrey S. N. Paine, Ephrahim Garcia et al. Design of symmetric conic-section flexure hinges based on closed-form compliance equations. Mechanism and Machine Theory. 2002, 37(5): 477~498.
    [69]曹锋,焦宗夏.双轴椭圆柔性铰链的设计计算.工程力学. 2007,24(4): 178~182.
    [70]沈健,谢祖强,朱仁胜等.双轴柔性铰链转动柔度的设计与分析.上海交通大学学报.2007,41(9): 1514~1517.
    [71] Wei Xu, Tim King. Flexure hinges for piezoactuator displacement amplifiers: flexibility, accuracy and stress consideration. Precision Engineering. 1996, 19(1): 4~10.
    [72]杨启志,尹小琴,马履中等.数值法建立单向柔性铰链的刚度矩阵.农业机械学报. 2005, 36(1): 104~107.
    [73]程祥,黄玉美,高峰. 3-PRS并联机器人的力学分析.西安理工大学学报. 21(3): 223~226.
    [74]尹小琴,马履中,杨启志等.并联机构静力学分析.农业机械学报. 2007, 38(2): 201~207.
    [75] Xu-zhao Han, Yu-mei Huang, Chun Chen et al. The kinematics and statics analysis of a 2-DOF three branches parallel mechanism. Proceedings of the seventh International Conference on Machine Learning and Cybernetics, Kunming, 12-15 July, 2008. 2008: 2398~2401.
    [76] Marco Carricato, Vincenzo Parenti-Castelli, Joseph Duffy. Inverse static analysis of a planar system with flexure pivots. Journal of Mechanical Design. 2001, 123: 43~50.
    [77] Marc Arsenault, Clemént M. Gosselin. Kinematic, static and dynamic analysis of a planar 2-DOF tenserity mechanism. Mechanism and Machine Theory. 2006, 41(9): 1072~1089.
    [78]杨启志,马履中,谢俊等.三平移全柔性并联微动机器人机构静力学分析.农业机械学报. 38 (11): 110~113.
    [79] Yangmin Li, Qingsong Xu. Dynamics analysis of a modified 3-PRC compliant parallel micromanipulator. Proceedings of the 7th IEEE International Conference on Nanotechnology, 2007: 432~437.
    [80]田延岭.纳米磨削微定位平台设计理论与应用研究:[博士学位论文].天津:天津大学,2004.
    [81] D. Zhang, D. Chetwynd, X. Liu et al. Investigation of a 3-DOf micro-positioning table for surface grinding. International Jounrnal ofMechanical Sciences. 2006, 48(12): 1401~1408.
    [82] Y. Tian, B. Shirinzadeh, D. Zhang. Design and dynamics of a 3-DOF flexure-based parallel mechanism for micro/nano manipulation. Microelectronic Engineering. 2010, 87: 230~241.
    [83] Yanling Tian, Bijan Shirinzadeh, Dawei Zhang et al. Development and dynamic modeling of a flexure-based Scott-Russell mechanism for nano-manipulation. Mechanical System and Signal Processing. 2009, 23: 957~978.
    [84]王华伟,余跃庆,苏丽颖等.柔顺机构动力学建模新方法.机械工程学报. 2008, 44(10): 96~103.
    [85] Dasgupta B., Choudhury P. A general strategy based on the Newton Euler approach for the dynamic formation of parallel manipulators. Mechanism and Machine Theory. 1999, 34(6): 801~824.
    [86] Yuwen Li, Jinsong Wang, Liping Wang et al. Inverse dynamics and simulation of a 3-DOF spatial parallel manipulator. Proceedings of the 2003 IEEE International Conference on Robotics & Automation, 2003: 4092~4097.
    [87] Wei Zhuang, Xiaoping Liu, Chenwei Fang et al. Dynamic modeling of a spherical robot with arms by using Kane’s method. Proceedings of 4th International Conference on Natural Computaion. 2008: 373-377.
    [88] Xuping Zhang, James K. Mills, William L. Cleghorn. Dynamic modeling and experimental validation of a 3-PRR parallel manipulator with flexible intermediate links. J Intell Robot Syst. 2007, 50: 323~340.
    [89] Jingyan Dong, Qing Yao, Placid M. Ferreira. A novel parallel-kinematics mechanism for integrated, multi-axis nanopositioning Part 2: Dynamics, control and performance analysis. Precision Engineering. 2008, 32: 20~33.
    [90] Dacheng Cong, Dayong Yu, Junwei Han. Kinematic calibration of parallel robots using CMM. Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21-23, 2006, Dalian, China. 2006: 8514~8518.
    [91]余跃庆.柔顺机构学.北京:高等教育出版社,2007
    [92]汪劲松,黄田.并联机床——机床行业面临的机遇与挑战.中国机械工程,1999, 10(10): 1103~1107.
    [93]王战中.喷涂机器人连续3R斜交非球型手腕设计方法与实践:[博士学位论文].天津:天津大学,2008.
    [94] Wang Jian, Oren Masory. On the accuracy of a Stewart platform-Part I: the effect of manufacturing tolerances. IEEE International Conference on Robotics and Automation, Los Alamitos, May 2-6, 1993, Atlanta, GA, USA.New York: IEEE.1993: 114~120.
