用户名: 密码: 验证码:
压电陶瓷微定位系统的逻辑规则控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密定位系统是指精度高和灵敏度高的定位机构,它是精密机械和精密仪器的关键部件之一。随着压电陶瓷微位移器在精密定位、微操作等方面越来越多的运用,采用压电陶瓷微位移器驱动的柔性支承微定位机构得到广泛的应用。由于压电驱动器结构紧凑、体积小、分辨率高、通常情况下几乎不发热且易于控制,已在微位移驱动与控制上获得了比较成熟的应用。但同时压电材料存在迟滞及蠕变特性,当用于微定位系统中,由于非线性迟滞的影响,定位时难以达到较高精度,因此如何克服压电材料存在的固有的非线性迟滞及蠕变特性一直是研究的热点问题之一。为减少以上不良因素的影响,更好地发挥压电陶瓷微位移器的性能,需要对这些缺陷进行深入的研究,揭示迟滞非线性的物理本质,建立相应的物理和数学模型,发展控制算法,以消除迟滞非线性的不利影响。本文研究了压电陶瓷微位移器的动态控制模型,压电陶瓷微定位系统的逻辑规则控制策略、逻辑规则控制算法,进行了逻辑规则控制算法的离线仿真和在线实验研究。
     本文提出了压电陶瓷微定位系统的逻辑规则控制策略,分别论述了逻辑规则控制的相关概念、术语,以及逻辑规则控制的基础-泛布尔代数理论和基于泛布尔代数理论的逻辑规则控制系统的组成,逻辑控制的原理,逻辑规则控制方法的特点以及逻辑规则控制器的实现流程;给出了运动控制系统的逻辑规则控制要求及其表征,在泛布尔代数理论的基础上,进一步提出了基于偏差相平面的逻辑规则控制算法和基于偏差相空间的逻辑规则控制算法。
     给出了压电陶瓷这类具有迟滞非线性特性的逻辑规则控制方案,建立了一种新的压电陶瓷微位移器的逻辑控制模型;并将基于泛布尔代数理论的逻辑规则控制算法,应用于压电陶瓷微定位系统的控制中,同时进行了离线仿真研究。在此基础上,将逻辑规则控制算法与经典的PID控制算法结合起来,提出了Rule+PI多模态分段控制。
     给出了一种新的压电陶瓷微位移系统的柔性驱动平台方案,描述了柔性驱动平台的结构,建立了该柔性驱动平台的力学模型,并对该柔性驱动平台进行了静态分析和动态分析;最后对柔性平台刚度进行了理论计算,最终确定了弹性圈的参数。
     构建了压电陶瓷微定位系统的实验平台,研制了一种新型的压电陶瓷驱动电源,设计了专用的硬件电路,并编制了压电陶瓷微定位系统的逻辑规则控制软件;给出了压电陶瓷微定位系统在逻辑规则控制器作用下的实验结果。
     最后将以上成果应用于非探针多通道红外近场光学显微成像测量与实验中,建立了非探针红外近场光学显微成像系统的微定位平台控制系统。该平台控制系统采用步进电机粗驱动与压电陶瓷微驱动相结合的方法,实现了在一定精度要求下的较大量程,满足了系统对码板驱动和定位的需要,并最终得到了矩阵编码测量结果。
Precision positioning system is sensitive positioning mechanism with higher precision. It is one of key parts of precision machine and precision instrument. With the piezoelectric actuators more application in precision positioning and micro-operation, flexure micro-positioning mechanism driven by the piezoelectric actuators gets wide application. Because of tight structure, smaller bulk, higher distinguish rate, often no heat and easier to be controlled, piezoelectric actuators get better well-round application. But at the same time there exist hysteresis and squirm effect in piezoelectric materials, it is hard to get higher precision because of hysteresis nonlinearity in micro-positioning system. How to overcome hysteresis and squirm effect in piezoelectric actuators has always been one of the important problems. In order to reduce effect of above disadvantage and make characteristic of piezoelectric actuators better, it is necessary to research in-depth in these limitations, display physics essence of hysteresis nonlinearity, build corresponding physics and mathematics model and develop control algorithm. This is beneficial to remove disadvantage effect of hysteresis nonlinearity. This paper mainly studies on dynamic control model of piezoelectric actuators, off-line simulation and on-line experiment on logic rule method and logic rule algorithm in piezoelectric actuators micro-positioning system.
