用户名: 密码: 验证码:
有序介孔材料的制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔分子筛由于具有可控的纳米孔道结构,大的比表面积,耐酸耐碱等特殊的物理化学性质,在工业生产和实际生活中得到了广泛的应用。随着科技的进步和研究工作的深入,不断拓展有序介孔材料的应用范围,从最初的分离、催化和吸附等方面的应用扩展到电子元器件、光学材料、生物材料等其它方面的应用。多孔分子筛的成功应用不仅与其内在孔道结构有关,同时与其形貌、颗粒尺寸、客体分子在孔道中的组装效率及催化、分离过程中的传质过程密切相关。因此,在制备分子筛材料时,如何控制其宏观形貌成为该领域内研究的一个重要方向:如将分子筛制成膜状、球状和大块等。近年来分子筛的功能化研究为其开拓了更加广阔的应用前景。本文利用水热合成的方法制备了不同类型的分子筛,并考察各种合成条件对不同类型分子筛在介电材料、湿敏材料与手性分离材料方向应用的影响。取得的研究成果列举如下:
     1采用UV光照的方法脱除纳米微孔/介孔材料合成时所用的模板剂。即室温下将事先合成的材料放在臭氧发生的、中压Hg光栅灯产生的短波紫外灯(λ=184~257nm)下照射。这种方法被用于MCM-41介孔材料、Silicalite-1分子筛、A型分子筛和Y型分子筛模板剂的脱除中。材料在UV光照前后的结构和有机物含量分别用XRD、FT-IR、BET和SEM进行表征。并以高温焙烧后的样品作为对比,进行了相应的结构表征。 XRD表明UV光照或高温焙烧后的样品都保留对应原粉的骨架结构。FT-IR表明高温焙烧可彻底脱除所有微孔/介孔材料的模板剂,但UV光照只能彻底脱除MCM-41介孔材料和Silicalite-1分子筛中的模板剂,A型分子筛和Y型分子筛中仍残留少量模板剂。SEM照片显示,UV光照后的微孔/介孔材料仍然保持很好的分散状态,没有出现纳米颗粒的聚集现象。将UV光照的方法同样用于Silicalite-1薄膜模板剂的脱除。结果表明,UV光照只需6h即可彻底脱除Silicalite-1薄膜中的模板剂,而高温焙烧所需时间超过3天。同时UV光照后的Silicalite-1薄膜致密、连续,没有裂缝和洞眼。与传统的高温焙烧方法相比,UV光照法是一种省时、低能耗的脱除分子筛薄膜模板剂,制备高质量分子筛薄膜的有效方法。
     以正硅酸乙酯为硅源,四丙基氢氧化铵(TPAOH)为模板剂和碱源,采取水热晶化技术,通过原位法在硅晶片表面制备出纯二氧化硅透明分子筛薄膜;与传统高温焙烧法相比,采用紫外光解法脱除分子筛薄膜孔道内的模板剂,更易制备出具有低介电性能的氧化硅分子筛薄膜。以正硅酸乙酯(TEOS)和甲基三乙氧基硅烷(MeSi(OEt)_3)为混合硅源,十六烷基三甲基溴化铵(CTAB)为模板剂,采取旋涂技术,在硅晶片表面制备出二氧化硅透明薄膜,再经过正硅酸乙酯(TEOS)蒸气孔壁强化后采用线性升温焙烧法脱除薄膜孔道内的模板剂,制备出具有超低介电性能的氧化硅分子筛薄膜。采用FT-IR、XRD和SEM对样品进行了结构表征,并采用椭偏仪测量了薄膜的介电常数,纳米硬度计测量薄膜的弹性模量。氧化硅分子筛薄膜在24℃相对湿度80%的条件下静置360h后,介电常数维持在1.8,弹性模量大于6GP,很好的满足了在超大规模集成电路中应用的要求。
     2采用水热合成方法在酸性条件下合成出有序介孔材料SBA-15。主要研究了晶化温度和搅拌速度等条件对有序介孔材料SBA-15孔结构及形貌的影响。合成试样的孔径尺寸单一,孔道呈六方排列,具有良好的长程有序结构,是典型的有序介孔SBA-15结构材料。通过优化实验方案,成功制备出具有规整微观形貌的新型SBA-15材料,其最大孔径为12.7nm,热稳定性优良。研究结果表明:在合成SBA-15时,晶化温度和搅拌速度对非离子型表面活性剂在水溶液中形成棒状胶束的临界胶束浓度(CMC)产生影响,可以导致CMC降低,促使棒状胶束形成六方有序排列。有序介孔材料SBA-15具有大的比表面积和孔体积、孔径均一且在纳米尺寸上连续可调的孔径和形貌、表面基团富有硅羟基易于与空气中的水分键合、二氧化硅无生理毒性等一系列优点,首次把有序硅基介孔材料SBA-15作为具有灵敏度高、选择性好、成本低、装置简单、易于集成化、易于实现现场连续检测优点的石英晶体微天平(QCM)质量型传感器的湿敏材料来制备新型的湿度传感器。研究结果表明:开发出的湿度传感器具有湿度量程大(可在1%-100%RH范围内检测)、灵敏度高(可达69.5Hz/%RH)、湿滞小(湿度为52.9%以下几乎无湿滞)、装置简单、耐高温、耐溶剂、成本低、有利于环保、易于集成化、易于实现现场连续检测等优点。MCM-41传感器随湿度变化的频率变化关系证实了介孔材料具有很好的湿敏特性,可以作为石英晶体微天平湿度传感器的备选材料。且涂覆MCM-41的石英晶体微天平传感器在湿度很高(>90%RH)和很低(﹤20%RH)的情况下仍然能够起振,相比于那些涂覆其它材料在高湿和低湿条件下不能起振的传感器来说,是很好的改进。
     3以手性药物左旋萘普生(S-naproxen)为模板分子,四乙烯基吡啶(4-VPy)为功能单体,采用分子印迹法,以介孔材料SBA-15为载体合成了能选择性识别S-naproxen的分子印迹聚合物微球。扫描电镜及BET分析结果表明,所合成的分子印迹聚合物微球具有粒径均匀、孔径分布窄、比表面积大等特点;同时扫描电镜、X射线衍射和红外光谱分析结果表明载体表面形成了分子印迹聚合物层,Scatchard分析表明分子印迹聚合物在自组装过程中存在两类结合位点,聚合物高亲和力和低亲和力结合位点的最大表观结合容量分别为Qmax_1=2.504μmol/g,Qmax_2=16.680μmol/g;分子印迹聚合物的热力学研究表明,吸附过程可以自发进行。
Zeolite has been used in industrial production and real life widely because ofthetunable pore size, larger surface area (up to1500m2/g), acid and alkali resistant andother special physical and chemical characteristics. With the progress of science andtechnology, people greatly expand the application range of zeolites, from the initialseparation, catalysis and adsorption to the electronic components, optical materials,biological materials and other applications. In recent years the functionalized zeolite hasbeen used in other field. Zeolite membrane, spheres and block have been synthesized.Therefore our research work focused on the synthesis of different condensed matter zeolitematerials, and examine various factors of different zeolites in condensed matter dielectricmaterial moisture sensitive material and material direction of the chiral separationapplications.