    [95] Dayong Yu, Junwei Han. Kinematic calibration of parallel robots. Proceedings of the IEEE International Conference on Mechatronics & Automation, Niagara Falls, Canada, July 2005. 2005: 521~525.
    [96] Dayong Yu, Dacheng Cong. Error modeling and kinematic calibration of parallel robots. 2008 Chinese Control and Decision Conference. 2008: 2162~2167.
    [97] Soichi Ibaraki, Toshihiro Okuda, Yoshiaki Kakino et al. Compensation of gravity-induced errors on a hexapod-type parallel kinematic machine tool. JSME International Journal, Series C, Mechanical Systems, Machine Elements and Manufacturing. 2004, 47(1): 160~167.
    [98] Soichi Ibaraki, Takeshi Yokawa, Yoshiaki Kakino et al. Kinematic calibration on a parallel kinematic machine tool of the Stewart platform by circular tests. Proceedings of the 2004 American Control Conference, Boston, Massachusetts June 30-July 2, 2004. 2004: 1394~1399.
    [99]黄田,李亚,李思维等.一种三自由度并联机构几何误差建模、灵敏度分析及装配工艺设计.中国科学(E辑). 2002, 32(5): 628~635.
    [100] Huang Tian, Tang Guobao, Li Siwei et al. Kinematic calibration of a class of parallel kinematic machines(PKM) with fewer than six degrees of freedom. Science in China. 2003, 46(5): 515~526.
    [101]唐国宝,黄田. Delta并联机构精度标定方法研究.机械工程学报. 2003, 39(8): 55~60.
    [102] Jae W. Ryu, Dae-Gab Gweon. Error analysis of a flexure hinge mechanism induced by machining imperfection. Precision Engineering. 1997, 21(2): 83~89.
    [103] Jae W. Ryu, Dae-Gab Gweon, Kee S. Moont. Optimal design of a flexure hinge based xyθwafer stage. Precision Engineering. 1997, 21(1): 18~28.
    [104] Niaritsiry T.–F., Fazenda N., Clavel R.. Simulation analysis of the sources of inaccuracy of a parallel manipulator. Proceeedings of 2003 IEEE International Conference on Robotics, Intelligent Systems and Signal Processing. 2003, 1: 266~271.
    [105] Niaritsiry T.–F., Fazenda N., Clavel R.. Study of the sources of inaccuracy of a 3 DOF flexure hinge-based parallel manipulator. Proceedings of 2004 IEEE International Conference on Robotics and Automation. 2004, 4: 4091~4096.
    [106]秦宇,冯之敬.单轴圆弧型柔性铰链制造误差对刚度性能的影响.清华大学学报. 2007, 47(8): 1320~1324.
    [107] Ji Huawei, Yang Shixi, Wu Zhaotong et al. Error analysis for a piezoelectricceramic-actuated and flexure hinge-based micromanipulator. Proceedings of the 3rd International Conference on Mechatronics and Information Technology (ICMIT 2005): Control Systems and Robotics, September 20-23, 2005, Chongqing, China. 2005, 6042(2): 604242.1~604242.5.
    [108]毕树生,宗光华.柔性铰链微操作机构的误差源分析.机械科学与技术, 2003, 22(4): 591~594.
    [109]李嘉,王纪武,陈恳等.基于广义几何误差模型的微机器人精度分析.清华大学学报. 2000, 40(5): 28~32.
    [110]晁代宏,刘荣,吴跃民等.平面3自由度柔顺微动机器人加工误差分析.北京航空航天大学学报, 2005, 31(7): 757~761.
    [111]叶鑫,张之敬,万毕乐等.微动工作台的误差源分析.机械工程学报, 2009, 45(1): 258~266.
    [112]邵珠峰,唐晓强,王立平等.平面柔性3-RRR并联机构自标定方法.机械工程学报. 2009, 45(3): 150~155.
    [113] Lefeng Wang, Weibin Rong, Mao Feng et al. Calibration of a 6-DOF parallel micromanipulator for nanomanipulation. Proceedings of 2010 3rd International Nanoelectronics Conference (INEC). 2010: 138~139.
    [114] L. Tsai, R. Stamper. A parallel manipulator with only translational degrees of freedom. Proceedings of the 1996 ASME Design Engineering Technical Conference. MECH: 1152, 1996.
    [115]左行勇,刘晓明.三种形状柔性铰链转动刚度的计算与分析.仪器仪表学报. 2006, 27(12): 1725~1728.
    [116]于靖军,周强,毕树生等.基于动力学性能的全柔性机构优化设计.机械工程学报. 2003, 39(8): 32~36.
    [117] Sridhar Kota, Joel Hetrick, Zhe Li et al. Tailoring unconventional actuators using compliant ransmissions: design methods and applications. IEEE/ASME Translations on Mechanics, 1999, 4(4): 396~408.
    [118] Richard E Stamper, Lung-Wen Tsai, Gregory C. Walsh. Optimization of a three DOF translational platform for well-conditioned workspace. Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, April 1997. 1997, 3250~3255.
    [119] Stefan Staicu. Recursive modelling in dynamics of Delta parallel robot. Robotica. 2009, 27: 199~207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700