用户名: 密码: 验证码:
中华绒螯蟹微卫星DNA特征及其遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微卫星DNA是理想分子标记之一,广泛地应用于食品跟踪、群体遗传多样性等领域。中华绒螯蟹是绒螯蟹属中最具经济价值品种,为我国重要水产养殖和遗传保护对象。有关中华绒螯蟹遗传标记研究较薄弱,处于起步阶段,对于个体鉴定和跟踪还有较远距离。本研究首次采用磁珠富集法构建中华绒螯蟹微卫星文库,分离微卫星;在此基础上,采用荧光标记和毛细管电泳技术,分析微卫星特征并构建复合PCR高效扩增系统;应用所得标记,分析中华绒螯蟹的群体遗传多样性和个体识别;本研究还采用实时PCR技术首次报道中华绒螯蟹的基因组大小。
     1.中华绒螯蟹微卫星DNA文库的构建
     中华绒螯蟹微卫星的单富集文库主要构建过程有高分子量基因组DNA经Rsal消化、连接接头、PCR扩增、变性、Dynabeads~(?)磁珠杂交和捕获、转化、克隆PCR、测序及序列分析等过程。为提高效率,对磁珠一次杂交后捕获的回收片段再次富集,构建双富集文库。测序结果表明,磁珠富集法比传统文库筛选法的微卫星分离效率高一个数量级,双富集文库中78.1%的克隆含有侧翼序列的微卫星
     2.中华绒螯蟹微卫星的特征分析
     基于20个微卫星位点设计PCR引物,其中有14个位点在退火温度55℃、Mg~(2+)的浓度为1.5mM能特异性扩增。采用FAM标记10个位点引物,HEX标记4个位点引物,PCR扩增经Acroprep~(TM)过滤板吸附法快速提取的32个中华绒螯蟹样品基因组DNA。以分子长度标准ROX500为内标,PCR扩增产物经ABI3730XL毛细管电泳检测,Genemapper 3.5分析,结果表明毛细管电泳能精确检测微卫星的多态性。14个位点中ES10和ES26存在基因重复,ES38为单态位点,其它11个多态位点可以用于中华绒螯蟹的群体多样性的研究。
     3.荧光复合PCR的构建与优化
     将9个微卫星位点分成两组,5个位点用FAM(蓝色)标记,4个位点用HEX(绿色)标记;两种荧光类型分组优化,用琼脂糖胶电泳检测。随后,荧光标记的复合PCR扩增8个中华绒螯蟹样品的9个微卫星位点,采用毛细管电泳检测,调整各微卫星位点引物比例使所有位点均匀扩增。最后,逐一检测复合PCR基本参数对复合PCR产物的影响,优化PCR条件。结果表明荧光复合PCR的最优参数为dNTP 200μM、36个循环、Ta 55℃45s、退火时间为60s,摸板DNA20-500ng均可以稳定扩增。
     4.微卫星评估中华绒螯蟹的群体遗传多样性
     对无锡、苏州和上海的三个中华绒螯蟹群体共计102个样品,采用过滤板Acroprep~(TM)吸附基因组DNA,使用已经特征分析的11个微卫星标记对基因组DNA进行PCR扩增,PCR产物经毛细管电泳检测。位点ES37可能存在无效等位基因,其余10个位点分析统计结果为:平均每个位点有高达22.9个等位基因,PIC和E值分别高达0.826和7.700,这一结果
     清楚表明中华绒螯蟹群体具有较高的遗传多样性。欧氏遗传距离和遗传相似性平均值分别为0.439和0.825;瓶颈分析表明有必要对中华绒螯蟹采取科学的品种保护计划。
     5.中华绒螯蟹的个体来源识别初步分析
     应用GeneClass 2.0软件,比较频率法、贝叶斯法、DAS、标准内氏、最小内氏、内氏DA、Cavalli-Sforza和Goldstein等8种个体来源识别不同算法,结果表明贝叶斯法识别率最高,达93.14%;单一微卫星位点的个体识别分析表明,等位基因数最多的ES35标记个体识别能力最高,达87.25%;选择多态性高的微卫星位点,有助于减少微卫星位点的使用数量,且不降低个体正确识别率。
     6.实时PCR测定中华绒螯蟹基因组大小
     以已经测序的水稻样品(Nipponbare)为对照,建立一种实时PCR方法定量检测中华绒螯蟹基因组大小。整个过程约120 min,PCR效率为97.8%。标准曲线为Y=-3.768X+44.568,标准曲线的相关系数(R~2)为0.992,结果表明中华绒螯蟹的基因组大小(c值)为1.72±0.25pg。研究不仅首次报道了中华绒螯蟹的基因组大小,还表明基于SYBR GreenI的定量PCR方法可为基因组大小的定量检测提供了一种特异、快速和简洁的方法。
Microsatellite DNA,one of the most popular molecular markers,has been used in many fields such as food traceability,genetic diversity.Chinese mitten crab(Eriocheir sinensis),the highest commercial value among the genus Eriocheir,has become the important species for captive culture and conservation genetics.It is difficult to assign individuals and trace the original source population,because the markers from E.sinensis are rare.In the present study, the first microsatellite library was constructed by using Dynabeads~(?).With fluorescent labeled oligo and capillary electrophoresis,we characterized the loci and constructed one high throughput multiplex PCR system.With the characterized markers,genetic diversity and assignment of individuals have been analysed.This study was also the first report of the genome size in E.sinensis assessed through real time PCR.
     1.Construction of the mierosatelite enriched library for E.sinensis
     The main procedure of construction of primary enriched microsatellite library from E. sinensis were as follow:digestion of the genomic DNA,ligation of adaptors,PCR amplification,fragment denaturing,hybridization and capturing with Dynabeads(?), transformation to competent cell,colony PCR,sequencing and the nucleotides analysis. To improve the efficiency,the secondary enriched microsatellite library was established by using the fragments which had been enriched twice.The result showed that the efficiency from Dynabeads(?) enriched library is much higher than that from classic library screening. The percentage of positive clones with flanking regions in the secondary enriched library was 78.1%.
     2.Characterization of microsatellite loci from E.sinensis
     Primers were designed on 20 microsatellite loci,among which 14 can be amplified to get specific bands at Ta 55℃and Mg~(2+) 1.5mM.Using 10 FAM labeled oligos and 4 HEX labeled oligos,the 32 individuals' genomic DNA isolated through AcroPrep ~(TM) 96-well Filter Plate were PCR amplified.With ROX500 as a size standard,PCR product was analyzed using capillary electrophoresis and Genemapper 3.5.The results showed that capillary electrophoresis is precise for genotyping microsatellite.Among 14 microsatellite loci, besides gene duplication loci ES10 and ES26 and unpolimorphism locus ES38,11 loci could be useful in studying genetic diversity of E.sinensis.
     3.Construction and optimization of fluorescently labeled multiplex-PCR
     According to the expected length,nine microsatellite loci were divided into two groups, five labeled with FAM in one group and four labeled with HEX in another group.Different fluorescent groups were optimized separately using agar gel electrophoresis.Subsequently, eight Chinese mitten crabs were amplified by one set of nine fluorescently labeled primers.The multiplex-PCR products were detected with capillary electrophoresis.To get uniform signals, the ratio of primers was modified.Finally,the fundamental parameters were optimized one by one.This study showed the optimal parameters of this multiplex PCR were dNTP 200μM,36 cycles,Ta at 55℃for 45s and ripe for 60s.
     4.Microsatellite DNA based assessment of genetic diversity of E.sinensis
     The genomic DNA of 102 E.sinensis samples from Wuxi,Suzhou and Shanghai was isolated with AcroPrep ~(TM) 96-well Filter Plate.The samples were genotyped by capillary electrophoresis with characterized loci.The results showed that the excepted ES37 might be null alleles,the average allele number for the other loci was 22.9 per locus and polymorphism information content and effective number of alleles are 0.826 and 7.700,respectively.Genetic distance(Nei,1978) and genetic identity were 0.439 and 0.825,respectively.The bottleneck analysis showed that scientific conservation program was necessary.
     5.Primary analysis of individual assignment for E.sinensis
     After comparison of algorithm,such as frequency method,Bayesian method,DAS,Nei standard,Nei minimum,Nei DA,Cavalli-Sforza and Goldstein,we found that Bayesian method with 93.14%efficiency is the most efficient in assigning individuals by using GeneClass2.0 software.For single locus,ES35 with maximum allele number showed the highest power of assigning individuals.Selection of the highly polymorphism microsatellite loci would reduce the loci used without decreasing the percentage of correct identification.