     This paper describes an application of UV radiation near room temperature conditionsfor the removal of the template in the synthesis of micro/mesoporous materials, such asmesoporous MCM-41, Silicalite-1, zeolite LTA etc. The UV radiation relies on the exposureof the sample to short-wavelength ultraviolet(UV) radiation in air and the ozoneenvironment generated by a medium pressure mercury lamp(184-257nm). The structuresand organic contents of the micro/mesoporous materials before and after UV radiation weredetermined using a combination of XRD, FT-IR, BET, carbon analysis and SEM. XRDpatterns showed that the framework structure was kept after UV radiation or thermallycalcinations. Before and after calcination the sample made similar characterization forcomparison. FT-IR data showed the complete removal of the template in micro/mesoporousmaterials. But it is only useful for the complete removal of the template of mesoporousMCM-41and Silicalite-1nanoparticle, while there was a trace of residual template inzeolite LTA and zeolite Y nanoparticles. The SEM images showed micro/mesoporousnanoparticles UV treated have no obvious aggregation.The UV radiation is also efficient forthe complete removal of the template in the preparation of Silicalite-1thin film only after6h exposure time, while the thermally calcination process is more than3days. The SEMimages reveal the formation of a continuous thin film from displaying densely packedcrystals and there is not any significant cracks or pin holls. Compared with conventionalthermally calcination, the method provides an efficient and economical approach for thepreparation of high quality zeolite thin films free of template. Organic-functionalizedmesoporous silica films (Me-MCM-TEOS) have been produced using co-condensation ofmethyltrimethoxyslane and tetraethyl orthosilicate (TEOS), and a TEOS vapor treatmentbefore the removal of surfactant by spin-coating method. The materials have beencharacterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR)and Field emission scanning electron microscope (FE-SEM). Dielectric constant k isdetermined using Ellipsometer, and elastic modulus (Young’s modulus, E) and hardness ofthe films are measured by a Nano Indenter XP. XRD patterns and FT-IR spectra show that the methylsilated mesoporous films (Me-MCM-TEOS-CAL) have densified mesochannelwalls and an increased hydrophobic property by the TEOS vapor treatment. The k value isas low as1.78even in80%-relative-humidity environments for seven days. Mechanicalstrength is also high enough to withstand the stresses that occur during the chemicalmechanical polishing (CMP) and wire bonding process (E>6.0GPa). TEOS vapor treatedmesoporous silica films without the addition of methyl groups (MCM-TEOS) are alsosynthesized for a comparison.
     Mesoporous silica SBA-15was prepared through a hydrothermal treatment in acidmedia. The as-synthesized samples show the uniform pore size and long-distance orderedarrangement of hexagonal structure, which is typically ordered mesoporous structure.Through the optimal experiments, SBA-15products with uniform morphology of hexagonallamelliform were obtained. The biggest pore size is mainly centered on12.7nm. Theas-made SBA-15possesses of good thermal stability. The mesoporous silica SBA-15wasdeposited on the quartz crystal micro-balances (QCMs) to construct highly stable andsensitive humidity sensors. The humidity sensing characteristics of the sensors wereinvestigated by measuring the resonant frequency shift of QCMs due to the additional massloading caused by adsorption of water. The results showed that the sensors had highsensitivity, good stability, short response/recovery time, well reproducibility and narrowhysteresis.Improved humidity sensors based on quartz crystal micro-balance coated withmesoporous silica MCM-41thin film were fabricated. XRD, BET, TEM and SEM wereemployed to characterize sensing films so as to study the effects of its pore structure on thehumidity sensing properties. The results reveal that sensitivity over a wide humidity rangeand especially for low humidity conditions. The high sensitivity, well reproducibility, shortresponse and recovery times obtained were ascribed to the ordered pore arrays and highsurface area of the MCM-41films. This study has significance in tailoring the moisturesensitivity in the design of diverse sensors for practical applications. Herein, not only anovel and low-cost humidity sensor material was exploited, but also a new application areafor mesoporous materials was opened up.
     Molecularly imprinted composite materials (MICMs) selectiveto S-naproxen wereprepared onthe surface of mesoporous silica sphere (SBA-15) by a surface imprintingtechnique with S-naproxenas the template and42vinylpyridine as the functional monomer.As observed by SEMandpore structure analysis, the microspheres coated with thesynthesized molecularlyimprintedpolymers have a uniform particle size, narrowsizedistributionandhighspecific surfacearea. The polymer layer on SBA-15can be determinedby SEM, XRD and FT-IR spectroscopy. Scatchard analysis shows that two kinds ofrecognition sites are formed on the MICMS with the apparent binding capacities of2.504μmol/g and16.680mol/g, respectively. Based on anisothermalbindingthermodynamicinvestigation, the absorption to template is found to be spontaneous.