     Ideals of in piezoelectric actuators micro-positioning system are presented in this paper. Then conceptions, terms in logic rule control, pan-Boolean algebra theory in logic control as basis of logic rule control are introduced in this paper respectively. And constitute of logic control system based on pan-Boolean algebra theory, principle of logic control, characteristic of logic control method and realization flow of logic controller are introduced here too. Logic control request and token of motion control system is presented here. A novel dynamic control model of piezoelectric actuators has been built. Logic rule control algorithm based on error phase plane and logic rule control algorithm based on error phase space are presented on the basis of pan-Boolean algebra theory.
     Logic control scheme is given for piezoelectric actuators with hysteresis nonlinearity. A novel dynamic control model of piezoelectric actuators with hysteresis nonlinearity is built. Logic rule control algorithm based on pan-Boolean algebra theory is applied in piezoelectric actuators micro-positioning system, off-line simulation is carried on synchronously. Based on above all, combining logic rule control algorithm with classical PID control algorithm, Rule with PI multimode subsection control is presented.
     Then precision positioning stage control system is presented and realized. A new scheme for flexure driven stage of piezoelectric actuators micro-positioning system is presented here. Its mechanical model is constructed for flexure driven stage, and it is processed by static state analysis and dynamic state analysis. At last firm degree of flexure driven stage is calculated by theory and parameters of elasticity circle are made certain.
     Experiment system of piezoelectric actuators micro-positioning system is constructed. A novel piezoelectric actuators supply source is developed. Special hardware driven circuit is designed. A series of logic rule software for piezoelectric actuators micro-positioning system is authorized. And experimental results are introduced in logic rule control for piezoelectric actuators micro-positioning system.
     At last above all productions are applied in the non-probe multi-channel near-field optical microscope. Micro-positioning stage control system for non-probe multi-channel near-field optical microscope is built. The motor and the piezoelectric actuator were adopted to ensure a larger travel range and higher precision in the stage control system. Encoding mask is fit for system in driving and positioning, and matrix encoding measure data are realized.
引文
[1]蔡鹤皋,孙立宁,安辉.压电/电致伸缩执行器件与应用(上).高技术通讯,1994(5):38-41
    [2]蔡鹤皋,孙立宁,安辉.压电/电致伸缩执行器件与应用(下).高技术通讯,1994(6):37-40
    [3] A.Kanai, H.Sano, J.Yoshioka. Positioning of a 200kg Carriage on Plain Bearing Guideways to Nanometer Accuracy with a Force-operated Linear Actuator. Nanotechnology,1991,2(1):43-51.
    [4] Takehiko Nomura, Ryouichi Suzuki. Six-axis Controlled Nanometer-order Positioning stage for Microfabrication. Nanotechnology, 1992, 3(1):21~28.
    [5] Wanjun Wang, Tian He. A high Precision Micropositioner with Five Degrees of Freedom Based on an Electromagnetic Driving Principle. Rec.Sci.Instrum, 1996,67(1):312-317.
    [6] J.Heil, A. Bohm, M.Primke.Versatile Three-Dimensional Cryogenic Micropositioning Device.Rec.Sci.Instrum, 1996, 67(1): 165~169.
    [7] Shigeru Sakuta, Mikio Adachi, Kiyoushi,et al. Precision Table control System Using Friction Drive for Optical Disk Masterting Machine. Int.J.Japan soc.Prec.Eng,1998,32(2):122-126
    [8] Paul D. Atherton. Nanometer Precision Mechanisms. Measurement and Control,1998,31(1):37-42.
    [9] E.Clayton Teague. Generating and Measuring Displacements up to 0.1m to an Accuracy of 0.1nm: Is It Possible. SPIE Handbook”The Technology of Proximal Probe Lithography”1993.