     6.Estimation of genome size from E.sinensis with real-time PCR
     Using sequenced rice(Nipponbare) as a control,real-time PCR was established to check the genome size of E.sinensis..The whole procedure took about 120 min.The result showed the PCR efficiency was 97.8%,the standard curve was Y=-3.768X+44.568(R~2=0.992) and the genome size of E.sinensis(c-value) was 1.72±0.25 pg.This study not only firstly reported the genome size of E.sinensis,but also indicated that SYBR Green I-based quatitive Real-time PCR was a specific,fast and simple method for estimation of genome size.
引文
1.Mead P,Slutsker L,Dietz V,et aL Food related illness and death in the United states.Emerg Infect 1999;5(5):607-625.
    2.European.,Parliament.Regulation(EC) No.178/2002 of the European Parliament and of the Council.Official Journal of the European Communities 2002:L31/31-L31/24.
    3.Smith GC,Tatum JD,Belk KE,Scanga JA,Grandin T,Sofos JN.Traceability from a US perspective.Meat Science 2005;71(174-193).
    4.Vazquez JF,Perez T,Urena F,Gudin E,Albomoz J,Dominguez A.Practical application of DNA fingerprinting to trace beef.J Food Prot 2004;67(5):972-979.
    5.DeCastroNeto M,Rodrigue MBL,Pinto PA,et al.Traceability on th Web- A Prototype for the Portuguese Beef Sector.EFITA 2003 Conference 2003:5-9.
    6.Regattieri A,Gamberi M,Manzini R.Traceability of food products:General framework and experimental evidence.Journal of Food Engineering 2007;81:347-356.
    7.Mousavi A,Sarhadi M,Lenk A,Fawcett S.Tracking and traceability in the meat processing industry:a solution British Food Journal 2002 104(1):7-19.
    8.Shackell GH,Mathias HC,Cave VM,Dodds KG.Evaluation of microsatellites as a potential tool for product tracing of ground beef mixtures.Meat Science 2005;70:337-345.
    9.Roques S,Duchesne P,Bernatchez L.Potential ofmicrosatellites for individual assignment:the North Atlantic redfish(genus Sebastes) species complex as a case study.Mol Ecol 1999;8(10):1703-1717.
    10.Cornuet JM,Pity S,Luikart G,Estoup A,Solignac M.New methods employing multilocus genotypes to select or exclude populations as origins of individuals.Genetics 1999;153(4):1989-2000.
    11.Ibeagha-Awemu EM,Erhardt G.Genetic structure and differentiation of 12 African Bos indicus and Bos taurus cattle breeds,inferred from protein and microsatellite polymorphisms.J Anita Breed Genet 2005;122(1):12-20.
    12.Watson JD,Crick FHC.A Structure for Deoxyribose Nucleic Acid.Nature 1953;171,:737-738.
    13.Rabinow P.Making PCR:A Story of Biotechnology.Chicago:University of Chicago Press,1996.
    14.O'Brien SJ.Molecular genome mapping:lessons and prospects.Curr Opin Genet Dev 1991;1:105-111.
    15.Kraytsberg Y,Schwartz M,Brown TA,et al.Recombination of human mitochondrial DNA.Science 2004;304(14):981.
    16.张亚平,施立明.动物线粒体DNA多态性研究概况.动物学研究1992;13(3):289-298.
    17.Rubinoff D,Cameron S,Will K.A Genomic Perspective on the Shortcomings of Mitochondrial DNA for "Barcoding" Identification Journal of Heredity 2006;97(6):581-594.
    18.Dasmahapatra KK,Mallet J.DNA barcodes:recent successes and future prospects.Heredity 2006 97(4):254-255.
    19. Avise JC, Bowen W, Lamb T, Meylan AB, Bermingham E. Mitochondrial DNA Evolution at a Turtle's Pace: Evidence for Low Genetic Variability and Reduced Microevolutionary Rate in the Testudines. Molecular Biology and Evolution 1992;9 (3):457-473.
    20.吕国庆,李思发.鱼类线粒体DNA多态研究和应用进展.中国水产科学1998;5(3):95-103.
    21. Grodzicker T, Williams J, Sharp P, Sambrook J. Physical mapping of temperature-sensitive mutations of adenoviruses. Cold Spring Harbor Symp Quant Biol Science 1974;39:439-446.
    22. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis.. JMol Biol 1976. ;98: 503-517.
    23. Dodgson JB, Cheng HH, Okimoto R. DNA marker technology: a revolution in animal genetics. PoultSci 1997;76:1108-1114.
    24. KWillams JGK.Nucletide Acid research 1990; 18:7213.
    25. Welsh J. Nucletide Acid research 1990;18:6351.
    26. Henry CE, Okoro P, Steward-Clark E, Garber ED, Ruddat M. Random amplified polymorphic DNA analysis of Ustilago violacea. Ann N Y Acad Sci 1999;870:357-361.
    27. Mehlenbacher SA, Brown RN, Davis JW, et al. RAPD markers linked to eastern filbert blight resistance in Corylus avellana. Theor Appl Genet 2004; 108(4):651-656.
    28. Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 1995.;23:4407-4414.
    29. Questiau S, Eybert MC, Taberlet P. Amplified fragment length polymorphism (AFLP) markers reveal extra-pair parentage in a bird species: the bluethroat (Luscinia svecica). Mol Ecol 1999;8(8): 1331-1339.
    30. Waldron J, Peace CP, Searle IR, et al. Randomly Amplified DNA Fingerprinting: A Culmination of DNA Marker Technologies Based on Arbitrarily-Primed PCR Amplification. J Biomed Biotechnol 2002;2(3):141-150.
    31. Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA sequencing:expressed sequence tags and human genome project.. Science , 1991. ;252:1651-1656.
    32. Franco GR, Adams MD, Bento SM, et al. Identification of new Schistosoma mansoni genes by the EST strategy using a directional cDNA library.. Gene 1995. ;152:141-147.
    33. Azam A, Paul J, Sehgal D, et al. A. Identification of novel genes from Entamoeba histolytica by expressed sequence tag analysis.. Gene 1996;181:113-116.
    34. Boguski MS, Schuler GD. Establishing a human transcript map. Nat Genet 1995; 10:369- 371.
    35. Hudson TJ, Stein LD, Gerety SS, et al. An STS-based map of the human genome. Science 1995; 270:1945-1954.
    36. Vignal A, Milan D, SanCristobal M, Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 2002;34(3):275-305.
    37. Tautz D, Renz M. simple sequences are ubiqutitous repetive components of eukaryotic genomes. Nucleic Acids Res 1984;17:6463-6471.
    38. Tautz D. Hypervariability of simple sequence as a general source for polymorphic DNA markers. Nucleic Acids Res 1989;12:4127-4138.
    39. Skinner D M BWG, Blattner F R. The sequence of a herm it crab satellite DNA in (-TAGG-)n-(-TAGG-)n. Biochemistry 1974; 13:3930-3937.
    40. Hamada H, Petrino M, T. K. Proc Natl Acad Sci U S A 1982;79:6465-6469.
    41. Ali S, Muiller CS, Epplen JT. DNA finger printing by oligonucleotide probes specific for simple repeats. Human Genetics 1986;74:239-243.
    42. Weber JL. Human DNA polymorphisms and methods of analysis. Curr Opin Biotechnol 1990;1 (2): 166-171.
    43. Rich A, Nordheim A, wang AHJ. the chemistry and biology of left-handed Z-DNA. Ann Rev Biochem 1984;53:791-846.
    44.Epplen JT,Kyas A,Maueler W.Genomic simple repetitive DNAs are targets for differential binding of nuclear proteins.FEBS Lett 1996;389,:92-95.
    45.Jeffreys AJ,Neil DL,Neumann R.Repeat instability at human minisatellites arising from meiotic recombination.EMBO J 1998;17:4147-4157.
    46.Biet E,Sun J,Dutreix M.Conserved sequence preference in DNA binding among recombinant proteins:abnormal effect of ssDNA secondary structure.Nucleic Acids Res 1999;27:596-600.
    47.Johannsdottir JT,Jonasson JG,Bergthorsson JT,et al.The effect of mismatch repair deficiency on tumourigenesis;microsatellite instability affecting genes containing short repeated sequences.Int J Oncol 2000;16(1):133-139.
    48.Chang DK,Metzgar D,Wills C,Boland CR.Microsatellites in the eukaryotic DNA mismatch repair genes as modulators of evolutionary mutation rate.Genome Res 2001;11(7):1145-1146.