引文
[1] IUPAC Manual of Symbols and Terminology [J]. Pure Appl. Chem.1972,31:578
    [2] R. Szostak. Handbook of Molecular sieves Van Nostrand Reihold[M]. New York,1992
    [3]徐如人,庞文琴,于吉红,霍启升,陈接胜等.分子筛与多孔材料化学[M].北京:科学出版社,2004
    [4] D.W.Brede. Zeolite Molecular Sieves, Structure, Chemistry and Use [M]. London,1998,239-243
    [5] J.Weitkamp, L.Puppe. Catalysis and Zeolites (Fundamentals and Applications),Springr-Verlag Berlin Heidelbeg,1999
    [6] Kresge C T, Leonowicz M E, Roth W J et al. Ordered Mesoporous Molecular-SievesSynthesized by a Liquid-Ceystal Template Mechanism [J]. Nature.1992,359:710-712
    [7] Beck J S, Vartuli J C, Roth W J et al. A New Family of Mesoporous Molecular-SievesPrepared with Liquid-Crystal Templates.[J]. J Am Chem Soc1992,114:10834-10843
    [8] Zhao D Y, Feng J L, Huo Q S et al. Triblock copolymer syntheses of mesoporous silica withperiodic50to300angstrom pores.[J]. Science.1998,279:548-552
    [9] Vartuli J C, Schmitt K D, Kresge C T et al. Development of a Formation Mechanism forM41s Materials [J]. Zeolites and Related Microporous Mater: State of the Art.1994,53-60
    [10] Vartuli J Cm Kresge C T, Leonowicz M E et al. Synthesis of MesoporousMaterials-Liquid-Crystal Templating Versus Intercalation of Layered Silicates.[J]. ChemMater.1994,6:2070-2077
    [11]王岚,孟霜鹤等.纳米分子筛ZSM-5的热稳定性研究.[J].催化学报.2001,22(5):491-493
    [12] Lubomira Tosheva, Valentin P. Valtchev. Nanozeolites: Synthesis, CrystallizationMechanism, and Applications.[J] Chem Mater.2005,2: A-T
    [13] Camblor M A, Corma A, Martinez A. Ti-MCM-41synthesized from colloidal silica andtitanium trichloride: synthesis, characterization, and catalysis.[J] Appl Catal.1992,82(1):65-74
    [14] Bonetto L. Camblor M A, Corma A. Optimization of zeolite-β in cracking catalystsinfluence of crystallite size.[J] Appl Catal.1992,82(1):37-50
    [15] M Yamamura, K Chaki, T Wakatsuki et al. Synthesis of ZSM-5zeolite with small crystalsize and its catalytic performance for ethylene oligomerization.[J] Zeolites.1994,14:643
    [16]王学勤,王祥生.苯-乙烯烷基化HZSM-5沸石催化剂积炭失活的研究[J]石油学报(石油加工).1994,10:38-43
    [17] Christabel E. Fowler, Stephen Mann. Nanoscale Materials with Mesostructured Interiors.[J]Adv.Mater.2001,13(9):649-652
    [18] Mathavee Sathupunya, Erdogan Gulari, Sujitra Wongkasemjit. Na-A(LTA) zeolitesynthesis directly from alumatrane and silatrane by sol-gel microwave techniques [J]. J.Euro. Cera. Soci.2003,23,1293-1303
    [19] Colin S. Cundy, James O. Forrest. Some observations on the preparation and properties ofcolloidal silicalites-Part II: Preparation, characterization and properties of colloidalsilicalite-1, TS-1, silicalite-2and TS-2[J]. Micropor Mesopor Mater.2004,67-80
    [20] J. Motuzas, A. Julbe, R.D. Noble. Rapid synthesis of silicalite-1seeds by microwaveassisted hydrothermal treatment [J]. Micropor Mesopor Mater.2005,80-83
    [21] Yanshuo Li, Hongliang Chem, Jie Liu and Weishen Yang. Microwave synthesis of LTAzeolite membranes without seeding [J] J. Membr. Sci.2005,112-117
    [22] Lovallo M, Tsapatsis M. A I Ch E. Ordered porous materials for emerging applications [J].Micropor Mesopor Mater1996,42(11):3020-3029
    [23] Absil R P, Katzer J R, Lissy O N [P]. US5401704,1995
    [24] Camblor M A, Corma A, Martinez A. Catalytic cracking of gasoil: Benefits in activity andselectivity of small Y zeolite crystallites stabilized by a higher silicon-to-aluminium ratio bysynthesis.[J] Appl. Catal.1989,55(1):65-74
    [25] Bonetto L, Camblor M A, Corma A. Optimization of zeolite-β in cracking catalystsinfluence of crystallite size.[J] Appl. Catal.1992,82(1):37-50
    [26] Rajagopalan K, Peters A W, Edwards G C. Confined space synthesis. A novel route tonanosized zeolites [J]. Appl. Catal.1986,23(1):69-80
    [27] Chang C D, Chen N Y, Chu C T, Activation of zeolite [P]. US:5271920,1993
    [28] Yamamura M, Chaki K, Wakatsuki T. Synthesis of ZSM-5zeolite with small crystal sizeand its catalytic performance for ethylene oligomerization.[J] Zeolites.1994,14(6):643-649
    [29] Sugimoto M, Katsuno H, Takatsu K. Correlation between the crystal zize and catalyticproperties of ZSM-5zeolites.[J] Zeolites.1987,7(6):503-507
    [30] Lubomira Tosheva, Valentin P. Valtchev. Nanozeolites: Synthesis, crystallization mechanism,and applications [J]. Chem. Mater.,2005
    [31] Cho G, Lee J, Glatzhofer D T, et al. Autoassembly of nanofibrous zeolite crystals via siliconcarbide substrate self-transformation.[J].Adv Mater.1999,11(6):497-499
    [32] Wang Z., Wang H., Mitra A. Synthesis, magnetic properties, and STM spectroscopy of anunprecedented octanuclear chloro-bridged nickel (ii) double cubane.[J] Adv. Mater.2001,13:746-750
    [33] Raimondo M, Perez G, Sinibaldi N et al. Mesoporous M41S materials in capillary gaschromatography [J]. Chem Commun.1997,1343-1344
    [34] Platas-lglesias C, Elst L.V., Zhou W. Appl. Submicrometer Zeolite A Crystals Formation:Low-Temperature Crystallization Versus Vapor Phase Gel Transformation.[J] Surf. Sci.2004,43:2946-2951
    [35] Bresinska I, Balkus K.J., Jr. Studies of Gd (III)-exchanged Y-type zeolites relevant tomagnetic resonance imaging.[J] Phys. Chem.1994,98:12989-12993
    [36] J. Motuzas, A. Julbe, R.D. Noble. Rapid synthesis of oriented silicalite-1membranes bymicrowave-assisted hydrothermal treatment.[J]. Micropor Mesopor Mater.2006,345-349
    [37]王水利,葛岭梅.纳米沸石的合成及其影响因素.[J].纳米加工工艺.2005,2(3):35-38
    [38] Landau M V, Tavor D, Regev O, et al. Studies of Gd (III)-exchanged Y-type zeolitesrelevant to magnetic resonance imaging [J] Chem Mater.1999,11(8):2030-2037
    [39]中国科学院大连物理研究所分子筛组.沸石分子筛[M].北京:科学出版社,1978
    [40] Persson A E, Schoeman B J, Sterte J, et al. Synthesis of stable suspensions of discretecolloidal zeolite (Na, TPA) ZSM-5crystals [J] Zeolites,1995,15(7):611-619
