用户名: 密码: 验证码:
复杂疾病连锁不平衡分析及诱变小鼠模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互作用,常常伴有环境因素或其他未知的随机因素参与,在各种因素共同协同作用下发生。复杂疾病在普通人群中发病率较高(一般≥1%),所以也称作常见疾病,如精神分裂症、老年黄斑、糖尿病、哮喘、心血管疾病等等,均属于复杂疾病。由于缺乏对复杂疾病的致病机制的了解,一直没有找到有效的治疗手段,因而也日益成为各国科学家们的研究热点。本论文的主要工作是采用连锁不平衡的分析方法在中国汉族人群中研究精神分裂症和老年黄斑变性这两种复杂疾病和它们的易感基因之间的相关性。
     精神分裂症(MIM 181500)是最严重精神疾病之一,在世界范围发病率为1%左右。双生子,家系,寄养子的研究结果,提供了强有力的证据表明精神分裂症是一种复杂遗传疾病,具有很强的遗传性。但引发精神分裂症的基因仍然不明。
     精神疾病的谷氨酸假说中提示,NMDA受体对精神类疾病的易感性起着重要的作用。由NOS1催化产生的一氧化氮是NMDA的二级信使,在神经系统,免疫系统和心血管系统中起着重要的调节作用。NOS1定位在12q22-24,是和许多精神疾病相关的一个易感基因。我们选择了11个位点,包括一个微卫星标记在总共1705份病例对照组样品中采用测序的手段进行了连锁不平衡分析。我们发现rs3782206这个位点即使经过校正也在全部的病例对照组样品中与精神分裂症显著关联p<0.05。而且由它和rs3837437组成的单倍型也和精神分裂症以及偏执型亚型存在显著的关联.我们的实验结果证实了NOS1是中国汉族人群中精神分裂症的易感基因,也支持了精神分裂症的谷氨酸通路假说。
     DISC1自从1990年在苏格兰精神病大家系中被发现后,一直是研究者的焦点候选基因。特别是最近几年研究者们陆续阐明了DISC1的通路以及通路上的蛋白。DISC1通过跟PDE4B、NDEL1、LIS1、FEZ1等蛋白的相互作用影响了神经元的迁移、细胞骨架定位和神经传导过程。DISC1和它的通路很好的支持了精神类疾病的神经发育假说并且给认知障碍的发病机制提供了可信的解释。我们选择了覆盖了整个DISC1基因的16个SNPs位点,采用TaqMan的分型手段在576份病例对照组样品中进行了分型。结果显示rs1322784、rs7514199、rs2738864、rs1000731、和rs16841582都显示出与精神分裂症的关联P<0.05。而rs1322784、rs7514199和rs2738864组成的核心单倍型也显示出了强烈的关联。同时,我们对基因表达水平在病例和对照组的外周血细胞中进行了研究,发现这些基因的表达关联程度很强, NDEL1和PDE4B在病例组中都显著的高于正常组。通过Logistic多元回归方法构建的疾病模型,发现NDEL1和DISC1能够具有73.74%的准确度将样品的疾病状态分类。我们的结果在分子遗传和表达水平上都支持DISC1作为中国人群中的精神分裂症的易感基因。
     老年性黄斑变性(MIM 153800)是一种随年龄增加而发病率上升并导致双眼中心视力损害,是视网膜色素上皮细胞和神经视网膜退行性变造成的一种不可逆性视力下降或丧失的疾病。最近科学家们通过全基因组连锁分析和关联分析的手段找到了致病的两个候选基因CFH和ARMS2。我们在192个病例对照样本中进行了关联分析。结果显示在中国人群中CFH的致病位点Y402H的作用并不像在高加索人群中那样显著。在中国人群中发现了一系列同义和非同义突变rs800292、rs2274700、rs3753396、rs1329428和rs1065489与疾病有显著的相关(P<0.05,OR>1.5)。而针对ARMS2的A69S我们得出了较为一致的结果,尤其在湿性老年黄斑变性中,P值达到了1.55×10~(-7),OR达到了5.46。在相互作用分析当中我们也证实了它们之间是相对独立的作用于疾病模式。我们的实验结果进一步的支持了CFH和ARMS2是中国人群中老年黄斑变性的易感基因。
     论文的另一部分是关于ENU(乙酰基亚硝基脲)诱变小鼠模型的研究。ENU是公认的强有力的化学诱变剂,能够随机地诱导出各种表型。国际上一些研究机构通过大规模ENU诱变筛选建立了一系列突变小鼠模型家系,通过对这些小鼠模型的研究,从另一个侧面研究人类的罕见疾病和复杂疾病。我们通过ENU诱变筛查出了具有转圈表型的小鼠,通过建立小鼠家系,将突变基因定位在4号染色体上,尔后通过测序在Chd7基因的exon13上寻找到一个从精氨酸到终止子的新的突变。CHD7基因曾被发现是常染色体显性遗传病CHARGE综合症的致病基因,基于它的临床表型和Chd7突变小鼠之间存在太多的表型相似,我们相信这个ENU诱变鼠系能够成为研究CHARGE综合症发病机制的一个非常宝贵的工具。
Complex diseases are conditions that are influenced by the actions of multiple genes, their interactions with each other and with the environment. The prevalence of complex diseases is higher than 1% in general population, hence also called common diseases, such as schizophrenia, age-related macular degeneration, diabetes, asthmas, cardiovascular disease, et al. Since we know little about them and lack of effective treatments, more and more scientists participate in research on pathology and etiology of these complex diseases. The main work of my thesis is about linkage disequilibrium study on susceptible genes of schizophrenia and age-related macular degeneration in Chinese population.