    49.Chen SH,Schoof JM,Buroker NE,Scott CR.The identification of a(CGG)6AGG insertion within the CGG repeat of the FMR1 gene in Asians.Hum Genet 1997;99(6):793-795.
    50.Mansour M,Jr.J.R.W,Pohajdak B.Cloning,sequencing and characterization of the tilapia insulin gene.Comp Biochem Physiol,B Biochem Mol Biol 1998;121:291-297.
    51.Melloul D,Marshak S,Cerasi E.Regulation of insulin gene transcription.Diabetologia 2002;45:309-326.
    52.WINTERO AK,FREDHOLM M,P.D.THOMSEN.Variable(dG-dT)..(dC-dA),sequences in the porcine genome.Genomics 1992;12:281-288.
    53.Litt M,Luty JA.A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene.Am J Hum Genet 1989;44(3):397-401.
    54.Kikuchi S,Isagi Y.Microsatellite genetic variation in small and isolated populations of Magnolia sieboldii ssp.japonica.Heredity 2002;88(4):313-321.
    55.Weber JL,May PE.Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction..Am J Hum Genet 1989;44:388-396.
    56.Jeffreys A J,Wilson V,Thein SL.Hypervariable 'minisatellite' regions in human DNA.Nature 1985;314:67-73.
    57.Ben HT,Anna KS,Bjame G.Evaluation of three strategies using DNA markers for traceability in aquaculture species.Aquaculture 2005;250:70-81.
    58.Cunningham EP,Meghen CM.Biological identification systems:genetic markers.Rev sci tech Off int Epiz 2001;20(2):491-499.
    59.Paspor P.Bio-markers:traceability in food safety issues.Acta Biochimica Polonica 2005;52(3):659-664.
    60.Orru L,Napolitano F,Catillo G,Moioli B.Meat molecular traceability:How to choose the best set of microsatellites? Meat Science 2006;72:312-317.
    61.Pasqualone A,Montemurro C,Caponio F,Blanco A.Identification of virgin olive oil from different cultivars by analysis of DNA microsatellites.J Agric Food Chem 2004;52(5):1068-1071.
    62.Testolin R,Lain O.DNA Extraction from Olive Oil and PCR Amplification of Microsatellite Markers.Food Chemistry and Toxicology 2005;70(1):108-112.
    63.Breton C,Claux D,Metton I,Skorski G,Berville A.Comparative study of methods for DNA preparation from olive oil samples to identify cultivar SSR alleles in commercial oil samples:Possible forensic applications.J Agric Food Chem 2004;52(3):531-537.
    64.Zane L,Bargelloni L,Patarnello T.Strategies for microsatellite isolation:a review.Mol Ecol 2002;11(1):1-16.
    65.曲鲁江,李显耀,徐桂芳.利用微卫星标记分析中国地方鸡种的遗传多样性.中国科学c生命科学2006;36(1):17-26.
    66.王得前,陈国宏,吴信生,等.运用微卫星技术分析中国地方鸡品种的亲缘关系.扬州大学学报(农业与生命科学版)2003;24(3):1-6.
    67.贾斌,陈杰,赵茹茜,等.新疆8个绵羊品种遗传多样性和系统发生关系的微卫星分析.遗传学报 2003 30(9):847-854.
    68.朱文进,张美俊,葛慕湘,等.中国8个地方驴种遗传多样性和系统发生关系的微卫星分析.中国农业科学 2006 39(2):398-405.
    69.钟金城,赵素君,陈智华,等.牦牛品种的遗传多样性及其分类研究中国农业科学 2006;39(2):389-397
    70.沈富军,Watts,P.,张志和,等.Dynal磁珠富集大熊猫微卫星标记.遗传学报 2005 32(5):457-462.
    71.张天时,刘萍,李健,等.用微卫星DNA技术对中国对虾人工选育群体遗传多样性的研究.水产学报2005;29(1):6-12.
    72.应杰政,施勇烽,庄杰云,等.应用微卫星标记评估我国水稻主栽品种的一致性.中国水稻科学2006;20(4):367-371.
    73.Woram RA,McGowan C,Stout JA,et al.A genetic linkage map for Arctic char(Salvelinus alpinus):evidence for higher recombination rates and segregation distortion in hybrid versus pure strain mapping parents.Genome 2004;47(2):304-315.
    74.Chistiakov DA,Hellemans B,Haley CS,et al.A microsatellite linkage map of the European sea bass Dicentrarchus labrax L.Genetics 2005;170(4):1821-1826.
    75.Moen T,Hoyheim B,Munck H,Gomez-Raya L.A linkage map of Atlantic salmon(Salmo salar) reveals an uncommonly large difference in recombination rate between the sexes.Anim Genet 2004;35(2):81-92.
    76.Inami M,Hatanaka A,Mitsuboshi T,et al.A microsatellite linkage map of red sea bream(Pagrus major) and mapping of QTL markers associated with resistance to red sea bream iridovirus(RSIV)..Plant and Animal Genome ⅩⅢ Abstracts 2005..
    77.Waldbieser GC,Bosworth BG,Nonneman D J,et al..A microsatellite-based genetic linkage map for channel catfish,Ictalurus punctatus.Genetics 2001;158(2):727-734.
    78.Walter RB,Rains JD,Russell JE,et al.A microsatellite genetic linkage map for Xiphophorus.Genetics 2004;168(1):363-372.
    79.Ohara E,Nishimura T,Nakagura Y,et al...Genetic linkage map of two yellowtails(Seriola quinqueradiata and Seriola lalandi).Aquaculture 2005;244:41-48..
    80.Shimoda N,Knapik EW,Ziniti J,et al.l.Zebrafish genetic map with 2000 microsatellite markers.Genomics 1999;58(3):219-232.
    81.Peichel CL,Nereng KS,Ohgi KA,et al.The genetic architecture of divergence between threespine stickleback species.Nature 2001.;414,.901-915.
    82.Rafaella F,Louro B,Tsalavouta M,et al..A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L..GENETICS 2006;174(2):851-861
    83.Lee BY,Lee WJ,Streelman JT,et al..A second-generation genetic linkage map oftilapia(Oreochromis spp.).Genetics 2005;170(1):237-244.
    84.Kai W,Kikuchi K,Fujita M,et al..A genetic linkage map for the tiger pufferfish,Takifugu rubripes GENETICS 2005 171(1):227-238.
    85.Sakamoto T,Danzmann RG,Gharbi K,et al..A microsatellite linkage map of rainbow trout(Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates.Genetics 2000;155(3):1331-1345.
    86.Wang CM,Zhu ZY,Lo LC,et al..A microsatellite linkage map of Barrarnundi,Lates calcarifer GENETICS 2007 175(2):907-915.
    87.Jackson TR,Ferguson MM,Danzmann RG,et al..Identification of two QTL influencing upper temperature tolerance in three rainbow trout(Oncorhynchus mykiss) half-sib families..Heredity 1998.;80:143-151.
    88.Cnaani A,Lee BY,Ron M,Hulata G,Kocher TD,Seroussi E.Linkage mapping of major histocompatibility complex class Ⅰ loci in tilapia(Oreochromus spp.)..Anim Genet 2003.;34:390-391.
    89.Somorjai IM,Danzmann RG,Ferguson MM.Distribution of temperature tolerance quantitative trait loci in Arctic charr (Salvelinus alpinus) and inferred homologies in rainbow trout (Oncorhynchus mykiss). Genetics 2003;165(3): 1443-1456.
    90. Borrell YJ, Pineda H, McCarthy I, Vazquez E, Sanchez JA, Lizana GB. Correlations between fitness and heterozygosity at allozyme and microsatellite loci in the Atlantic salmon, Salmo salar L. Heredity 2004;92(6):585-593.
    91. Reid DP, Szanto A, Glebe B, Danzmann RG, Ferguson MM. QTL for body weight and condition factor in Atlantic salmon (Salmo salar): comparative analysis with rainbow trout (Oncorhynchus mykiss) and Arctic charr (Salvelinus alpinus). Heredity 2005;94(2):166-172.
    92. Sakamoto T, Danzmann RG, Okamoto N, Ferguson MM, Ihssen PE. Linkage analysis of quantitative loci trait loci associated with spawning time in rainbow trout (Oncorhynchus mykiss).. Aquaculture 1999. ;173, .33-43.
    93. O'Malley KG, Sakamoto T, Danzmann RG, Ferguson MM. Quantitative trait loci for spawning date and body weight in rainbow trout: testing for conserved effects across ancestrally duplicated chromosomes. J Hered 2003;94(4):273-284.