    [41] van Grieken R, Sotelo J L, Menendez J M, et al. Anomalous crystallization mechanism inthe synthesis of nanocrystalline ZSM-5.[J] Micropor Mesopor Mater.2000,39(1/2):135-147
    [42]王中南,殷行知.小晶粒ZSM-5沸石的合成及其晶形的研究.[J].石油化工,1993,12(12):744-748
    [43] Persson A E, Schoeman B J, Sterte J, et al. Low temperature synthesis and properties ofZSM-5aggregates formed by ultra-small nanocrystals.[J] Zeolites.1997,19(7):311-319
    [44] Persson A E, Schoeman B J, Sterte J, et al. The synthesis of discrete colloidal particles ofTPA-silicalite-1.[J] Zeolites.1994,14(7):557-567
    [45] Rollmann L D, Valyocsik E W.[P] Eur Pat Appl:21675,1981
    [46] Olson D H, Rollmann L D, Valyocsik E W.[P] Eur Pat Appl:26962,1981
    [47]杨小明,何鸣元,舒兴田.[P] CN:1081425A,1994
    [48] Shiralkar V P, Joshi P N, Eapen M J. Synthesis and modification of zeolite NaA adsorbentsfor separation of hydrogen and methane.[J]. Zeolites,1991,11(5):557-567
    [49]马跃龙,陈诵英,彭少逸.小颗粒NaY分子筛透明液相导向剂的制备及其性能[J]催化学报.1995,16(5):410-414
    [50] Dwyer F G, Chu P.[P] Eur Pat Appl:11362,1980
    [51] Myatt G.L, Budd P M, Price C. Theoretical and Practical Aspects of Zeolite Nucleation.[J]Zeolites.1994,14(3):190-197
    [52]王利军,李宝会,金庆华等.纳米沸石的合成及其影响因素[J].化学物理学报.2000,13(30):343-348
    [53]王亚军,唐颐,王星东.纳米沸石的合成、性质、组装及应用.[J]石油化工.2002,31(3):217-223
    [54] R.M. Barrer, Hydrothermal Chemistry of Zeolites [J]. Academic Press, London,1982
    [55] C.T. Kresge, M.E. Leonowicz, J.C. Vartuli, J.S. Beck. Ordered mesoporous molecularsieves synthesized by a liquid-crystal template mechanism.[J] Nature.1992,359:710-712
    [56] A. Corma, Nanostructuring titania: control over nanocrystal structure, size, shape, andorganization.[J] Chem. Rev.1997,97(6):2373-2419
    [57] A.K. Cheetham, G. Frey, T. Loiseau. Novel Hybrid Porous3D Networks of Lead (II)Diphosphonate and Triphosphonate Containing1,3,5‐Benzenetricarboxylate.[J] Angew.Chem. Int. Ed.1999,38:3268-3292
    [58] M.E. Davis. Ordered porous materials for emerging applications.[J] Nature.2002,417:813-821
    [59] S. Kawi. A new class of hybrid mesoporous materials with functionalized organicmonolayers for selective adsorption of heavy metal ions.[J] Chem. Commun.1998,13:1407
    [60] Atul N. Parikh, Alexandra Navrotsky, Qinghua Li, Chanel K. Yee. Non-thermal calcinationby ultraviolet irradiation in the synthesis of microporous materials.[J]. Micropor MesoporMater.2004,7:17-22
    [61] Qinghua Li, Meri L. Amweg, Chanel K. Yee, Alexandra Navrotsky, Atul N. Parikh.Photochemical template removal and spatial patterning of zeolite MFI thin films usingUV/ozone treatment.[J] Micropor Mesopor Mater.2005,87,45-51
    [62] Wang H., Wang Z., Yan Y. Pure‐Silica Zeolite Low-k Dielectric Thin Films.[J] Chem.Commun.2000,2333-2339
    [63] Smaihi M., Gavalan E., Durand J.O., Valtchev V.P. J. Hollow Micro‐/Nanostructures:Synthesis and Applications.[J] Mater. Chem.2004,14:1347-1351
    [64] Gautier B., Smaihi M. New J. Template extraction from surface-functionalised zeolite βnanoparticles.[J] Chem.2004,28:457-460
    [65] Testa F, Pasqua L, Crea F, Aiello R, Lazar K, Fejes P, Lentz P. Supercapacitive properties ofultra-fine MnO2prepared by a solid-state coordination reaction.[J]. Micropor mesopor mat,2003,57:57-72.
    [66] Suzuki s, takaba h, yamaguchi t nakao s. Prediction of ideal permeability of hydrocarbonsthrough an MFI-type zeolite membrane by a combined method using molecular simulationtechniques and permeation.[J]. J phys chem b,2000,104:1971-1976.
    [67] Chatterjee A, Iwasaki T, A novel approach using DFT to explain the selective permeation ofsmall gaseous molecules through Y-type zeolite membrane.[J]. J phys chem a,1999,103:9857-9863.
    [68] Van de graaf j m, zwiep m, kapteijn f moulijn j a, Application of a zeolite membrane reactorin the metathesis of propene.[J]. Chem eng sci,1999,54:1441-1445.
    [69] Millot b, methivier a, jobic h, moueddeb h bee m, Diffusion of isobutane in ZSM-5zeolite:a comparison of quasi-elastic neutron scattering and supported membrane results.[J]. J physchem b,1999,103:1096-1101.
    [70] Xu Xc, Chen m j, Yang w s. Synthesis, characterization and single gas permeationproperties of NaA zeolite membrane.[J]. Chinese sci bull,1998,43:2074-2078.
    [71] Takami M, Yamazaki Y. Effect of solid acidity of zeolite on the ion conductivity ofzeolite-HSBR composite membrane.[J].Electrochemistry,2001,69:98-103.
    [72] Salomon M A, Coronas J, Menendez M Santamaria J. Fluorescence decay study ofanisotropic rotations of substituted pyrenes physisorbed and chemically attached to a fumedsilica surface.[J]. Appl Catal a-Gen,2000,200:201-210.
    [73] Kumakiri I, Yamaguchi T Nakao S. Recent developments in reverse osmosis desalinationmembranes.[J]. J Chem Eng Jpn,2000,33:333-336.
    [74] Ciavarella P, Moueddeb H, Miachon S, Fiaty Kdalmon J A. Current hurdles in thecommercial development of inorganic membrane reactors.[J]. Catal Today,2000,56:253-264.
    [75] Chau J L H, Tellez C, Yeung K L. Performance of TS-1-coated structured packing materialsfor styrene oxidation reaction.[J]. J Membrane Sci,2000,164:257-275.
    [76] Jiang M, Eic M, Miachon S, Dalmon J A Kocirik M. Removal of congo red using activatedcarbon and its regeneration.[J]. Sep Purif Technol,2001,25:287-295.
    [77] Sakai H, Tomita T Takahashi T, Applications of pulsed electric field treatments for theenhancement of mass transfer from vegetable tissue.[J]. Sep Purif Technol,2001,25:297-306.
    [78] Nishiyama N, Miyamoto M, Egashira Y Ueyama K. Zeolite Nanocrystals: HierarchicalAssembly and Applications.[J]. Chem Commun,2001:1746-1747.
    [79] Li S G, Tuan V A, Falconer J L Noble R D, Separation of1,3-propanediol from glyceroland glucose using a ZSM-5zeolite membrane.[J]. J Membrane Sci,2001,191:53-59.