     Schizophrenia (MIM 181500) is a common severe mental illness that affects 1% of the population worldwide. Data from twin, family, and adoption studies provide strong evidence that genetic factors play a major role in schizophrenia. Though its etiology remains unknown, it is well known that schizophrenia is a kind of complex disease.
     N-methyl-D-aspartate (NMDA) receptors have been proposed as mediators in glutamate hypothesis of schizophrenia. NO mainly catalyzed by NOS1 is the second messenger of NMDA and plays a vital role in nervous system, immune system and cardiovascular system. NOS1 is located in 12q22-24, a linkage location that has been linked to many neuropsychiatric phenotypes. We chose 11 variants including a microsatellite in NOS1 gene and genotyped 1705 case-control samples in our Han Chinese population by directly sequencing. Among these markers, rs3782206 revealed significant association with schizophrenia in our samples, even after corrected by 10000 permutations. And its haplotype with rs3837437 also showed the association with schizophrenia and S-P subtype. Our results supported NOS1 as a susceptible gene of schizophrenia and solidified the glutamate hypothesis.
     DISC1 gene is disrupted by the chromosome 1 breakpoint of a balanced t (1;11) translocation that co-segregates with schizophrenia and related mood disorders in a large multi-generational Scottish pedigree. It is always the hottest candidate gene of schizophrenia. Recent research has elucidated that the DISC1 binding partners, such as ATF4, PDE4B, NDEL1, LIS1 and FEZ1, and how they interact with DISC1 to effect the neuronal migration, cytoskeletal location and neuronal signaling. The biochemical evidence supports the hypothesis of neurodevelopment of schizophrenia and provides the convincing explanation for deficit cognition performance. We selected 16 SNPs covering the whole genomic DNA of DISC1 and genotyped in 576 case-control samples by TaqMan method. Our results found that rs1322784, rs7514199, rs2738864, rs1000731 and rs16841582 showed significant deviation of allelic distribution between case and control. Furthermore, the core haplotype of rs1322784, rs7514199 and rs2738864 was associated with schizophrenia as well. Meanwhile, we conducted RT-PCR to measure the expression of DISC1 and its binding molecular on peripheral blood mononuclear cell. We found a high correlation between them, particularly the expression of NDEL1 and PDE4B which was increased in case compared to the control. Logistic multiple regression model including NDEL1 and DISC1 made 73.74% contribution to diagnosis the status of disease. Our results provided further evidence for DISC1 as the important gene in the etiology of schizophrenia in Han Chinese population.
     Age-related macular degeneration (AMD, MIM 153800) is an age-associated progressive disease affecting the central regions of the retina and choroid, which can lead to loss of central vision. The whole genome linkage and association studies have identified two convincing genes, CFH and ARMS2 in the etiology of AMD currently.
     We performed an association study on our 192 case-control Han Chinese AMD samples. As for Y402H in CFH, we did not get the significant signal in Y402H as in Caucasian. Instead, we found many other mutations as rs800292, rs2274700, rs3753396, rs1329428 and rs1065489 showing positive result in our samples (P<0.05, OR>1.5). As for ARMS2, we gained the consistent result and P value of A69S reached to 1.55×10~(-7) when we stratified samples into wet type of AMD. We evaluated the role of epistasis among these positive mutations in two genes; we observed no statistically significant non-additive interactions, which suggested these loci independently contributed to the disease. Our results provided a further support for CFH and ARMS2 as the susceptible genes to AMD in Han Chinese population.
     Another part of my work was about the ENU (ethylnitrosourea) mutagenesis mouse model. ENU is a synthetic compound described as the most potent mutagen in mice. Large-scale ENU mutagenesis program has provided us with a large number of new mouse mutants applied for the analysis of gene function and further for good models of some human diseases. We screened circling phenotype mice by ENU mutagenesis, mapping the related gene in chromosome 4 and sequenced a novel mutant in exon13 of mouse Chd7 gene. This novel mutant resulted in functional change from arginine to premature stop codon. It has been reported that human CHD7 gene was linked to autosome dominant disease CHARGE syndrome. On the basis of the overlap in clinical features between Chd7 mutant mice and CHARGE, we believe that these mice will be a valuable tool in further analysis of the pathology underlying the abnormalities in CHARGE syndrome.