    [10] Waniun Wang, Ilene Busch-Vishniac. A High Precision Micropositioner based on Magnetostriction Principle. Review Science Instrument, 1992, 63(1):165-169
    [11] U CHINO Kenji.Recent trend of piezoelectric actuator development.International Symposium on Micromechatronics and Human Science,1999:3-9
    [12]华顺明,程光明,阚君武等.压电型精密位移驱动器的研究进展.压电与声光, 2004, 26(3):192-195
    [13] Declan Hughes, John T.Wen. Preisach Modeling of Piezoceramic and Shape Memory Alloy Hysteresis. IEEE International Conference on Materials, 1995, 1086-1091
    [14] Jung, Hewon. Enhancement of AFM image by compensating the hysteresis and creep effect within PZT. SPIE, V3740, 1999, 327-330
    [15] Jung, Seung-Bae. Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control. 1994, vol.14, 49-55
    [16] Motoya Taniguchi. Ultra Precision Wafer Positioning by Six-axis Micromotion Mechanism, Int. J. Japan Soc.Prec.Eng.,1992, vol.26(1), 582-586
    [17] Hanz Richter, Eduardo A. Misawa and Don A. Lucca. Characterization of Nonlinearities in a Piezoelectric Positioning Device.Proceedings of the 1997 IEEE International Conference on Control Applications, Oct 5-7, 1997, 717-720
    [18]山形丰.压电素子を用いた机构に关する研究[D],东京大学, 1989.
    [19]江中伟,长南征二,山崇本.非线形压电ァクチコュ-タの线形驱动[J].日本机械学会论文集(C编)1994, 60(12):189-196
    [20] Berlincourt D. Current developments in piezoelectric applications of ferroelectrics. Ferroelectrics, 1976(10):111-119
    [21] Newcomb C, Flinn I. Improving the linearity of piezoelectric ceramic actuators.Electronics Letter, 1982, 18(11):442-444
    [22]童维杰,崔玉国,杨志欣等.电压驱动与电流积分器相结合实现压电电荷控制.计算机测量与控制,2002,10(4):260-262
    [23] John Main, Garcia E, Newton D V. Precision position control of piezoelectric actuators using charge feedback. Journal of Guidance, Control and dynamics, 1995, 18(5):1068-1073
    [24] Queensgate handbook, http://www.queensgate.com
    [25] Fan, J. Nonlinear constitutive behavior of soft and hard PZT: Experiments and modeling . Acta Materialia, v47, n17, 1999, 4415-4425
    [26]傅星,胡小唐.模糊控制在压电陶瓷控制中的应用.压电与声光,1999,21(3):200-202
    [27] Ping Ge, Musa Jouaneh.Generalized Preisach model for hysteresis nonlinearity of ceramic actuators. Precision Engineering, vol. 20, n2, 1997, 99-111
    [28] Fu K S. Learning Control Systems and Intelligent Control Systems: An Intersectionof Artificial Intelligence and Automatic Control.IEEE Trans., 1971, 16(1):70-72.
    [29] Hayashi Y, Buckley J J.Fuzzy netural networks: a survey.Fuzzy Sets and Systems, 1994, 66(1):1-13
    [30] Yure Stepanenko,Chun-Yi Su.Intelligent control of piezoelectric actuators, Prcoceeding of the 37th IEEE Conference on Decision & Control, Tampa, Florida USA, December, 1998, 4234-4239
    [31] Huang S J, Lian R-J. Acombination of Fuzzy Logic and Neural Network Algorithms for Active Vibration Control.Proc. Instn. Mech Engrs, 1996, 153-167
    [32]节德刚,孙立宁,曲东升等.压电陶瓷微位移系统的模糊PID控制方法.哈尔滨工业大学学报,37(2):145-147
    [33]孙立宁,张涛,曲冬升等.基于规则的仿人智能控制在微驱动系统中的应用.哈尔滨工业大学学报,31(5):101-103
    [34]张福学,孙慷.压电学(上).北京:国防工业出版社,1984,440-445,30-31,130-135
    [35]张福学,王丽坤.现代压电学(上).北京:科学出版社,2001.84-91
    [36] PRODUCTS FOR MICROPOSITIONING. Physik Instrumente Company(PI), Germany, 1997
    [37]张涛,孙立宁,蔡鹤皋.压电陶瓷基本特性研究.光学精密工程,1998,6(5):26-32
    [38] KAWATITA Shinichiro, ISOGAI Toshiki, OHYA Nobuyuki. Multi-layer piezoelectric bimorph actuator. International Symposium on Micromechatronics and Human Science, 1997:73-77
    [39]内野研二.压电ァクチコエ}タの基础知识.エレクトロニクス, 1986, 12:29~33
    [40] YU Y H, Xiao Z C, LIN E B, and Naganathan N. Analytic and experimental studies of a wavelet identification of Preisach model of hysteresis. IEEE Trans. On Magnetic Materials, 2000, 20(8):255-263