    [80] Rattanawong W, Osuwan S, Rirksomboon T. Fluorescence microscopy and flowcytofluorometry of reactive oxygen species.[J]. Abstr Pap Am Chem S,2001,221:227-231.
    [81] Tanaka k, Yoshikawa R, Ying C, Kita h Okamoto K, Production of lactic acid esterscatalyzed by heteropoly acid supported over ion-exchange resins.[J]. Chem Eng Sci,2002,57:1577-1584.
    [82] Jeong B H, Hasegawa Y, Kusakabe K Morooka S, Modeling of an FAU-type zeolitemembrane reactor for the catalytic dehydrogenation of cyclohexane.[J]. Sep Sci Technol,2002,37:1225-1239.
    [83] Jeong B H, Hasegawa Y, Sotowa K, Kusakabe KFAU-type zeolite membrane. Organic acidproduction by filamentous fungi.[J]. J Chem Eng Jpn,2002,35:167-172.
    [84] Lillie G C, Dryfe R A W Holmes S M, Zeolite-membrane modulation of simple andfacilitated ion transfer.[J]. Analyst,2001,126:1857-1860.
    [85] Lee J C, Kim J S, Kang I J, Cho M H, Park P. Advanced electronic and optoelectronicmaterials by Atomic Layer Deposition: An overview with special emphasis on recentprogress in processing of high-k.[J]. Water Sci Technol,2001,43:59-66.
    [86] Piera E, Tellez C, Coronas J, Menendez M Saintamaria J, Metal immobilisation by biofilms:mechanisms and analytical tools.[J]. Catal Today,2001,67:127-138.
    [87] Sato K Nakane T, Stable hybrid silica nanosieve membranes for the dehydration of loweralcohols.[J]. J Membrane Sci,2007,301:151-161.
    [88] Zhang X F, Liu H O, Yeung K L Wang J Q, Zeolites in microsystems for chemical synthesisand energy generation.[J]. Chem J Chinese U,2005,26:806-810.
    [89] Gora L Jansen J C, Rapid thermal processing and separation performance of columnar MFImembranes on porous stainless steel tubes.[J]. J Catal,2005,230:269-281
    [90] Matsukata M, Nara T, Sekine Y, Kikuchi E, Dalmon J A Miachon S, Coupling termderivation and general implementation of state-specific multireference coupled clustertheories.[J]. AbstrPap Am Chem S,2003,225:879-879.
    [91] Krishna R Baur R. Biocatalysis for pharmaceutical intermediates: the future is now.[J]Chem Eng J,2004,97:37-45.
    [92] Takami M, Yamazaki Y Hamada H, Electrical stimulation driving functional improvementsand cortical changes in subjects with stroke.[J]. Elec Soc S,2001,2000:181-189.
    [93] Senatalar A, Tatlier M Urgen M, Resource recovery from coal fly ash waste: an overviewstudy.[J]. Micropor Mesopor Mat,1999,32:331-343.
    [94] Gora L, Nishiyama N, Jansen J C, Kapteijn F, Colour Removal and the Effect of ReactiveDyes on Growth Substrate Utilization by an Unacclimated Ethanol-Enriched AnaerobicCulture.[J]. Sep Purif Technol,2001,22-3:223-229.
    [95] Piera E, Bernal M P, Salomon M A, Coronas J, Preparation and permeation properties ofdifferent zeolite tubular membranes.[J]. Porous Materials in Environmentally FriendlyProcesses,1999,125:189-196.
    [96] Bernal M P, Coronas J, Menendez M Santamaria J, Zeolite films and membranes. Emergingapplications.[J]. Micropor Mesopor Mat,2003,60:99-110.
    [97] Lassinantti M, Hedlund J Sterte J, A methanol to olefins review: Diffusion, coke formationand deactivation on SAPO type catalysts.[J]. Micropor Mesopor Mat,2000,38:25-34.
    [98] Hedlund J, synthesized by seeding. The role of hydromechanical coupling in fractured rockengineering.[J]. J Porous Mat,2000,7:455-464.
    [99] Holmes S M, Markert C, Plaisted R J, Forrest J O, A novel method for the growth ofsilicalite membranes on stainless steel supports.[J].Chem Mater,1999,11:3329-3332.
    [100] Katsuki H, Furuta S Komarneni S, Transport properties of electrospun nylon6nonwoven mats.[J]. J Porous Mat,2001,8:5-12.
    [101] Xu X C, Yang W S, Liu J Lin L W, Templating Effect for Organic HeterostructureFilm Growth: Perfluoropentacene on Diindenoperylene.[J]. Adv Mater,2000,12:195-201
    [102] Cheng Z L, Chao Z S Wan H L, Separation and determination of anthraquinones inCassia obtusifolia (Leguminosae) by micellar electrokinetic capillary electrophoresis.[J].Chinese Chem Lett,2003,14:874-876.
    [103] Xu X H, Yang W H, Liu J. Progress in the research of zeolite membrane on gasseparation.[J]. Sep Purif Technol,2001,25:241-249.
    [104] Parvelescu V, Tablet C Su B L, Determination of Some Trace Metals in EnvironmentalSamples by Flame AAS Following Solid Phase Extraction with Amberlite XAD‐2000Resin after Complexing.[J]. Colloid Surface A,2007,300:94-98.
    [105] Cheng Z L, Chao Z S. Two-photon induced polymer nanomovement.[J].Chem Lett,2006,35:1056-1057.
    [106] Cheng Z L, Gao E Q Wan H L, Facile synthesis of H-type zeolite shell on a silicasubstrate for tandem catalysis.[J]. Chem Commun,2004:1718-1719.
    [107] Balkus K J Scott a S, Role of the acidity and porosity of MWW-type zeolites inliquid-phase reaction.[J]. Micropor Mesopor Mat,2000,34:31-42.
    [108] Balkus K J ScotT A S, Hybrid Organic/Inorganic Materials In Search of SynergicActivity.[J]. Chem Mater,1999,11:189-191.
    [109] Moermans B, Beuckelaer W D, Vankelecom I F J, Novel templating synthesis ofnecklace-shaped mono-and bimetallic nanowires in hybrid organic-inorganic mesoporousmaterial.[J]. Chem Commun,2000:2467-2468.
    [110] Kondo M, Yamamura T, Yukitake T, Traditional Chinese medicine and separationscience.[J]. Sep Purif Technol,2003,32:191-198.
    [111] Billard P Kind M, Vapor-liquid equilibria by UNIFAC group contribution.6. Revisionand extension.[J]. Chem Eng Process,2003,42:23-28.
    [112] Lai Z P, Bonilla G Diaz I E A, Alumina-supported SAPO-34membranes for CO42/CHseparation.[J]. Science,2003,300:456-460.