引文
1. Botstein D, Risch N: Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 2003, 33 Suppl:228-237.
    2. Terwilliger JD, Weiss KM: Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr Opin Biotechnol 1998, 9:578-594.
    3. Thornton-Wells TA, Moore JH, Haines JL: Genetics, statistics and human disease: analytical retooling for complexity. Trends Genet 2004, 20:640-647.
    4. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al: Initial sequencing and analysis of the human genome. Nature 2001, 409:860-921.
    5. Botstein D, White RL, Skolnick M, Davis RW: Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 1980, 32:314-331.
    6. Carlson CS, Eberle MA, Kruglyak L, Nickerson DA: Mapping complex disease loci in whole-genome association studies. Nature 2004, 429:446-452.
    7. Collins FS: Positional cloning: let's not call it reverse anymore. Nat Genet 1992, 1:3-6.
    8. Integrating ethics and science in the International HapMap Project. Nat Rev Genet 2004, 5:467-475.
    9. The International HapMap Project. Nature 2003, 426:789-796.
    10. Thorisson GA, Smith AV, Krishnan L, Stein LD: The International HapMap Project Web site. Genome Res 2005, 15:1592-1593.
    11. Stankovich J, Cox CJ, Tan RB, Montgomery DS, Huxtable SJ, Rubio JP, Ehm MG, Johnson L, Butzkueven H, Kilpatrick TJ, et al: On the utility of data from the International HapMap Project for Australian association studies. Hum Genet 2006, 119:220-222.
    12. Ardlie KG, Kruglyak L, Seielstad M: Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 2002, 3:299-309.
    13. Pritchard JK, Przeworski M: Linkage disequilibrium in humans: models and data. Am J Hum Genet 2001, 69:1-14.
    14. Greenberg DA, Abreu P, Hodge SE: The power to detect linkage in complex disease by means of simple LOD-score analyses. Am J Hum Genet 1998, 63:870-879.
    15. Abreu PC, Greenberg DA, Hodge SE: Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases. Am J Hum Genet 1999, 65:847-857.
    16. Cordell HJ, Clayton DG: Genetic association studies. Lancet 2005, 366:1121-1131.
    17. Cardon LR, Bell JI: Association study designs for complex diseases. Nat Rev Genet 2001, 2:91-99.
    18. Pritchard JK, Rosenberg NA: Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 1999, 65:220-228.
    19. Devlin B, Roeder K: Genomic control for association studies. Biometrics 1999, 55:997-1004.
    20. Bacanu SA, Devlin B, Roeder K: The power of genomic control. Am J Hum Genet 2000, 66:1933-1944.
    21. Falk CT, Rubinstein P: Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann Hum Genet 1987, 51 ( Pt 3):227-233.
    22. Terwilliger JD, Ott J: A haplotype-based 'haplotype relative risk' approach to detecting allelic associations. Hum Hered 1992, 42:337-346.
    23. Spielman RS, McGinnis RE, Ewens WJ: Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993, 52:506-516.
    24. Ott J: Statistical properties of the haplotype relative risk. Genet Epidemiol 1989, 6:127-130.
    25. Brunn TG, Ewald H: Selection bias of susceptibility genes possible when using parent-offspring trios in genetic association studies. Mol Psychiatry 1999, 4:415-416.
    26. Schulze TG, Muller DJ, Krauss H, Gross M, Bauer I, Fangerau-Lefevre H, Illes F, Ohlraun S, Fimmers R, Cichon S, et al: Caught in the trio trap? Potential selection bias inherent to association studies using parent-offspring trios. Am J Med Genet 2001, 105:351-353.
    27. Weiss KM, Clark AG: Linkage disequilibrium and the mapping of complex human traits. Trends Genet 2002, 18:19-24.
    28. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES: High-resolution haplotype structure in the human genome. Nat Genet 2001, 29:229-232.
    29. Wright AF, Carothers AD, Pirastu M: Population choice in mapping genes for complex diseases. Nat Genet 1999, 23:397-404.
    30. Huttley GA, Smith MW, Carrington M, O'Brien SJ: A scan for linkage disequilibrium across the human genome. Genetics 1999, 152:1711-1722.
    31. Reich DE, Lander ES: On the allelic spectrum of human disease. Trends Genet 2001, 17:502-510.
    32. Liu H, Abecasis GR, Heath SC, Knowles A, Demars S, Chen YJ, Roos JL, Rapoport JL, Gogos JA, Karayiorgou M: Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci U S A 2002, 99:16859-16864.
    33. Becker KG: The common variants/multiple disease hypothesis of common complex genetic disorders. Med Hypotheses 2004, 62:309-317.