    [41] Ping Ge, Musa Jouaneh. Modeling of hysteresis in piezoceramic actuators. Precision Engineering, 1995, 17(3):211-221
    [42] Mayergoyz.I. Mathematical Models of Hysteresis. New York: Springer-Verlag, 1991,[7]:1-47
    [43] H. Hu, R.Ben Mrad. On the classical Preisach model for hysteresis in piezoceramic actuators, Mechatroncis 2003(13):85-94
    [44] Ge Ping, Jouaneh M. Generalized Preisach model for hysteresis nonlinearlity of piezoceramic actuators, Precision Engineering, 1997, 20: 99-111
    [45] Yunhe Yu, Nagi Naganathan, Rao Dukkipati. Preisach modeling of hysteresis for the piezoceramic actuator system, Mechanism and Machine Theory, 2002 (37):49-59
    [46] Dongwoo Song, C. James Li. Modeling of Piezo Actuator’s Nonlinear and Frequency Dependent Dynamics, Mechatronics, Vol. 9, Issue 4, June 1999:391-410
    [47] Dongwoo Song, C. James Li. Piezo Actuator Hybrid Modeling for Nonlinear Inverse Control in Diamond Turning, Symposium on Sensors and Controls. ASME International Mechanical Engineering Congress and Exposition, Nashville,Tennessee, November 14-19, 1999, Manufacturing Science and Engineering, MED Vol. 10, Editor J. W. Sutherland, ASME, New York, 1999:613-620
    [48] H. Banks, A. Kurdila, G.Webb. Identification of hysterestic controlinfluence operators representing smart actuators part i: formulation, tech.rep., Center for Research in Scientic Computation, Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205 and the Department of Aerospace Engineering, Department of Mathematics, Texas A & M University, College Station, TX 77843, 1996
    [49] A. Visintin, Di.Erential Models of Hysteresis, Springer Verlag, 1994
    [50] W.S. Galinaitis, R.C. Rogers. Control of a hysteretic actuator usinginverse hysteresis compensation, in Mathematics and Control in Smart Structures, V. Varadan, ed., Proc. SPIE 3323, 267-277, 1998
    [51] Hartmut Janocha, Klaus Kuhnen. Real-time compensation of hysteresis and creep in piezoelectric actuators, Sensors and Actuators, 2000(79): 83-89
    [52] K.Kuhnen, H.Janocha, Compensation of Creep and Hysteresis Effects of Piezoelectric Actuators with Inverse Systems, Proceedings of the 6th International Conference on New Actua
    [53] K.Kuhnen, H. Janocha, Adaptive inverse Control of Piezoelectric Actuators with Hysteresis Operators, Proceedings of the European Control Conference, Karlsruhe, August, 1999, CD-ROM rubicon GmbH
    [54]曲东升,孙立宁,丁庆勇.压电陶瓷驱动器的建模分析与自适应逆控制.机器人,2001, 23(7):688-690
    [55]曲东升,孙立宁,高有将.压电陶瓷致动器自适应逆控制方法的研究.压电与声光, 2002, 24(5):354-357
    [56] C. L. Hwang, C.Jan, Y. H. Chen. Piezomechanics using intelligent variable structure control, IEEE Trans. on Industrial Electronics, vol. 48, no. 1, 47-59, 2001
    [57]韦光辉,陈道炯,宫赤坤等.压电陶瓷驱动器控制模型建立及仿真.昆明理工大学学报(理工版),2004,29(6):50-53
    [58]党选举,谭永红.压电陶瓷回环特性的RBF神经网络建模研究.系统仿真学报,2005,17(1):144-147
    [59]孙立宁,张涛,蔡鹤皋等.压电/电致伸缩陶瓷控制模型归一化的研究.哈尔滨工业大学学报,1998,30(5):4-7
    [60] Bouc R. Forced vibration of mechanical system swith hysteresis[A]. Proceedings of the fourth Conference on Nonlinear Oscillation[C]. Prague:[s.n.],1967:32-39
    [61] Shoup.T.. E, On the Use of Undulating Elastica for the Analysis of Flexible Link Mechanism, ASME Journal of Engineering for Industry, 1974, Vol. 93
    [62] K H Kim, K F E man, S M Wu, Development of a forecasting compensatory control system for cylindrical grinding, Journal of Engineering for Industry, 1987, 109:385-391
    [63]王建林.柔性八杆对称联动定位机构及系统的研究.航空精密制造技术,2001,37(3):31-34
    [64]杜正春,李春梅,颜景平.压电陶瓷微位移作动器机械特性的研究及改进.机械设计,1999,16(10):16-19
    [65]王建林.纳米定位机构及其控制系统的研究.机械设计与研究, 2001,1(2):34-36
    [66]贾宏光,吴一辉,于振雷等.压电驱动微位移工作台动态特性分析.光学精密工程, 2000,3(5):440-443.