    [113] Shin D W, Hyun S H, Cho C H Han M H, Synthesis and characterization of zeoliteLSX from rice husk silica.[J].Micropor Mesopor Mat,2005,85:313-323.
    [114] Dai P E, Sherwood JR D E Martin B R, Influence of Zeolite Secondary Porosity onPerformance of Resid Hydrocraking Catalysts. In Studies in Surface Science and Catalysis,Tadashi H,Tatsuaki Y, Eds. Elsevier:1994; Vol. Volume83, pp489-496.
    [115] Haag S, Hanebuth M, Mabande G T P, Avhale A, Synthesis of highly b-oriented zeoliteMFI films by suppressing twin crystal growth during the secondary growth.[J]. MicroporMesopor Mat,2006,96:168-176.
    [116] Takata Y, Tsuru T, Yoshioka T Asaeda M, Synthesis of advanced ceramics byhydrothermal crystallization and modified related methods.[J] Micropor Mesopor Mat,2002,54:257-268.
    [117]黎坡,谢海芬,刘志城,黄宜平,赵东元,基于纳米沸石分子筛薄膜的新型气体传感器[J]传感器技术,2004,23:72-79
    [118] Wilcox D L, Berg M, Bernat T, Hollow And Solid Spheres And Microspheres: ScienceAnd Technology Associated With Their Fabrication And Application.[J]. MaterialsResearch Society1995,12:296-312.
    [119] Peng X, Schlamp M C, Kadavanich A V Alivisatos A P, Formation of high-qualityCdTe, CdSe, and CdS nanocrystals using CdO as precursor.[J] J Am Chem Soc,1997,119:7019-7029.
    [120] Bruinsma P J, Kim A Y, Liu J Baskaran S, Template synthesis of uniform1Dmesostructured silica materials and their arrays in anodic alumina membranes.[J]. ChemMater,1997,9:2507-2512.
    [121] Tosheva L, Mihailova B, Valtchev V Sterte J, Host-Guest Interaction of Iodine withZeolite A.[J].Micropor Mesopor Mat,2000,39:91-101.
    [122] Valtchev V, Mintova S Vasilev I, An unusual chainlike tetranuclear manganese (II)complex displaying ferromagnetic exchange.[J] J. Chem. Soc., Chem. Commun.1994,8:979.
    [123] Rhodes K H, Davis S A, Caruso F, Fabrication of carbon capsules with hollowmacroporous core/mesoporous shell structures.[J]. Chem Mater,2000,12:2832-2839.
    [124] Wang X D, Yang W L, Tang Y, Wang Y J, Creation of hollow zeolite architectures bycontrolled desilication of Al-zoned ZSM-5crystals.[J]. Chem Commun,2000:2161-2162.
    [125] Huang L M, Wang Z B, Sun J Y, Miao L, Fabrication of ordered porous structures byself-assembly of zeolite nanocrystals.[J]. J Am Chem Soc,2000,122:3530-3531.
    [126] Wang Y J, Tang Y, Wang X D, Yang W L, Activation of aryl chlorides for Suzukicross-coupling by ligandless, heterogeneous palladium.[J].Chem Lett,2000:1344-1345.
    [127] Wang Y J, Tang Y, Dong A G, Direct Gas‐Phase Synthesis of HeterostructuredNanoparticles through Phase Separation and Surface Segregation.[J]. Adv Mater,2002,14:994-999.
    [128] Wang Y J, Tang Y, Ni Z, Hua W M, Yang W L, Wang X D, Synthesis ofmonosubstituted phosphinic acids: palladium-catalyzed cross-coupling reactions ofanilinium hypophosphite.[J]. Chem Lett,2000:510-511.
    [129] Ke C, Yang W L, Ni Z, Wang Y J, Tang Y, Catalytic Conversions in Water. Part21:Mechanistic Investigations on the Palladium‐Catalysed Aerobic Oxidation of Alcohols inWater.[J]. Chem Commun,2001:783-784.
    [130] Valtchev V Mintova S, Synthesis of Zeolite Y Nanocrystals from Clear Solutions.[J].Micropor Mesopor Mat,2001,43:41-49.
    [131] Valtchev V, Progress in bio-mimicing of super-hydrophobic surface.[J] Chem Mater,2002,14:956-961.
    [132] Fleming M S, Mandal T K Walt D R, Syntheses of raspberrylike silica/polystyrenematerials.[J]. Chem Mater,2001,13:2210-2216.
    [133] Graf C, Van B, Colloidal Carbon Spheres and Their Core/Shell Structures with Noble‐Metal Nanoparticles.[J]. Langmuir,2002,18:524-534.
    [134] Caruso F, Caruso R A, Nanoengineering of inorganic and hybrid hollow spheres bycolloidal templating.[J]. Sci Technol Adv Mat,1998,282:1111-1114.
    [135] Caruso F, Spasova M, Susha A, Giersig M, Monodisperse Magnetic Single‐CrystalFerrite Microspheres,[J]. Chem Mater,2001,13:109-116.
    [136] Graff A, Winterhalter M Meier W, Hollow zeolite capsules: a novel approach forfabrication and guest encapsulation.[J]. Langmuir,2001,17:919-923.
    [137] Yin Y, Lu Y, Gates B Xia Y, Synthesis and characterization of monodispersedcore-shell spherical colloids with movable cores.[J]. Chem Mater,2001,13:1146-1148.
    [138] Wang D J, Zhang Y H, Dong A G, Tang Y, Controlling zeolite structures andmorphologies using polymer networks.[J]. Adv Funct Mater,2003,13:563-567.
    [139] Choi C L, Park M, Lee D H, Kim J E, Park B Y, Heavy metal adsorption by aformulated zeolite-Portland cement mixture.[J]. Environ Sci Tech,2001,35:2812-2816.
    [140] Song W, Justice R E, Jones C A, Grassian V H, Janus microgels prepared bysurfactant-free pickering emulsion-based modification and their self-assembly.[J] Langmuir,2004,20:8301-8306.
    [141] Yao j f, Zhang L X Wang H T, Synthesis of nanocrystalline sodalite with organicadditives.[J]. Mater Lett,2008,62:4028-4030.
    [1] Miller R. D., In search of low-k dielectrics [J]. Science,1999,286,421-423.
    [2] Banerjee K., Amerasekera A., Dixit G. et al., Technical Digest of IEEE International ElectronDevice Meeting. San Francisco,1996.65-68.
    [3] Fan H. Y., Bentley H. R., Kathan K. R., et al., Peering into the self-assembly of surfactanttemplated thin-film silica mesophases [J]. J. Non-Cryst.Solids,2001,285:79-83.
    [4] Maex, K., Baklanov, M. R., Shamiryan, D., Iacopi, F., Brongersma, S. H.; Yanovitskaya, Z.S,Ultralow-k nanoporous organosilicate dielectric films imprinted with dendritic spheres [J]. J.Appl. Phys.2003,93,8793-8797.