    34. Smith DJ, Lusis AJ: The allelic structure of common disease. Hum Mol Genet 2002, 11:2455-2461.
    35. Morton NE: Linkage disequilibrium maps and association mapping. J Clin Invest 2005, 115:1425-1430.
    36. Bearden CE, Reus VI, Freimer NB: Why genetic investigation of psychiatric disorders is so difficult. Curr Opin Genet Dev 2004, 14:280-286.
    37. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG: Replication validity of genetic association studies. Nat Genet 2001, 29:306-309.
    38. Risch N, Merikangas K: The future of genetic studies of complex human diseases. Science 1996, 273:1516-1517.
    39. Hirschhorn JN, Daly MJ: Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005, 6:95-108.
    40. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, et al: Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308:385-389.
    41. Biank V, Broeckel U, Kugathasan S: Pediatric inflammatory bowel disease: clinical and molecular genetics. Inflamm Bowel Dis 2007, 13:1430-1438.
    42. Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, Farrington SM, Prendergast J, Olschwang S, Chiang T, Crowdy E, et al: Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 2007, 39:989-994.
    43. Schmidt S, Scott WK, Postel EA, Agarwal A, Hauser ER, De La Paz MA, Gilbert JR, Weeks DE, Gorin MB, Haines JL, Pericak-Vance MA: Ordered subset linkage analysis supports a susceptibility locus for age-related macular degeneration on chromosome 16p12. BMC Genet 2004, 5:18.
    44. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann HE, et al: Genomewide association analysis of coronary artery disease. N Engl J Med 2007, 357:443-453.
    45. Plenge RM, Cotsapas C, Davies L, Price AL, de Bakker PI, Maller J, Pe'er I, Burtt NP, Blumenstiel B, DeFelice M, et al: Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 2007, 39:1477-1482.
    46. Hennah W, Thomson P, Peltonen L, Porteous D: Genes and schizophrenia: beyond schizophrenia: the role of DISC1 in major mental illness. Schizophr Bull 2006, 32:409-416.
    47. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, Bailey R, Nejentsev S, Field SF, Payne F, et al: Robust associations of four new chromosome regions fromgenome-wide analyses of type 1 diabetes. Nat Genet 2007, 39:857-864.
    48. Glass GV: Primary, secondary, and meta-analysis of research. Educ Res 1976, 6:3-8.
    49. Fleiss JL, Gross AJ: Meta-analysis in epidemiology, with special reference to studies of the association between exposure to environmental tobacco smoke and lung cancer: a critique. J Clin Epidemiol 1991, 44:127-139.
    50. 王志瑾: 循证医学与 Meta 分析. 循证医学 2002, 2:50-52.
    51. Lyons PA: Gene-expression profiling and the genetic dissection of complex disease. Curr Opin Immunol 2002, 14:627-630.
    52. Hanash S: Disease proteomics. Nature 2003, 422:226-232.
    53. Whitney AR, Diehn M, Popper SJ, Alizadeh AA, Boldrick JC, Relman DA, Brown PO: Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci U S A 2003, 100:1896-1901.
    54. Roman G, Endo K, Zong L, Davis RL: P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc Natl Acad Sci U S A 2001, 98:12602-12607.
    55. McGuire SE, Le PT, Davis RL: The role of Drosophila mushroom body signaling in olfactory memory. Science 2001, 293:1330-1333.
    56. Li T, Ma X, Sham PC, Sun X, Hu X, Wang Q, Meng H, Deng W, Liu X, Murray RM, Collier DA: Evidence for association between novel polymorphisms in the PRODH gene and schizophrenia in a Chinese population. Am J Med Genet 2004, 129B:13-15.
    57. Esteller M: The necessity of a human epigenome project. Carcinogenesis 2006, 27:1121-1125.
    58. Rauscher FJ, 3rd: It is time for a Human Epigenome Project. Cancer Res 2005, 65:11229.
    59. Eckhardt F, Beck S, Gut IG, Berlin K: Future potential of the Human Epigenome Project. Expert Rev Mol Diagn 2004, 4:609-618.
    60. Bleuler M: The concept of schizophrenia. Am J Psychiatry 1954, 111:382-383.
    61. Bebbington P: Welcome to ICD-10. Soc Psychiatry Psychiatr Epidemiol 1992, 27:255-257.
    62. Pichot P: [DSM-III: the 3d edition of the Diagnostic and Statistical Manual of Mental Disorders from the American Psychiatric Association]. Rev Neurol (Paris) 1986, 142:489-499.
    63. McGuffin P, Asherson P, Owen M, Farmer A: The strength of the genetic effect. Is there room for an environmental influence in the aetiology of schizophrenia? Br J Psychiatry 1994, 164:593-599.
    64. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, Williams NM, Schwab SG, Pulver AE, Faraone SV, et al: Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 2003, 73:34-48.