    94. Nichols KM, Robison BD, Wheeler PA, Thorgaard GH. Quantitative trait loci (QTL) associated with development rate in clonal Oncorhynchus mykiss strains.. Aquaculture 2000. :209-233.
    95. Robison BD, Wheeler PA, Sundin K, Sikka P, Thorgaard GH. Composite interval mapping reveals a major locus influencing embryonic development rate in rainbow trout (Oncorhynchus mykiss). J Hered 2001;92(1):16-22.
    96. Perry GM, Ferguson MM, Danzmann RG. Effects of genetic sex and genomic background on epistasis in rainbow trout (Oncorhynchus mykiss). Genetica 2003;119(1):35-50.
    97. Karsi A, Li P, Kim S, Dunham S, Liu ZJ. Performance trait-linked DNA markers and marker-assisted selection. Plant and Animal Genome VIII Abstracts.. 2000..
    98. Maillard JC, Berthier D, Chantal I, et al. Selection assisted by a BoLA-DR/DQ haplotype against susceptibility to bovine dermatophilosis. Genet Sel Evol 2003;35:S193-S200
    99. Rothschild MF. From a sow's ear to a silk purse: real progress in porcine genomics. Cytogenet Genome Res 2003. ;102, :95-99.
    100. Malek M, Lamont SJ. Association of INOS, TRAIL, TGFbeta2,TGF-beta3, and IgL genes with response to Salmonella enteritidis in poultry.. Genet Sel Evol 2003.; 35,:S99-S111.
    101. Notter DR, Cockett NE. Opportunities for detection and use of QTL influencing seasonal reproduction in sheep: a review. Genet Sel Evol 2005;37:39-53.
    102. Rassmann K, Schlotterer C, D.. T. solation of simplesequence loci for use in polymerase chain reaction-based DNA fingerprinting.. Electrophoresis 1991; 12(113-118).
    103. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, SV T. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 1990;18,:6531-6535.
    104. Lunt DH, Hutchinson WF, GR. C. An efficient method for PCR-based identification of microsatellite arrays (PIMA). Molecular Ecology 1999;8:893-894.
    105. Cooper G, Amos W, Bellamy R, et al.\. An empirical exploration of the (delta mu)2 genetic distance for 213 human microsatellite markers. Am J Hum Genet 1999;65(4):1125-1133.
    106. Zhivotovsky LA, Feldman MW. Microsatellite variability and genetic distances. Proc Natl Acad Sci U S A 1995;92(25): 11549-11552.
    107. Stemshorn KC, Nolte AW, Tautz D. A genetic map of Cottus gobio (Pisces, Teleostei) based on microsatellites can be linked to the physical map of Tetraodon nigroviridis. J Evol Biol 2005; 18(6): 1619-1624.
    108. Cifarelli RA, Gallitelli M, Cellini F. Random amplified hybridization microsatellites (RAHM): isolation of a new class of microsatellite-containing DNA clones. Nucleic Acids Res 1995;23(18):3802-3803.
    109. Shen FJ, Watts P, Zhang ZH, et al. [Enrichment of giant panda microsatellite markers using dynal magnet beads]. Yi Chuan Xue Bao 2005;32(5):457-462.
    110.Dutech C,Amsellem L,Billotte N,Jarne P.Characterization of(GA)n microsatellite loci using an enrichment protocol in the neotropical tree species Vouacapoua americana.Mol Ecol 2000;9(9):1433-1435.
    111.Callen DF,Thompson AD,Shen Y,et al.Incidence and origin of "null" alleles in the(AC)n microsatellite markers.Am J Hum Genet 1993;52(5):922-927.
    112.Allen PJ,Amos W,Pomeroy PP,Twiss SD.Microsatellite variation in grey seals(Halichoerus grypus) shows evidence of genetic differentiation between two British breeding colonies.Mol Ecol 1995;4(6):653-662.
    113.Paetkau D,Strobeck C.The molecular basis and evolutionary history of a microsatellite null allele in bears.Mol Ecol 1995;4(4):519-520.
    114.Pemberton JM,Slate J,Bancroft DR,Barrett JA.Nonamplifying alleles at microsatellite loci:a caution for parentage and population studies.Mol Ecol 1995;4(2):249-252.
    115.O'Connell M,J.M.W.Microsatellite DNA in fishes.Reviews in fish Biology and fisheries 1997;7:331-363.
    116.堵南山.中华绒螯蟹的同属种类及英文名称.水产科技情报 1998;25(3):108-109,113.
    117.Chen DW,Zhang M,Shresthac S.Compositional characteristics and nutritional quality of Chinese mitten crab (Eriocheir sinensis)..Food Chemistry 2007;103(4):1343-1349
    118.Chen DW,Zhang M.Analysis of Volatile Compounds in Chinese Mitten Crab(Eriocheir Sinensis).Journal of Food and Drug Analysis 2006;14(3):297-303.
    119.Panning A.The Chinese mitten crab.Smithsonian Report for 1938 1939:361-375.
    120.Nepszy SJ,Leach HJ.First records of Chinese mitten crab,Eriocheir sinensis(Crustacea:Brachyura) from north America.Journal Of the Fisheries Research Board of canada 1973;30:1909-1910.
    121.毕庶万,陈去,毕建强.鳌蟹形态特征和放养措施.水利渔业 1998(4):33-34.
    122.吴琅虎,,高志慧.池塘河蟹养殖综合增产技术研究.淡水渔业 1994;24(5):26-28.
    123.徐兴川.关于中华绒螯蟹品质保持问题的探讨.水产科技情报 1991;18(1):17-19.
    124.戴爱云.绒螯蟹属支序分类学的初步分析.动物分类学报 1998;13(1):22-26.
    125.李晨虹,,李思发.中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系:形态判别分析.水产学报 1999;23(4):337-342.
    126.许加武,任明荣,李思发.长江、辽河、瓯江中华绒螯蟹种群的形态判别.水产学报 1997;21(3):269-274.
    127.李勇,李思发,王成辉,等.三水系中华绒螯蟹幼蟹形态判别.水产学报 2001;25(2):120-126.
    128.Niiyama H.The problem of male heterogamety in the Decdpod Crustacean,with apetdal reference to the sex chromosomes in Plagusia dentipes(De Haan) and Eriocheir jap onicus(De Haan).Ibid 1937;V:283-295.
    129.堵南山,赖伟,薛鲁征.中华绒螯蟹染色体研究.动物学研究 1986;7(3):293-296.
    130.Lee T H NN,Yamazaki F.Chromosome studies on the mitten crabs E.fiocheir and E.sinensis.Fisheries Sci 2004;70:211-214.
    131.张秀梅,柳广东,高天翔.绒螯蟹种质资源研究进展.青岛海洋大学学报(自然科学版)2002;32(4):533-542.
    132.郑署明,青吴.中华绒螯蟹同工酶的研究.水生生物学报 1994;18(2):183-185.
    133.乔新美,曹维孝,邹世平.长江、瓯江中华绒螯蟹几种同功酶分析比较.淡水渔业 1994;24(5):10-13.
    134.赵金良,李思发.中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系生化遗传差异分析.水产学报 1999;23(4):331-335.
    135.Zhang J,Lu R.Morphometric and biochemical genetic variation of the mitten crab,Eriocheir,in southern China.Aquaculture 1993;111:103-115.
    136.高天翔,张秀梅,楼东,等.日本绒螯蟹太平洋群体和日本海群体12s rRNA序列比较研究.浙江海洋学院学报 1999;18(4):275-278.
    137.高天翔,张秀梅.中华绒螯蟹和日本绒螯蟹线粒体12S rRNA基因序列比较研究.青岛海洋大学学报(自然科学版)2000;30(1):43-47.
    138.Sun H,Zhou K,Song D.Mitochondrial genome of the Chinese mitten crab Eriocheir japonica sinenesis (Brachyura:Thoracotremata:Grapsoidea) reveals a novel gene order and two target regions of gene rearrangements.Gene 2005;349:207-217.
    139.H(a|¨)nfling B,Carvalho GR,Brandl R.mt-DNA sequences and possible invasion pathways of the Chinese mitten crab.Mar Ecol Prog Ser 2002;238::307-310.
    140.刘萍.DNA标记技术在海洋生物种质资源开发和保护中的应用.中国水产科学2000;7(2):86-89.
    141.高志千,周开亚.中华绒螯蟹遗传变异的RAPD分析.生物多样性1998;6(3):186-190.
    142.谢浩,陆仁后,项超美,等.利用RAPD技术对三种绒螯蟹亲缘关系的研究.水生生物学报1999;23(2):120-125.