    [5] Hrubesh, L. W., Pure‐Silica Zeolite Low‐k Dielectric Thin Films [J]. J. Non-Cryst. Solids1998,225,335-337.
    [6] Hyun S. H., Kim J.J., Park H.H., Aluminum phosphate sealed alumina coating:characterization of microstructure [J]. J. Am Ceram Soc,2000,83(3):533-536.
    [7] Nobuyuki k., Yoshiti F., Takashi K. et al., Preparation and characterization of porous silicafilms by a modified base-catalyzed Sol-Gel process containing PVA: I. The precursorsolution synthesis [J]. Jph. J. Appl. Phys, Part.2,2000,3A/B:L182.
    [8] Hrubesh, L.W., Keene, L. E., Latorre, V. R. Progress towards silicon optoelectronics usingporous silicon technology [J]. J. Mater. Res.8,1993,1736-1740.
    [9] Kresge, C.T., Leonowicz, M.E., Roth, W.J., et al., Ordered mesoporous molecular sievessynthesized by a liquid-crystal template mechanism [J]. Nature,359,1992,710-717.
    [10] Zhao, D., Yang, P., Melosh, N., et al., Highly Organized Mesoporous Titania Thin FilmsShowing Mono‐Oriented2D Hexagonal Channels [J]. Adv. Mater.10,1998,1380-1387.
    [11] Landskron, K., Hatton, B. D., Perovic, D. D., et al., A Bayesian networks approach forpredicting protein-protein interactions from genomic data [J]. Science,2003,302,266-271.
    [12] Sellinger, A.; Weiss, P. R.; Nguyen, A.; Lu, Y.; Assink, R. A.; Gong, W.; Brinker, C. J.Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots [J].Nature1998,394,256-263.
    [13] Bruinsma, P. J., Bonha, J. R., Liu, J., Baskaran, S.[P] US patent5922299,1999.
    [14] Kim, J.J., Park, H.H., Hyun, S.H., The Synergistic Effect of N2/H2Gases in the PlasmaPassivation of Siloxane-Based Low-k PolymerFilms [J]. Thin Solid Films,2000,525:377-378.
    [15] De Bos, R.M., Maier, W.F., Verweij, H., et al., Superparamagnetic latex via inverseemulsion polymerization [J]. Sci.158,1999,277-281.
    [16] Yang, C. M., Cho, A. T., Pan, F. M., et al., Microporous and mesoporous materials [J]. Adv.Mater.13(2001)1099-1107.
    [17] Antochshuk, V., Jaroniec, M., Fabrication of carbon capsules with hollow macroporouscore/mesoporous shell structures [J]. Chem. Commun.1999,2373-2385.
    [18] Venkateswara R. A., Ravindra K., Materials aspects of photonic crystals [J]. Sci. Tech. Adv.Mater,2003,4:509-513.
    [19] De. Bos. R. M., Maier, W. F., Verweij, H. J., Membr. Organic-functionalizedpure-silica-zeolite MFI low-k films [J]. Sci.1999,158,277-288.
    [20] Tanaka, S., Tada, H., Maruo, T., Nishiyama, N., Egashira, Y., Ueyama, K.Electroluminescence of doped organic thin films [J]. Thin Solid Films2006,495,186-192.
    [21] Nishiyama, N., Tanaka, S., Egashira, Y., Oku, Y., Ueyama, K. Synthesis of rectangular tubesof polyaniline/NiO composites [J]. Chem. Mater.2002,14,4229-4234.
    [22] Innocenzi, P., Falcaro, P., Grosso, D., Babonneau, F. Peering into the self-assembly ofsurfactant templated thin-film silica mesophases [J]. J. Phys. Chem. B2003,107,4711-4717.
    [23] Tanaka, S., Tada, H., Maruo, T., Nishiyama, N., Egashira, Y., Ueyama, K. Microscope at theBrewster angle: direct observation of first-order phase transitions in monolayers [J]. ThinSolid Films2006,495,186-189.
    [1] Heiland G, Kohl D, Problems and possibilities of oxidic and organic semiconductor gassensors [J]. Sensor Actuator,1985,8:227-233.
    [2] Han K R, Kim C S, Kang K T, et al., Study on sensing properties of tin oxide CO gas sensorwith low power consumption [J]. Sens Actuators B,2002,81:182-186.
    [3] Cantalini C, Faccio M, Ferri G, et al., The Influence of Water-Vapor on carbon-monoxidesensitivity of alpha-Fe2O3microporous ceramic Sensors [J]. Sens Actuators B,1994,19:437-442.
    [4] Devi G S, Hyodo T, Shilviizu Y, et al., Synthesis of mesoporous Ti02-based powders andtheir gas-sensing properties [J]. Sens Actuators B,2002,87:122-129.
    [5] Waitz T, Wagner T, Salterwald T, et al., Ordered mesoporous In203: Synthesis by structurereplication and application as a methane gas sensor [J]. Adv. Funct. Mater,2009,19:653-661.
    [6] Qi Z M, Honma I, Zhou H S. Chemical gas sensor application of open-pore mesoporousthin films based on integrated optical polarimetric interferometry [J]. Analytical Chemistry,2006,7:1034-1041.
    [7] Teoh L G, Hon Y M, Shish J, et al., Sensitivity properties of a novel NO2gas sensor basedon mesoporous WO3thin film [J]. Sens Actuators B,2003,96:219-225.
    [8] Shmzu Y, Hyodo T, Egashira M, Mesoporous semiconducting oxides for gas sensorapplication [J]. Journal of the European Ceramic Society,2004,24,13:89-98.
    [9] Hyodo T, Shimizu Y, Egashira M, Design of mesoporous oxides as semiconductor gassensor materials [J]. Electrochemistry,2003,71:387-393.
    [10] Wang Y D, Ma C L, Wu X H, et al., Mesostructured tin oxide as sensitive material forC2H5OH sensor [J]. Talanta,2002,57:875-882.
    [11] Basu S, Chatterjee S, Saha M, et al., Study of electrical characteristics of porous aluminasensors for detection of low moisture in gases [J]. Sens Actuators B,2001,79:182-186.
    [12] Geng W C, Wang R, Li X T, et al., Humiditysensitive property of Li-doped mesoporousSBA-15[J]. Sens Actuators B,2007,127:323-329.
    [13] Zhang T, Wang R, Geng W C, et al., Study on humidity sensing properties based oncomposite materials of Li-doped mesoporous silica A-SBA-15[J]. Sens Actuators B,2008,128:482-487.
    [14] Tu J C, Wang R, Geng W C, et al., Humidity sensitive property of Li-doped3D periodicmesoporous silica SBA-16[J]. Sens Actuators B,2009,136:392-398.