    65. Brusov OS, Faktor MI, Zlobina GP, Dupin AM, Katasonov AB, Kartseva NK, Beniashvili AG, Zharkova NB, Rubashkina VV, Morozova MA: [Parameters of platelet serotonin system in patients with schizophrenia treated with olanzapine: a search for the serotonergic predictors of therapeutic efficacy]. Zh Nevrol Psikhiatr Im S S Korsakova 2005, 105:27-34.
    66. McGue M, Gottesman, II: The genetic epidemiology of schizophrenia and the design of linkage studies. Eur Arch Psychiatry Clin Neurosci 1991, 240:174-181.
    67. Jones P: Schizophrenia after prenatal exposure to the Dutch hunger winter of 1944-1945. Arch Gen Psychiatry 1994, 51:333-334.
    68. Susser ES, Lin SP: Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944-1945. Arch Gen Psychiatry 1992, 49:983-988.
    69. Zhang F, St Clair D, Liu X, Sun X, Sham PC, Crombie C, Ma X, Wang Q, Meng H, Deng W, et al: Association analysis of the RGS4 gene in Han Chinese and Scottish populations with schizophrenia. Genes Brain Behav 2005, 4:444-448.
    70. O'Callaghan E, Gibson T, Colohan HA, Walshe D, Buckley P, Larkin C, Waddington JL: Season of birth in schizophrenia. Evidence for confinement of an excess of winter births to patients without a family history of mental disorder. Br J Psychiatry 1991, 158:764-769.
    71. Hollmann M, Heinemann S: Cloned glutamate receptors. Annu Rev Neurosci 1994, 17:31-108.
    72. Tsai G, Coyle JT: Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol 2002, 42:165-179.
    73. Ibrahim HM, Hogg AJ, Jr., Healy DJ, Haroutunian V, Davis KL, Meador-Woodruff JH: Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. Am J Psychiatry 2000, 157:1811-1823.
    74. Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T, Deshpande SN, B KT, Ferrell RE, Middleton FA, et al: Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 2002, 11:1373-1380.
    75. Clinton SM, Haroutunian V, Davis KL, Meador-Woodruff JH: Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatry 2003, 160:1100-1109.
    76. Nishikawa T, Takashima M, Toru M: Increased [3H]kainic acid binding in the prefrontal cortex in schizophrenia. Neurosci Lett 1983, 40:245-250.
    77. Kerwin RW, Patel S, Meldrum BS, Czudek C, Reynolds GP: Asymmetrical loss of glutamate receptor subtype in left hippocampus in schizophrenia. Lancet 1988, 1:583-584.
    78. Deakin JF, Slater P, Simpson MD, Gilchrist AC, Skan WJ, Royston MC, Reynolds GP, Cross AJ: Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J Neurochem 1989, 52:1781-1786.
    79. Kerwin R, Patel S, Meldrum B: Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 1990, 39:25-32.
    80. Breese CR, Freedman R, Leonard SS: Glutamate receptor subtype expression in human postmortem brain tissue from schizophrenics and alcohol abusers. Brain Res 1995, 674:82-90.
    81. Mohn AR, Gainetdinov RR, Caron MG, Koller BH: Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999, 98:427-436.
    82. Tascedda F, Blom JM, Brunello N, Zolin K, Gennarelli M, Colzi A, Bravi D, Carra S, Racagni G, Riva MA: Modulation of glutamate receptors in response to the novel antipsychotic olanzapine in rats. Biol Psychiatry 2001, 50:117-122.
    83. Harrison PJ, Owen MJ: Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003, 361:417-419.
    84. Brzustowicz LM, Simone J, Mohseni P, Hayter JE, Hodgkinson KA, Chow EW, Bassett AS: Linkage disequilibrium mapping of schizophrenia susceptibility to the CAPON region of chromosome 1q22. Am J Hum Genet 2004, 74:1057-1063.
    85. Karayiorgou M, Gogos JA: The molecular genetics of the 22q11-associated schizophrenia. Brain Res Mol Brain Res 2004, 132:95-104.
    86. Paterlini M, Zakharenko SS, Lai WS, Qin J, Zhang H, Mukai J, Westphal KG, Olivier B, Sulzer D, Pavlidis P, et al: Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat Neurosci 2005, 8:1586-1594.
    87. Snyder SH: The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry 1976, 133:197-202.
    88. Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M: Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 1998, 155:761-767.
    89. Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R: Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 1999, 46:56-72.
    90. Snyder SH: Amphetamine psychosis: a "model" schizophrenia mediated by catecholamines. Am J Psychiatry 1973, 130:61-67.
    91. Creese I, Burt DR, Snyder SH: Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. J Neuropsychiatry Clin Neurosci 1996, 8:223-226.
    92. Creese I, Burt DR, Snyder SH: Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976, 192:481-483.
    93. Farde L, Wiesel FA, Stone-Elander S, Halldin C, Nordstrom AL, Hall H, Sedvall G: D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C]raclopride. Arch Gen Psychiatry 1990, 47:213-219.