    143.李思发,皱署明.中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系系RAPD指纹标记.水产学报1999;23(4):325-330.
    144.邱涛,陆仁后,项超美,等.用RAPD技术识别中华绒螯蟹性别差异.水产学报 1998;22(2):175-177.
    145.马春艳,陈亚瞿,张凤英.中国太湖和荷兰的中华绒螯蟹随机扩增多态性DNA分析.海洋渔业2005;27(04):276-280.
    146.H(a|¨)nfling B,Weetman D.Characterization of microsatellite loci for the Chinese mitten crab,Eriocheir sinensis.Molecular Ecology Note 2003;3:15-17.
    147.樊红平,冯忠泽,杨玲,等.可追溯体系在食品供应链中的应用与探讨.生态经济 2007(4):63-65.
    148.文向阳.在食品供应链中实施食品安全的可追溯性.中国食品工业2005(8):48-49.
    1.Lai Y,Sun E The relationship between microsatellite slippage mutation rate and the number of repeat units.Mol Biol Evol 2003;20(12):2123-2131.
    2.Navajas M,Fenton B.The application of molecular markers in the study of diversity in acarology:a review.Exp Appl Acarol 2000;24(10-11):751-774.
    3.Li YC,Korol AB,Fahima T,Beiles A,Nevo E.Microsatellites:genomic distribution,putative functions and mutational mechanisms:a review.Mol Ecol 2002;11(12):2453-2465.
    4.Karagyozov L.Construction of random small-insert genomic libraries highly enriched for simple sequence repeat.Nucleic Acid Res 1993;21:3911-3912.
    5.Pestsova E,Ganal MW,Roder MS.Isolation and mapping of microsatellite markers specific for the D genome of bread wheat.Genome 2000;43(4):689-697.
    6.Zane L,Bargelloni L,Patarnello T.Strategies for microsatellite isolation:a review.Mol Ecol 2002;11(1):1-16.
    7.O'Reilly PT,McPherson AA,Kenchington E,Taggart C,Jones MW,Bentzen P.Isolation and characterization of tetranucleotide microsatellites from Atlantic haddock(Melanogrammus aeglefinus).Mar Biotechnol(NY) 2002;4(4):418-422.
    8.Li XG,Tian JJ,Tani N,Yoshihiko T.[Isolation and characterization of nuclear microsatellites from Chamaecypress obtusa Endl].Yi Chuan Xue Bao 2004;31(4):375-379.
    9.张秀梅,柳广东,高天翔.绒螯蟹种质资源研究进展.青岛海洋大学学报(自然科学版)2002;32(4):533-542.
    10.H(a|¨)nfling B,Weetman D.Characterization of microsatellite loci for the Chinese mitten crab,Eriocheir sinensis.Molecular Ecology Note 2003;3:15-17.
    11.长江中华绒螯蟹原种选择标准及生产技术操作规程DB34/T218—2001.安徽省质量技术监督局 2001.
    12.Tsuneizumi M,Nagai H,Harada H,Kazui T,Emi M.A highly polymorphic CA repeat marker at the EBAG9/RCAS1 locus on 8q23 that detected frequent multiplication in breast cancer.Ann Hum Biol 2002;29(4):457-460.
    13.萨姆布鲁克,拉塞尔.分子克隆实验指南.黄培堂,译.北京:科学出版社;2002.965-966 p.
    14.Karagyozov L,Kalcheva I,Chapman V.Construction of random smal insert genomic libraries highly enriched for simple sequence repeats.Nucleic Acids Research 1993;21:3911-3912.
    15.Kijas J,Fowler J,Garbett C,et al..Enrichment of microsatellites from the cirus genome using biotinylated oligonucleotide sequences bound to streptavidin coated magnetic particles Biotechniques 1994;16:656-662.
    16.Zhu ZY,Lin G,Lo LC,et al..Genetic analyses of Asian seabass stocks using novel polymorphic microsatellites.Aquaculture 2006;256:167-173.
    17.Weber JL.Informativeness of human(dC-dA)n(dG-dT)n polymorphisms.Genomics 1990;7:524-530.
    18.Valdes A M,Slatkin M,Freimer NB.Allele frequencies at microsatellite loci:the stepwise mutation model revisited.Genetics 1993;133:737-749.
    19.Smulders M J M,Bredemeijer G,Rus-kortekaas W,et al..Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lcopersicon species.Theor Appl Genet 1997;97:264-272.
    20.Xu Z,Dhar A K,Wyrzykowski J,et al.Identification of abundant and information microsatellites from shrimp genome.Animal Genetics 1999;30:1-7.
    21.Weber JL.Human DNA polymorphisms and methods of analysis.Curr Opin Biotechnol 1990;1(2):166-171.
    22.Koumantaki Y,Sifakis S,Dragatis G,et al..Microsatellite analysis provides efficient confirmation of fetal trophoblast isolation from maternal circulation.Prenat Diagn 2001;21(7):566-570.
    23.Wang Z,Rohrer G,Stone R,Troyer D.Isolation of thirty-one new porcine microsatellites from a microsatellite enriched microdissected chromosome 8 library.Anim Biotechnoi 2000;11(1):33-43.
    24.Nonneman D,Waldbieser GC.Isolation and enrichment of abundant microsatellites from a channel catfish (Ictalurus punctatus) brain cDNA library.Anim Biotechnol 2005;16(2):103-116.
    25.Lee BY,Lee WJ,Streelman JT,et al.A second-generation genetic linkage map oftilapia(Oreochromis spp.).Genetics 2005;170(1):237-244.
    26.Sakamoto T,Danzmann RG,Gharbi K,et al.A microsatellite linkage map of rainbow trout(Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates.Genetics 2000;155(3):1331-1345.
    27.Wang CM,Zhu ZY,Lo LC,A microsatellite linkage map of Barramundi,Lares calcarifer GENETICS 2007175(2):907-915.
    1.Li YC,Korol AB,Fahima T,Beiles A,Nevo E.Microsatellites:genomic distribution,putative functions and mutational mechanisms:a review.Mol Ecol 2002;11(12):2453-2465.
    2.Botstein D,White RL,Skolnick M,et,al.Construction of a genetic linkage map in man using restriction fragment length polymorphisms Am J Hum Genet 1980;32:314-331.
    3.Vignal A,Milan D,SanCristobal M,Eggen A.A review on SNP and other types of molecular markers and their use in animal genetics.Genet Sel Evol 2002;34(3):275-305.
    4.Zhang J,Wang Z,Li M,Wang B.[Molecular markers and their application in plant population research].Ying Yong Sheng Tai Xue Bao 2000;11(4):631-636.
    5.Beuzen ND,Stear MJ,Chang KC.Molecular markers and their use in animal breeding.Vet J 2000;160(1):42-52.
    6.Call DE,Thompson AD,Shen Y,et al.Incidence and original of null alleles in the(CA)n microsatellite marker.Am J Hum Genet 1993;52:922-927.
    7.Paetkau D,Strobeck C.The molecular basis and evolutionary history of a microsatellite null allele in bears.Mol Ecol 1995;4(4):519-520.
    8.Hedgcock D,Li G,Hubert S,et al.Wide spread null alleles and poor cross-species amplification of microsatellite DNA loci cloned from the Pacific oyster,Crassostrea gigas.J Shellfisheries Res 2004;23(2):379-385.
    9.Lewis PO,D.Z.Genetic Data Analysis:Computer program for the analysis of allelic data,Version 1.0(d16c)..2000.
    10.Myers GSA,Parker D,Al-Hasani K,et al.Genome sequence and identification of candidate vaccine antigens from the animal pathogen Dichelobacter nodosus.Nature Biotechnology 2007;25:569-575.
    11.Makinen HS,Cano JM,Media AJ.Genetic relationships among marine and freshwater populations of the European three-spined stickleback(Gasterosteus aculeatus) revealed by microsatellites.Molecular Ecology 2006 15(6):1519-1534.
    12.Mellroth P,Karlsson J,Hakansson J,et al.Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro.Proc Natl Acad Sci USA 2005 102(18):6455-6460.
    13.Vouk K,Gazvoda B,Komel R.Fluorescent multiplex PCR and capillary electrophoresis for analysis of PKD1and PKD2 associated microsatellite markers.Biotechniques 2000;29(6):1186-1188,1190.
    14.Dreesen JC,Jacobs LJ,Bras M,et al.Multiplex PCR of polymorphic markers flanking the CFTR gene;a general approach for preimplantation genetic diagnosis of cystic fibrosis.Mol Hum Reprod 2000;6(5):391-396.