    [67] Cobb R G, Sullivan J M, Das A. Vibration Isolation and Suppression System for Precision Payloads in Sapce.Smart Material and Structures, 1999, 8(6):781-790.
    [68] Duan BY.A new design project of the line feed structure for large spherical radio telescope and its nonlinear dynamic analysis.International Journal of Mechatronics, 1999, 9(1):53-64
    [69] Astrom K J. Toward Intelligent Control. IEEE Control Systems Magazine, 1989, 9
    [70] TU YAQING, LIZUSHU. Design method for a novel human simulating intelligent controller [J].ActaAutomat 1994, 20(5):616-621
    [71] Saridis G N. Foundations of the Theory of Intelligent Control.Proceedings of the IEEE Workshop on Intelligent Control, 1985
    [72] Arzen K E.An architecture for expert system based feedback control. Automatica, 1989, 25(6)
    [73] Saridis, G N. Toward the Realization of Intelligent Controls. Proc. IEEE, 1976, 67(8): 1115-1133
    [74] Yun Li, Kiam Heong Ang, Chong G..C.Y. PID Control System Analysis and Design.Control System Magazine, IEEE (SO272-1708), 2006, 26:32-41
    [75] L. A. Zadeh.Fuzzy sets, Information Control, vol. 8, pp.338-353, 1965
    [76] C. C. Lee. Fuzzy logic in control systems: Fuzzy logic controller, PartⅠ, PartⅡ, IEEE Trans. Syst, Man, and Cybern., vol.20, pp. 404-435,1990
    [77] I .E inoglu , I .Altas . The effects of the number of rules on the output of a fuzzy logic controller employed to a PM d.c motor. Computers & Electrical Engineering,1998(24):245-261
    [78] HAO YING.. The Takagi-Sugeno Fuzzy Controllers Using the Simplified Linear Control Rules are Nonlinear Variable Gain Controllers. Automatica, vol.34, No.2, 157-167,1998
    [79] Nola A D, Georgescu G,Leustean L.Boolean products of BL-Algebras. Journal of Mathematical Analysis and Application,2000, 251:106-136
    [80] NELSON V P, NAGLE H T, CARROLL B D. Digital Logic Circuit Analysis&Design[M].Beijing:Tsinghua University Press, Prentice-Hall International, 1997.
    [81]张南纶,肖奚安,朱梧贾.泛布尔代数公理体系.空军气象学院学报,1985(1):81-89
    [82]张南纶.一类复杂系统的逻辑分析.系统工程,1985,10
    [83]张南纶.基于经验控制规则的控制[C].第一届全球华人智能控制与智能自动化大会论文集,科学出版社,1993:324-329
    [84]孙晓明,张南纶.基本型逻辑控制器[C].中国人工智能学会.中国人工智能学会第九届年会.北京:北京邮电大学出版社, 2001,188-189
    [85]孙晓明.九点控制器控制精度的仿真研究.武汉理工大学学报,2002,25(5):91-94
    [86] Lee, S. Y.,﹠ Cho, H.S..A fuzzy controller for an aeroload simulator using phase plane method.IEEE Transsaction Systems Technology, 2001,9(6):791-801
    [87]马晓玲,熊志坚,李莉.二阶系统的瞬态响应性能指标分析与应用.贵州师范大学学报(自然科学版),2003,21(2):22-24
    [88]孙晓明,周荣,张南纶等.九点控制器增益参数研究.武汉理工大学学报,2002,24(8):80-82
    [89]韩启纲.三维模糊控制技术在红外线治疗仪中的应用,天津理工学院学报,1999,15(1):63-65
    [90]贾宏光.基于变比模型的压电驱动微位移工作台控制方法研究[D].中科院博士研究生学位论文,1997
    [91]王建林.压电陶瓷用于微定位系统的研究.航空精密制造技术,1997,33(2):8-9
    [92] Han J.M.T.A. Adriaens, Willem L. de Koning and Reinder Banning. Modeling Piezoelectric Actuators. IEEE/ASME TRANSACTION ON MECHATRONICS, VOL.5, NO.,4, DECEMBER, 2000
    [93]林伟,叶虎年,叶梅等.一种新型压电陶瓷控制器的研究.压电与声光, 2005, 27 (3):247-249