    94. Huttunen M: The evolution of the serotonin-dopamine antagonist concept. J Clin Psychopharmacol 1995, 15:4S-10S.
    95. Huntsman MM, Tran BV, Potkin SG, Bunney WE, Jr., Jones EG: Altered ratios of alternatively spliced long and short gamma2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics. Proc Natl Acad Sci U S A 1998, 95:15066-15071.
    96. Ordway GA, Klimek V: Noradrenergic pathology in psychiatric disorders: postmortem studies. CNS Spectr 2001, 6:697-703.
    97. Johnstone EC, Crow TJ, Frith CD, Husband J, Kreel L: Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 1976, 2:924-926.
    98. Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR, Verchinski BA, Meyer-Lindenberg A, Balkissoon R, Kolachana B, et al: Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci U S A 2005, 102:8627-8632.
    99. Rajkowska G, Selemon LD, Goldman-Rakic PS: Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 1998, 55:215-224.
    100. Sullivan EV, Shear PK, Lim KO, Zipursky RB, Pfefferbaum A: Cognitive and motor impairments are related to gray matter volume deficits in schizophrenia. Biol Psychiatry 1996, 39:234-240.
    101. Lawrie SM, Abukmeil SS: Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 1998, 172:110-120.
    102. Suddath RL, Christison GW, Torrey EF, Casanova MF, Weinberger DR: Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 1990, 322:789-794.
    103. Gaser C, Nenadic I, Buchsbaum BR, Hazlett EA, Buchsbaum MS: Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex. Am J Psychiatry 2004, 161:154-156.
    104. Abi-Dargham A, Moore H: Prefrontal DA transmission at D1 receptors and the pathology of schizophrenia. Neuroscientist 2003, 9:404-416.
    105. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, Devon RS, Clair DM, Muir WJ, Blackwood DH, Porteous DJ: Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000, 9:1415-1423.
    106. Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R, Suhonen J, Ellonen P, Chan G, Sinsheimer JS, et al: Chromosome 1 loci in Finnish schizophrenia families. Hum Mol Genet 2001, 10:1611-1617.
    107. Hennah W, Varilo T, Kestila M, Paunio T, Arajarvi R, Haukka J, Parker A, Martin R, Levitzky S, Partonen T, et al: Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003, 12:3151-3159.
    108. Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA, Steel G, Nestadt G, Liang KY, Huganir RL, et al: Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet 2005, 77:918-936.
    109. Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH, Malhotra AK: Disrupted in Schizophrenia 1 (DISC1): Association with Schizophrenia, Schizoaffective Disorder, and Bipolar Disorder. Am J Hum Genet 2004, 75:862-872.
    110. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P: Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000, 28:53-67.
    111. Larminie C, Murdock P, Walhin JP, Duckworth M, Blumer KJ, Scheideler MA, GarnierM: Selective expression of regulators of G-protein signaling (RGS) in the human central nervous system. Brain Res Mol Brain Res 2004, 122:24-34.
    112. Ross EM, Wilkie TM: GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 2000, 69:795-827.
    113. Chen X, Dunham C, Kendler S, Wang X, O'Neill FA, Walsh D, Kendler KS: Regulator of G-protein signaling 4 (RGS4) gene is associated with schizophrenia in Irish high density families. Am J Med Genet 2004, 129B:23-26.
    114. Sobell JL, Richard C, Wirshing DA, Heston LL: Failure to confirm association between RGS4 haplotypes and schizophrenia in Caucasians. Am J Med Genet B Neuropsychiatr Genet 2005, 139:23-27.
    115. Straub RE, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F, Shinkwin R, Webb BT, Zhang J, Walsh D, et al.: A potential vulnerability locus for schizophrenia on chromosome 6p24-22: evidence for genetic heterogeneity. Nat Genet 1995, 11:287-293.
    116. Maziade M, Bissonnette L, Rouillard E, Martinez M, Turgeon M, Charron L, Pouliot V, Boutin P, Cliche D, Dion C, et al: 6p24-22 region and major psychoses in the Eastern Quebec population. Le Groupe IREP. Am J Med Genet 1997, 74:311-318.
    117. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C, Wormley B, Sadek H, Kadambi B, et al: Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002, 71:337-348.
    118. Tang JX, Zhou J, Fan JB, Li XW, Shi YY, Gu NF, Feng GY, Xing YL, Shi JG, He L: Family-based association study of DTNBP1 in 6p22.3 and schizophrenia. Mol Psychiatry 2003, 8:717-718.
    119. Williams NM, Preece A, Morris DW, Spurlock G, Bray NJ, Stephens M, Norton N, Williams H, Clement M, Dwyer S, et al: Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Arch Gen Psychiatry 2004, 61:336-344.