    15.Hughes D,Wallace A,Taylor J,et al.Fluorescent multiplex microsatellites used to define haplotypes associated with 75 CFTR mutations from the UK on 437 CF chromosomes.Hum Mutat 1996;8(3):229-235.
    16.Cryer NC,Butler DR,Wilkinson MJ.High throughput,high resolution selection of polymorphic microsatellite loci for multiplex analysis.Plant Methods 2005;1(1):3.
    17.Sampalo P,Gusmao L,Correia A,et al.New microsatellite multiplex PCR for Candida albicans strain typing reveals microevolutionary changes.J Clin Microbiol 2005;43(8):3869-3876.
    18.Halverson J,Basten C.A PCR multiplex and database for forensic DNA identification of dogs.J Forensic Sci 2005;50(2):352-363.
    19.Peredo EL,Arroyo-Garcia R,Jose M.,et al.Evaluation of microsatellite detection using autoradiography and capillary electrophoresis in Hops.J Am Soc Brew Chem,2005;63(2):57-62.
    20.Fulton JE,Delany ME.Poultry genetic resource operation rescue needed.Science 2003;300:1667-1668.
    21.曲鲁江,李显耀,徐桂芳,等.利用微卫星标记分析中国地方鸡种的遗传多样性中国科学C辑:生命科学2006;36(1):17-26.
    22.朱文进,张美俊,葛慕湘,等.中国8个地方驴种遗传多样性和系统发生关系的微卫星分析.中国农业科学 2006;39(2):398-405.
    23.Weinberger R.The evolution of capillary electrophoresis:Past,present,and future Capillary Electrophoresis 2002;5:32-40.
    24.J.Andrew DeWoody JS,Leo Kenefic,Joseph Busch,Lisa Murfitt,and Paul Keim.Universal method for producing ROX-labeled size standards suitable for automated genotyping.BioTechniques 2004;37:348-352.
    25.Wenz H,Robertson JM,Menchen S,et al.High-precision genotyping by denaturing capillary electrophoresis.Genome Res 1998;8(1):69-80.
    26.Lee TH,Naltoh N,Yamazaki F.Chromosome studies on the mitten crabs E.riocheir and E.sinensis.Fisheries Sci 2004;70:211-214.
    27.Vision TJ,Brown DG,Tanksley SD.The Origins of Genomic Duplications in Arabidopsis.Science 2000 2902114-2117.
    28.Friedman R,Hughes AL.Pattern and Timing of Gene Duplication in Animal Genomes.Genome Research 2001;11:1842-1847.
    29.Holland PWH.Gene duplication:Past,present and future.Seminars in Cell and Developmental Biology 1999;10(5):541-547
    30.Lynch M.Gene Duplication and Evolution.Sci 2002;297:945-947.
    31.David L,Blum S,Feldman MW,Lavi U,Hillel J.Recent duplication of the common carp(Cyprinus carpio L.)genome as revealed by analyses of microsatellite loci.Mol Biol Evol 2003;20(9):1425-1434.
    32.H(a|¨)nfling B,Weetman D.Characterization of microsatellite loci for the Chinese mitten crab,Eriocheir sinensis.Molecular Ecology Note 2003;3:15-17.
    33.张秀梅,柳广东,高天翔.绒螯蟹种质资源研究进展.青岛海洋大学学报(自然科学版)2002;32(4):533-542.
    34.Wolfus GM,Garcia DK,Alcivar-Warren A.Application of the microsatellite technique for analyzing genetic diversity in shrimp breeding programs Aquaculture 1997;152:35-47.
    35.Moorea SS,Whana V,Davisa GP,et al.The development and application of genetic markers for the Kuruma prawn Penaeus japonicus Aquaculture 1999;173:19-32.
    36.Paetkau D,Amstrup SC,Born EW,et al.Genetic structure of the world's polar bear populations.Mol Ecol 1999;8(10):1571-1584.
    37.Ayres KL,BALDING DJ.Measuring departures from Hardy-Weinberg:a Markov chain Monte Carlo method for estimating the inbreeding coefficient.Heredity 1998;80(6):769-777.
    38.Nei M.F-statistics and analysis ofgene diversity in subdivided populations.Annals of Human Genetics 1977;41(2):225-233.
    39. Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA. Inheritance of null alleles for microsatellites in the white pine weevil (Pissodes strobi [Peck] [Coleoptera: Curculionidae]). J Hered 2002;93(1):67-70.
    1.曲鲁江,李显耀,徐桂芳.利用微卫星标记分析中国地方鸡种的遗传多样性.中国科学c生命科学2006;36(1):17-26.
    2.Kleppe K,Ohtsuka E,Kleppe R,et al.Studies on polynucleotides.XCVI.Repair replications of short synthetic DNA's as catalyzed by DNA polymerases.J Mol Biol 1971;56:341-361.
    3.Mullis K.Dancing Naked in the Mind Field.New York:Pantheon Books;1998.
    4.Panagopoulos I,Lassen C,Kristoffersson U,Aman P.A methylation PCR approach for detection of fragile X syndrome.Hum Mutat 1999;14(1):71-79.
    5.Hahn S,Zhong XY,Troeger C,Burgemeister R,Gloning K,Holzgreve W.Current applications of single-cell PCR.Cell Mol Life Sci 2000;57(1):96-105.
    6.Weising K,Gardner RC.A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms.Genome 1999;42(1):9-19.
    7.Elnifro EM,Ashshi AM,Cooper RJ,et al.Multiplex PCR:optimization and application in diagnostic virology.Clin Microbiol Rev 2000;13:559-570.
    8.Inagaki S.A new 39-plex analysis method for SNPs including 15 blood group loci.Forensic Sci Int 2004;144:45-57.
    9.Tettelin H,Radune D,Kasif S,et al.Optimized multiplex PCR:efficiently closing whole-genome shotgun sequencing project.Genomics 1999;62:500-507.
    10.Shi MM.Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies.Clinical Chemistry 2001;47:164-172.
    11.Dreesen JC,Jacobs LJ,Bras M,et al.Multiplex PCR of polymorphic markers flanking the CFTR gene;a general approach for preimplantation genetic diagnosis of cystic fibrosis.Mol Hum Reprod 2000;6(5):391-396.
    12.Sampaio P,Gusmao L,Correia A,et al.New microsatellite multiplex PCR for Candida aibicans strain typing reveals microevolutionary changes.J Clin Microbiol 2005;43(8):3869-3876.
    13.Moutou C,Gardes N,Viville S.Multiplex PCR combining deltaF508 mutation and intragenic microsatellites of the CFTR gene for pre-implantation genetic diagnosis(PGD) of cystic fibrosis.Eur J Hum Genet 2002;10(4):231-238.
    14.Schleiermacher G,Peter M,Michon J,et al.A multiplex PCR assay for routine evaluation of deletion of the short arm of chromosome 1 in neuroblastoma.Eur J Cancer 1995;31A(4):535-538.
    15. Morral N, Estivill X. Multiplex PCR amplification of three microsatellites within the CFTR gene. Genomics 1992;13(4):1362-1364.
    16. Henegariu O, Heerema NA, Dlouhy SR. Vance and P.H. Vogt. Multiplex PCR: Critical Parameters and Step-by-Step Protocol. BioTechniques 1997;23:504-511.
    17. Vouk K, Gazvoda B, Komel R. Fluorescent multiplex PCR and capillary electrophoresis for analysis of PKD1 and PKD2 associated microsatellite markers. Biotechniques 2000;29(6):1186-1188,1190.
    18. Weinberger R. The evolution of capillary electrophoresis: Past, present, and future Capillary Electrophoresis. 2002;5:32-40.
    19. Davies H, Dicks E., Stephens P. High throughput DNA sequence variant detection by conformation sensitive capillary electrophoresis and automated peak comparison. Genomics 2006;87:427-432.
    20. DeWoody JA, Schupp J, Kenefic L, Busch J, Murfitt L, Keim P. Universal method for producing ROX-labeled size standards suitable for automated genotyping. BioTechniques 2004;37:348-352.
    21. McCollum C, Chakerian V, Kaufman J, Wenz M, Andrus A. Rapid and efficient oligonucleotide synthesis with low reagent consumption via a new synthesis column design: preparation of fluorescent dye labelled primers for application in PCR. Biomed Pept Proteins Nucleic Acids 1994;1(1):25-30.