    [94] MathWorks, Inc.MATLAB, The Ultimate Technical Computing Environment, 1998
    [95] Li Han Xiong. Quantitative design and analysis of fuzzy proportional- integral-derivative control—a step towards autotuning. International Journal of Systems Science, 2000, 31(5):545-553
    [96] LIN Wei, Yin Dong-zhi, Ye Hu-nian,et al.Research on logical rule control of piezoelectric actuators precise positioning system, 6th International Symposium on Test and Measurment, v4, 3656-3659
    [97]肖纯,邱国廷,张南纶等.二十七点九态控制器及跟踪仿真分析.计算机仿真,22(10):290-293
    [98]冯晓光,赵万生,栗岩等.压电陶瓷微位移器驱动电源及减小其纹波的方法.压电与声光, 1997, 19(1):35-38
    [99]刘放,张士邈,陈明.压电陶瓷驱动电源及其在激光陀螺扫模中的应用.航空计测技术,2001,21(2):6-9
    [100] Apex-v11-databook. http:// eportal.apexmicrot-ech.com /mainsite /Products /pages /op-amps
    [101] SONG Dongwoo, LI C J. Modeling of piezoactuor’s nonlinear and frequency dependent dynamics[J].Mechatronics, 1999, 9(4):391-410.
    [102]王宏,钟朝位,张树人.压电陶瓷驱动器线性动态驱动电源的研制.压电与声光, 2004, 26(3):189-191
    [103] Fahlbusch S, Fatikow S. Force sensing in microrobotic system-an overview[A].Proceedings of the 1998 IEEE International conference on Electronic, Circuits and Systems[C]. Piscataway, N.I, USA:IEEE, 1998. 259-262
    [104] Shi X, Matsumoto H, Murao K. A high-accuracy digital readout technique for humidity sensor.Transactions on Instumentation and Measurement. 2001, (5): 1277-1282
    [105] Whitehouse D J.Comparison between stylus and optical methods for measuring surfaces.Annals of the Cirp,1988,37(2):649-653
    [106]马青,史金飞.基于LVDT原理的精密角位移传感器的研制.中国制造业信息化,2003,32(12):124-126
    [107] Ye Hunian, Ye Mei. A study for imaging method with nano-resolution. Conference on Advanced Optical Manufacturing and Testing Technology 2000, NOV 01-03, 2000, SPIE 4231:381-383
    [108] K H Kim, K F Eman, S M Wu. Development of a forecasting compensatory control system for cylindrical grinding, Journal of Engineering for Industry, 1987,109: 385-391.
    [109] WOO ZH W, CHUNG H Y, LIN J J. A PID type fuzzy controller with self-tunning scaling factor[R]. Fuzzy Sets and Systems, 2000:321-326
    [110] F.E.Scire. Piezo driven 50μm range stage with subnanometer resolution.Review Science Instrument., 1978, 49(12):1735-1740
    [111]伍丁红.增强并行口EPP协议及高速并口A/D转换器的设计.电子技术应用, 1998, 24(2):47-48
    [112]王选择.正交衍射光栅计量原理及在超精密工作台上的应用[D].华中科技大学,2004.
    [113] D. W. Pohl. Dynamic piezoelectric translation devices.Review Science Instrument, 1987, 58(1):23-28
    [114] P. G. Phillips, M. Harwit. Doubly multiplexing dispersive spectrometers. Appl. Opt., 1971, 10(13):2780-2784
    [115] M. Harwit. Two asymmetric Hadamard transfeorm spectrometers. Appl. Opt., 1974 13(13):2669-2674
    [116] M. H. Tai. Practical multispectrum Hadamard transform spectrometers. Appl. Opt., 1974, 13(12):2533-2536
    [117] M. Harwit.Spectrometric imager. Appl. Opt.,1971,10(6):1415-1421

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700