    120. Addington AM, Gornick MC, Shaw P, Seal J, Gogtay N, Greenstein D, Clasen L, Coffey M, Gochman P, Long R, Rapoport JL: Neuregulin 1 (8p12) and childhood-onset schizophrenia: susceptibility haplotypes for diagnosis and brain developmental trajectories. Mol Psychiatry 2007, 12:195-205.
    121. Li T, Stefansson H, Gudfinnsson E, Cai G, Liu X, Murray RM, Steinthorsdottir V, Januel D, Gudnadottir VG, Petursson H, et al: Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype. Mol Psychiatry 2004, 9:698-704.
    122. Tang JX, Chen WY, He G, Zhou J, Gu NF, Feng GY, He L: Polymorphisms within 5' end of the Neuregulin 1 gene are genetically associated with schizophrenia in the Chinese population. Mol Psychiatry 2004, 9:11-12.
    123. Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng H, Caron MG, Tonegawa S: Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc Natl Acad Sci U S A 2003, 100:8987-8992.
    124. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, et al: Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A 2002, 99:13675-13680.
    125. Badner JA, Gershon ES: Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002, 7:405-411.
    126. Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J, Gos A, Nestadt G, Wolyniec PS, Lasseter VK, et al.: Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci U S A 1995, 92:7612-7616.
    127. Pulver AE, Nestadt G, Goldberg R, Shprintzen RJ, Lamacz M, Wolyniec PS, Morrow B, Karayiorgou M, Antonarakis SE, Housman D, et al.: Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. J Nerv Ment Dis 1994, 182:476-478.
    128. Murphy KC, Jones LA, Owen MJ: High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 1999, 56:940-945.
    129. Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML, Lenane M, Robertson B, Wijsman EM, Rapoport JL, et al: Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci U S A 2002, 99:3717-3722.
    130. Williams HJ, Williams N, Spurlock G, Norton N, Ivanov D, McCreadie RG, Preece A, Sharkey V, Jones S, Zammit S, et al: Association between PRODH and schizophrenia is not confirmed. Mol Psychiatry 2003, 8:644-645.
    131. Gothelf D, Eliez S, Thompson T, Hinard C, Penniman L, Feinstein C, Kwon H, Jin S, Jo B, Antonarakis SE, et al: COMT genotype predicts longitudinal cognitive decline and psychosis in 22q11.2 deletion syndrome. Nat Neurosci 2005, 8:1500-1502.
    132. Jacquet H, Raux G, Thibaut F, Hecketsweiler B, Houy E, Demilly C, Haouzir S, Allio G, Fouldrin G, Drouin V, et al: PRODH mutations and hyperprolinemia in a subset of schizophrenic patients. Hum Mol Genet 2002, 11:2243-2249.
    133. Jacquet H, Demily C, Houy E, Hecketsweiler B, Bou J, Raux G, Lerond J, Allio G, Haouzir S, Tillaux A, et al: Hyperprolinemia is a risk factor for schizoaffective disorder. Mol Psychiatry 2005, 10:479-485.
    134. Bender HU, Almashanu S, Steel G, Hu CA, Lin WW, Willis A, Pulver A, Valle D: Functional consequences of PRODH missense mutations. Am J Hum Genet 2005, 76:409-420.
    135. Fan JB, Zhang CS, Gu NF, Li XW, Sun WW, Wang HY, Feng GY, St Clair D, He L: Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol Psychiatry 2005, 57:139-144.
    136. Friedman DS, O'Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT, Nemesure B, Mitchell P, Kempen J: Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 2004, 122:564-572.
    137. Klein R, Klein BE, Linton KL: Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology 1992, 99:933-943.
    138. Klein BE, Klein R, Linton KL: Prevalence of age-related lens opacities in a population. The Beaver Dam Eye Study. Ophthalmology 1992, 99:546-552.
    139. Huang GH, Klein R, Klein BE, Tomany SC: Birth cohort effect on prevalence of age-related maculopathy in the Beaver Dam Eye Study. Am J Epidemiol 2003, 157:721-729.
    140. Klein R, Davis MD, Magli YL, Segal P, Klein BE, Hubbard L: The Wisconsin age-related maculopathy grading system. Ophthalmology 1991, 98:1128-1134.
    141. Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, de Jong PT, Klaver CC, Klein BE, Klein R, et al.: An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Surv Ophthalmol 1995, 39:367-374.
    142. Braccio L, Camparini M, Graziosi P, Baratta G, Ferrigno L, Williams SL, Rosmini F, Sperduto RD, Maraini G: An independent evaluation of the Age-Related Eye Disease Study (AREDS) cataract grading system. Curr Eye Res 1998, 17:53-59.
    143. The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: the Age-Related Eye Disease Study Report Number 6. Am J Ophthalmol 2001, 132:668-681.
    144. The age-related eye disease study (AREDS) system for classifying cataracts from photographs: AREDS report no. 4. Am J Ophthalmol 2001, 131:167-175.