    22. Gregory SG, Howell GR, Bentley DR. Genome Mapping by Fluorescent Fingerprinting Genome Res 1997;7(12):1162-1168.
    23. Borck G, Rio M, Sanlaville D, et al. Genome-wide screening using automated fluorescent genotyping to detect cryptic cytogenetic abnormalities in children with idiopathic syndromic mental retardation. Clin Genet 2004;66(2):122-127.
    24. Sambrook J, Russel DW. Molecular Cloning: A Laboratory Manual (3rd ed.). New York: Cold Spring Harbor Laboratory Press; 2001.
    25. Lage CR, Kornfield I. Isolation and characterization of microsatellite loci in Atlantic haddock (Melanogrammus aeglefinus). Mol Ecol 1999;8(8):1355-1357.
    26. Lerceteau-Kohler E, Weiss S. Development of a multiplex PCR microsatellite assay in brown trout Salmo trutta, and its potential application for the genus. Aquaculture 2006;258:641-645.
    27. Beauclerc KB, Johnson B, White BN. Characterization, multiplex conditions, and cross-species utility of tetranucleotide microsatellite loci for Blanchard's cricket frog (Acris crepitans blanchardi). Molecular Ecology Notes 2007;7:1338-1341.
    28. HA TTT, Okabe M, Morishima K, et al. Development and multiplex PCR amplification of new microsatellite markers for the freshwater fish,ayu (Plecoglossus altivelis). Molecular Ecology Notes 2007;7:635-637.
    29. Johnson NA, Rexroad CE, Hallerman EM, et al. Development and evaluation of a new microsatellite multiplex system for parental allocation and management of rainbow trout (Oncorhynchus mykiss) broodstocks. Aquaculture 2007; 266:53-62.
    30. Fishback AG, Danzmann RG, Sakamoto T, et al. Optimization of semi-automated microsatellite multiplex polymerase chain reaction systems for rainbow trout Oncorhynchus mykiss. Aquaculture 1999 172:247-254.
    31. Nielsen JL, Crow KD, Fountain MC. Microsatellite diversity and conservation of a relic trout population: McCloud River redband trout. Mol Ecol 1999;8(12 Suppl 1):S129-142.
    32. Frasier TR, Rastogi T, Brown MW, et al. Characterization of tetranucleotide microsatellite loci and development and validation of multiplex reactions for the study of right whale species (genus Eubalaena). Molecular Ecology Notes 2006;6:1025 -1029.
    33. Yoshida K, Nakagawa M, Wada S. Multiplex PCR system applied for analysing microsatellite loci of Schlegel's black rockfish,Sebastes schlegeli. Molecular Ecology Notes 2005;5:416-418.
    34. Porta J, Porta JM, Martinez-Rodriguez G, et al. Development of a microsatellite multiplex PCR for Senegalese sole (Solea senegalensis) and its application to broodstock management. Aquaculture 2006;256:159-166.
    35. Makinen HS, Cano JM, Merila J. Genetic relationships among marine and freshwater populations of the European three-spined stickleback (Gastewsteus aculeatus) revealed by microsatellites. Molecular Ecology 2006;15:1519-1534.
    1.季维智,宿兵.遗传多样性研究的原理与方法 浙江科学技术出版社;1999.
    2.Reed DH,Frankham R.Correlation between fitness and genetic diversity.Conservation Biology 200317(1):230-237.
    3.Lacy RC.Loss of Genetic Diversity from Managed Populations:Interacting Effects of Drift,Mutation,Immigration,Selection,and Population Subdivision.Conservation Biology 1987 1(2):143-158.
    4.Trimnella AR,Kraemera SM,Mukherjeea S,et al.Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria.Molecular and Biochemical Parasitology 2006;148(2):169-180
    5.Bouzat JL.The importance of control populations for the identification and management of genetic diversity.Genetica 2000;110(2):109-115.
    6.徐兴川.关于中华绒螯蟹品质保持问题的探讨.水产科技情报1991;18(1):17-19.
    7.张秀梅,柳广东,高天翔.绒螯蟹种质资源研究进展.青岛海洋大学学报(自然科学版)2002;32(4):533-542.
    8.Cornuent JM,Luikart G.Description and power analysis of two test for deteting recent population bottlenecks from allele frequency data.Genetics 1996;144:2001-2004.
    9.Nei M.Estimation of average heterozygosity and genetic distance from a small number of individuals.Genetics 1978;89:583-590.
    10.H(a|¨)nfling B,Weetman D.Characterization of microsatellite loci for the Chinese mitten crab,Eriocheir sinensis Mol Ecol Notes 2003;3:15-17.
    11.马春艳,陈亚瞿,张凤英.中国太湖和荷兰的中华绒螯蟹随机扩增多态性DNA分析.海洋渔业2005;27(4):276-280.
    12.高志千,周开亚.中华绒螯蟹遗传变异的RAPD分析.生物多样性1998;6(3):186-190.
    13.Zane L,Bargelloni L,Patamello T.Strategies for microsatellite isolation:a review.Mol Ecol 2002;11(1):1-16.
    14.Weber J L,Wang C.Mutation of human short tanden repeats.Hum Mol Genet,1993;2:1123-1128.
    15.Li YC,Korol AB,Fahima T,Beiles A,Nevo E.Microsatellites:genomic distribution,putative functions and mutational mechanisms:a review.Mol Ecol 2002;11(12):2453-2465.
    16.Farrall M,Weeks DE.Mutational mechanisms for generating microsatellite allele-frequency distributions: an analysis of 4,558 markers. Am J Hum Genet 1998;62(5): 1260-1262.
    17. Stella H , Phill S. A need for a sea change. Science 2006;314(712).
    18. Fulton J E, Delany ME. Poultry genetic resource operation rescue needed. Science 2003;300:1667-1668.
    1.Shackell GH,Mathias HC,Cave VM,Dodds KG.Evaluation of microsatellites as a potential tool for product tracing of ground beef mixtures.Meat Science 2005;70:337-345.
    2.Orru L,Napolitano F,Catillo G,Moioli B.Meat molecular traceability:How to choose the best set of microsatellites? Meat Science 2006;72:312-317.
    3.Pasqualone A,Montem.urro C,Caponio F,Blanco A.Identification of virgin olive oil from different cultivars by analysis of DNA microsatellites.J Agric Food Chem 2004;52(5):1068-1071.
    4.Testolin R,Lain O.DNA Extraction from Olive Oil and PCR Amplification of Microsatellite Markers.Food Chemistry and Toxicology 2005;70(1):108-112.
    5.Nielsen JL,Crow KD,Fountain MC.Microsatellite diversity and conservation of a relic trout population:McCloud River redband trout.Mol Ecol 1999;8(12 Suppl 1):S129-142.
    6.夏军红.天鹅洲白暨豚国家级自然保护区长江江豚遗传保护研究.武汉:中国科学院水生生物研究所;2004.
    7.Kayser M,Sajantila A.Mutations at Y-STR loci:implications for paternity testing and forensic analysis.Forensic Sci Int 2001;118(2-3):116-121.
    8.Halverson J,Basten C.A PCR multiplex and database for forensic DNA identification of dogs.J Forensic Sci 2005;50(2):352-363.
    9.Ayala FJ.Genetic differentiation during the speciation process.Evol Biol 1975;8:1-78.
    10.Nero E.Genetic variation in natural populations:patterns and theory.Theor Popul Biol 1978;13:121-177.
    11.Vrana RK,Wheeler W.Individual organisms as terminal entities:laying the species problem to rest.Cladistics 1992 8:67-72.
    12.Bowcock AM,Ruiz-Linares A,Tomfohrde J,al.et.High resolution of human evolutionary trees with polymorphic microsatellites..Nature 1994;368:455-457.
    13.Estoup A,Garnery L,Solignac M,et al.Microsatellite variation in honey bee(Apis mellifera L.)populations:hierarchical genetic structure and test of the infinite allele and stepwise mutation models.Genetics 1995;140:679-695.
    14.Zhivotovsky LA.A new genetic distance with application to constrained variation at microsatellite loci.Mol Biol Evol 1999;16(4):467-471.
    15.Wang R,Zheng L,Toure YT,et al.When genetic distance matters:measuring genetic differentiation at microsatellite loci in whole-genome scans of recent and incipient mosquito species.Proc Natl Acad Sci U S A 2001;98(19):10769-10774.
    16.Paetkau D,Calvert W,Stirling I,Strobeck C.Microsatellite analysis of population structure in Canadian polar bears.Mol Ecol 1995;4(3):347-354.
    17.Wilson GA,Rannala B.Bayesian inference of recent migration rates using multilocus genotypes.Genetics 2003;163(3):1177-1191.