    [15] Yuan Q, Geng W C, Li N, et al., Study on humidity sensitive property of K2CO3-SBA-15composites [J]. Appl. Surf. Sci,2009,256:280-283.
    [16] Stein A, Brian J M, Rick C S, Hybrid iorganic-oganic msoporous slicates nanoscopic ractorscoming of age [J]. Adv. Mater,2000,12:1403-1419.
    [17] Wight A P, Davis M E, Design and preparation of organic inorganic hybrid catalysts [J].Chem. Rev,2002,102:3589-3614.
    [18] De Vos D E, Dams M, Sels B F, et al., Ordered mesoporous and microporous molecularsieves functionalized with transition metal complexes as catalysts for selective organictransformations [J]. Chem. Rev,2002,102:3615-3640.
    [19] Song C E, Lee S G, Supported chiral catalysts on inorganic materials [J]. Chem. Rev,2002,102:3495-3524.
    [20] Corma A, García H, Lewis Acids: From conventional homogeneous to green homogeneousand heterogeneous catalysis [J]. Chem. Rev,2003,103:4307-4366.
    [21] Vinu A, Hossain K Z, Ariga K, Recent advances in functionalization of mesoporous silica[J]. J. Nanosci. Nanotechnol,2005,5(3):347-371.
    [22] Hoffmann F, Cornelius M, Morell J, et al., Silica-based mesoporous organic-inorganichybrid materials [J]. Angew. Chem. Int.Ed,2006,45:3216-3251.
    [23] Zhao D Y, Huo Q S, Feng J, Nonionic triblock and star diblock copolymer and oligomericsurfactant syntheses of highly ordered, hydrothermally stable mesoporous silica structures[J]. J Am Chem Soc,1998,120:6024-6036
    [24] Kruk M, Jaroniec M, Ko C. H, Characterization of the porous structure of SBA-15[J].Chem. Mater,2000,12:1961-1968
    [25] Anne G, Cambon H, Renzo F D, True microporosity and surface area of mesoporousSBA-15silicas as a function of synthesis temperature [J]. Langmuir,2001,17:8328-8335.
    [1] T. Bein, Synthesis and Applications of Molecular Sieve Layers andd Membranes [J].Chem.Mater.1996,8,1636-1653.
    [2] T. C. Bowen, R. D. Noble, J. L. Falconer, Fundamentals and applications of pervaportionthrough zeolite membranes [J].J. Membr. Sci.,2004,245,1-33.
    [3] Z. Lai, G. Bonilla, I. Diza, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W.Thompson, M. Tsapatsis, D. G. Blachos, Microstructural Optimization of a ZeoliteMembrane for Organic Vapor Separation [J]. Science,2003,300,456-460.
    [4] Z. Gao, Y.Yue, W. Li, Application of zeolite-filled pervaporation membrane [J]. Zeolites,1996,16,70-74.
    [5] A. Jonquieres, A. Fane, Filled and unfilled composte GFT PDMS membranes for therecovery of butanols from dilute aqueous solutions: influence of alcohol polarity [J].J.Membr. Sci.1997,125,245-255.
    [6] H. Wang, B. A. Holmberg, Y. Yan, Homogeneous polymer-zeolite nanocomposite membranesby incorporating dispersible template-removed zeoltie nanocrystals [J]. J. Mater. Chem,2002,12,3640-3643.
    [7] H. K. Jeong, W. Krych, H. Ramanan, S. Nair, E. Marand, M. Tsapatsis, Fabrication ofPolymer/Selective-Flake nanocompostie Membranes and Their Use in Gas Separation [J].Chem. Mater.2004,16,3838-3845.
    [8] M. Yokota,Y. Takahashi, A. Sato, N. Kubota, F. Masumi, H. Takeuchi, Purity drip inoptical resoluteion of DL-methionine by the diastereomer method [J]. Chem. Eng. Sci.1998,53(8),1473-1479.
    [9] A. Garcia-Granados, A. Martinez, R. Quiros, Chemical-microbiological semisynthesis ofenantio-Ambrox derivatives [J].Tetrahedron,1999,55,8567-8578.
    [10] H. Stecher, K. Faber, Biocatalytic deracemization techniques: dynamic resolutions andstereoinversions [J]. Synthesis,1997,1-16.
    [11] A. Puglisi, M. Benaglia, R. Annunziata, A. Bologna, Enantiomerically pure phenanthrolineor bipyridine containing macrocycles:a new class of ligands for asymmetric catalysis[J].Tetrahedron Lett.2003,44,2947-2951.
    [12] T. J. Ward, Chiral separation [J].Anal. Chem.2000,72,4521-4528;
    [13] P. Hadik, L. Kotsis, M. Eniszne-Bodogh, L. Szabo, E. Nagy, Lactic acid enantiosepartion bymeans of porous ceramic disc and hollow fiber organic membrane [J].Separation andPurificatin Technology,2005,4,299-304.
    [14] T. E. Gier, X. Bu, P. Feng, G. D. Stucky, Synthesis and organization of zeolite-like materialswith three-dimensional helical pores [J].Nature,1998,395,154-157.
    [15] J. Liang, Y. Wang, J. Yu, Y. Li, R. Xu, Synthesis and structure of a new layered zincphosphite (C5H6N2)Zn(HPO3) containing helical chains [J]. Chem. Commu.,2003,882-883.
    [16] Y. Song, J. Yu, Y. Li, G. Li, R. Xu, Hydrogen-Bonded Helices in the LayeredAluminophosphate (C2H8N)2[Al2(HPO4)(PO4)2][J].Angew. Chem. Int. Ed.2004,43,2399-2402.
    [17] S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Synthesis andcharacterization of chiral mesoporous silica [J].Nature,2004,429,281-284.
    [18] I. F. J. Vankelecom, E. Merckx, M. Lutts, J.-B. Uytterhoeven, Incorporation of Zeolites inPolyimide Membranes [J]. J. Phys. Chem.1995,99,13187-13192.
    [19] M. Gruen, I. Lauer, K. Unger, The synthesis of micrometer-and submicrometer-size shpersof ordered mesoporous oxide MCM-41[J]. Adv. Mater.1997,9(3),254-257.
    [20] S. Huh, H. Chen, J. W. Wiench, J. Yoo, M. Pruski, V. S.-Y. Lin, Organic Functionalizationand Morphology Control of Mesoporous Silicas via a Co-Condenstation Synthesis Method[J].Chem. Mater.2003,15,4247-4256.
    [21] N.K.Raman, M. T. Anderson, C. J. Brinker, Template-Based Approaches to the Preparationof Amorphous, Nanoporous Silica [J]. Chem. Mater.1996,8,1682-1701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700