    18.Rannala B,Mountain JL.Detecting immigration by using multilocus genotypes.Proc Natl Acad Sci USA 1997;94:9197-9221.
    19.NEI M.Molecular Evolutionary Genetics.New York:Columbia University Press;1987.
    20.Cavalli-Sforza LL,Edwards AWF.Phylogenetic analysis:models and estimation procedures.Am J Hum Genet 1967;19:233-257.
    21.Chakraborty R,Jin L.A unified approach to study hypervariable polymorphisms:statistical considerations of determining relatedness and population distances.PENA SD,CHAKRABORTY JR,editors.Basel,Switzerland:Birkhauser Verlag;1993.153-175 p.
    22.Goldstein DB, Linares AR, Cavalli-Sforzaf LL, Feldman MW. An Evaluation of Genetic Distances for Use With Microsatellite Loci. Genetics 1995; 139:463-471.
    
    23.Nei M. Genetic distance between populations. American Naturalist 1972;106:283-292.
    24.Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978;89:583-590.
    25.Nei M, Roychoudhury AK. Sampling variances of heterozygosity and genetic distance Genetics 1974;76(2):379.
    26.Nei M, Tajima F, Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution 1983;19:153-170.
    27.Taylor EB, Beacham TD, Kaeriyama M. Population structure and identification of North Pacific Ocean chum salmon (Oncorhynchus keta) revealed by an analysis of minisatellite DNA variation.. Can J Fish Aquat Sci 1994; 51:1430-1442..
    28.Cornuet JM, S. Aulagnier, S. Lek, P. Franck, Solignac M. Classifying individuals among infra-specific taxa using microsatellite data and neural networks. C R Acad Sci Paris, Life Sci 1996;319:1167-1177.
    29.Favre L, Balloux F, Goudet J, Perrin N. Female-biased dispersal in the monogamous mammal Crocidura russula: evidence from field data and microsatellite patterns. Proc Biol Sci 1997;264(1378): 127-132.
    30.Robertson A, Charlesworth D, Ober C. Effect of inbreeding avoidance on Hardy-Weinberg expectations: examples of neutral and selected loci. Genet Epidemiol 1999; 17(3): 165-173.
    31.Catalan P, Segarra-Moragues JG, Palop-Esteban M, Moreno C, Gonzalez-Candelas F. A Bayesian approach for discriminating among alternative inheritance hypotheses in plant polyploids: the allotetraploid origin of genus Borderea (Dioscoreaceae). Genetics 2006; 172(3): 1939-1953.
    32.van Kaam JB, Bink MC, Bovenhuis H, Quaas RL. Scaling to account for heterogeneous variances in a Bayesian analysis of broiler quantitative trait loci. J Anim Sci 2002;80(1):45-56.
    33.Kim TH, Kim KS, Choi BH, et al. Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. J Anim Sci 2005;83(10):2255-2263.
    34.Skinner DM, Beattie WG, Blattner FR. The sequence of a hermit crab satellite DNA in (-TAGG-)n-(-TAGG-)n. Biochemistry 1974;13:3930-3937.
    35.Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation: a review. Mol Ecol 2002;11(1):1-16.
    36.Dodgson JB, Cheng HH, Okimoto R. DNA marker technology: a revolution in animal genetics. PoultSci 1997;76:1108-1114.
    37. Beacham TD, Mcintosh B, Macconnachie C. Microsatellite identification of individual sockeye salmon in Barkley Sound, British Columbia. Journal of Fish Biology 2002;61:1021-1032.
    38.Ben HT, Anna KS, Bjarne G. Evaluation of three strategies using DNA markers for traceability in aquaculture species. Aquaculture 2005;250:70-81.
    39.Smouse PE, Chevillon C. Analytical aspects of population-specific DNA fingerprinting for individuals. J Hered 1998;89(2): 143-150.
    1.Greilhuber J,J.Dolezel,M.Lysak,et al.The origin,evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA coments.Annals of Botany 2005;95:255-260.
    2.Hinegardner R.Evolution of genome size.Ayala FJ,editor.Sunderland.:Sinauer Associates Inc.;1976.179-199 p.
    3.Bennett M,Leitch I,editors.Genome size evolution in plants.San Diego:Elsevier;2005.89-162 p.
    4.Daniel EN,Stephen RP.Genome Size Evolution in Pufferfish:A Comparative Analysis of Diodontid and Tetraodontid Pufferfish Genomes.Genome Research 2007;13:821-830.
    5.Hicky AJR,clements KD.Genome size ecolution in New Zealand Triplefin fishes.Jounal of heredity 2005;96(4):365-362.
    6.Konstantinidis KT,Tiedje JM.Trends between gene content and genome size in prokaryotic species with larger genomes PNAS 2004;101:3160-3165
    7.Sun LV,Foster JM,Yzertzinis G,et al.Determination of Wolbachia genome size by pulsed(?)eld gel electrophoresis.J Bacteriol 2001;183:2219-2225.
    8.Rydkina E,Roux V,Raoult D.Determination of the genome size of Ehrlichia spp.,using pulsed(?)eld gel electrophoresis.FEMS Microbiol Lett 1999;176:73-78.
    9.zhang JZ,Fab MY.Determination of genome size and restriction fragment length polymorphism of four Chinese rickettsial isolates by pusled-fiels gel electrophoresis.Acta Virology 2002;46:25-30.
    10.Shapiro HS,editor.Nucleic Acid.Cleveland Ohio:CRC press;1970.113 p.
    11.Voglmayr H,Greilhuber J.Genome size determination in peronosporales(Oomycota) by Feulgen image analysis.Fungal Genet Biol 1998;25:181-195.
    12.De Vita R,Cavallo D,Eleuteri P,et al.Evaluation of interspecific DNA content variations and sex identification in Falconiformes and Stringiformes by flow cytometric analysis.Cytometry 1994;16:346-350.
    13.Lamatsch DK,Steinlein C,Schmid M,et al.Noninvasive determination of genome size and ploidy level in fishes by flow cytometry:detection of triploid Poecilia formosa.Cytometry 2000;39:91-95.
    14.任修海,崔建勋.14种淡水鱼基因组大小变异的研究.遗传1994;16(3):17-20.
    15.Johnston JS,Bennett MD,Rayburn AL,Galbraith DW,Price HJ.Reference standards for determination of DNA content of plant nuclei.American Journal of Botany 1999;86:609-613.
    16.Nolan T,Hands RE,Bustin S.Quantification of mRNA using real-time RT-PCR.Nat Protoc 2006;1(3):1559-1582.
    17.Nailis H,Coenye T,Van Nieuwerburgh F,et al.Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR.BMC Mol Biol 2006;7:25-30.
    18.Wilhelm J,Pingoud A,Hahn M.Real-time PCR-based method for the estimation of genome sizes.Nucleic Acids Research 2003:31(10).
    19.赵金良,李思发.中华绒螯蟹基因组研究概述.集美大学学报(自然科学版)2003;8(4):311-316.
    20.Higuchi R,Fockler C.Kinetic PCR analysis:real-time monitoring of DNA amplification reactions..Biotechnology,1993;11(9):1026-1030.
    21.Higuchi R,Dollinger G,Walsh PS,et al.Simultaneous amplification and detection of specific DNA sequences.Biotechnoiogy 1992;10:413-417.
    22.Burr B.Mapping and Sequencing the Rice Genome.Plant Cell 2002;14(3):521-523.
    23.Dolezel J,Bartos J,Voglmayr H,et al.Nuclear DNA content and genome size of trout and human.Cytometry 2003;51 A:127-128.
    24.Higuchi R,Fockler C,Dollinger G,et al.Kinetic PCR:Real time monitoring of DNA amplification reactions.Biotechnology 1993;11:1026-1030.
    25.刘进元.同步PCR技术及其在植物核酸分子定量中的应用.植物学报 2003;45(6):631-637.
    26.Ding C,Cantor CR.Quantitative analysis of nucleic acids—the last few years of progress.Journal of Biochemistry and Molecular Biology 2004;37:1-10.
    27.Becker K,Pan D,Whitely CB.Real-time quantitative polymerase chain reaction to assess gene transfer.Hum Gene Ther 1999;10:2559-2566.
    28.Bieche I,Oondy P.Real-time reverse transcription-PCR assay for future nagement of ERBB2-based clinical apolications.Clin Chem 1999;45:1148-1156.
    29.Wang X,Li X.Application of real-time polymerase chain reaction to quantitate induced expression of interleukin-1 beta mRNA in ischemic brain tolerance.NeurosciRes 2000;59(2):238-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700