    145. Smith RT, Chan JK, Nagasaki T, Ahmad UF, Barbazetto I, Sparrow J, Figueroa M, Merriam J: Automated detection of macular drusen using geometric background leveling and threshold selection. Arch Ophthalmol 2005, 123:200-206.
    146. Blumenkranz MS, Woodburn KW, Qing F, Verdooner S, Kessel D, Miller R: Lutetium texaphyrin (Lu-Tex): a potential new agent for ocular fundus angiography and photodynamic therapy. Am J Ophthalmol 2000, 129:353-362.
    147. Spraul CW, Lang GE, Lang GK: [Value of optical coherence tomography in diagnosisof age-related macular degeneration. Correlation of fluorescein angiography and OCT findings]. Klin Monatsbl Augenheilkd 1998, 212:141-148.
    148. Soliman W, Sander B, Soliman KA, Yehya S, Rahamn MS, Larsen M: The predictive value of optical coherence tomography after grid laser photocoagulation for diffuse diabetic macular oedema. Acta Ophthalmol Scand 2007.
    149. Lewis H: Subfoveal choroidal neovascularization: is there a role for submacular surgery? Am J Ophthalmol 1998, 126:127-129.
    150. Pieroni CG, Witkin AJ, Ko TH, Fujimoto JG, Chan A, Schuman JS, Ishikawa H, Reichel E, Duker JS: Ultrahigh resolution optical coherence tomography in non-exudative age related macular degeneration. Br J Ophthalmol 2006, 90:191-197.
    151. Seddon JM, Chen CA: The epidemiology of age-related macular degeneration. Int Ophthalmol Clin 2004, 44:17-39.
    152. Seddon JM, Santangelo SL, Book K, Chong S, Cote J: A genomewide scan for age-related macular degeneration provides evidence for linkage to several chromosomal regions. Am J Hum Genet 2003, 73:780-790.
    153. Klein R, Klein BE, Tomany SC, Meuer SM, Huang GH: Ten-year incidence and progression of age-related maculopathy: The Beaver Dam eye study. Ophthalmology 2002, 109:1767-1779.
    154. McCarty CA, Mukesh BN, Fu CL, Mitchell P, Wang JJ, Taylor HR: Risk factors for age-related maculopathy: the Visual Impairment Project. Arch Ophthalmol 2001, 119:1455-1462.
    155. Kelly SP, Edwards R, Elton P, Mitchell P: Age related macular degeneration: smoking entails major risk of blindness. Bmj 2003, 326:1458-1459; author reply 1459-1460.
    156. Mares-Perlman JA, Fisher AI, Klein R, Palta M, Block G, Millen AE, Wright JD: Lutein and zeaxanthin in the diet and serum and their relation to age-related maculopathy in the third national health and nutrition examination survey. Am J Epidemiol 2001, 153:424-432.
    157. Hyman L, Schachat AP, He Q, Leske MC: Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group. Arch Ophthalmol 2000, 118:351-358.
    158. Metelitsina TI, Grunwald JE, DuPont JC, Ying GS: Effect of systemic hypertension on foveolar choroidal blood flow in age related macular degeneration. Br J Ophthalmol 2006, 90:342-346.
    159. Seddon JM, Rosner B, Sperduto RD, Yannuzzi L, Haller JA, Blair NP, Willett W: Dietary fat and risk for advanced age-related macular degeneration. Arch Ophthalmol 2001, 119:1191-1199.
    160. Klaver CC, Allikmets R: Genetics of macular dystrophies and implications for age-related macular degeneration. Dev Ophthalmol 2003, 37:155-169.
    161. Klaver CC, Assink JJ, Vingerling JR, Hofman A, de Jong PT: Smoking is also associated with age-related macular degeneration in persons aged 85 years and older: The Rotterdam Study. Arch Ophthalmol 1997, 115:945.
    162. Klaver CC, Kliffen M, van Duijn CM, Hofman A, Cruts M, Grobbee DE, van Broeckhoven C, de Jong PT: Genetic association of apolipoprotein E with age-related macular degeneration. Am J Hum Genet 1998, 63:200-206.
    163. Santangelo SL, Yen CH, Haddad S, Fagerness J, Huang C, Seddon JM: A discordant sib-pair linkage analysis of age-related macular degeneration. Ophthalmic Genet 2005, 26:61-67.
    164. Hammond BR, Jr., Wooten BR, Snodderly DM: Cigarette smoking and retinal carotenoids: implications for age-related macular degeneration. Vision Res 1996, 36:3003-3009.
    165. Ennis S, Goverdhan S, Cree A, Hoh J, Collins A, Lotery A: Fine-scale linkage disequilibrium mapping of age-related macular degeneration in the complement factor H gene region. Br J Ophthalmol 2007, 91:966-970.
    166. Kenealy SJ, Schmidt S, Agarwal A, Postel EA, De La Paz MA, Pericak-Vance MA, Haines JL: Linkage analysis for age-related macular degeneration supports a gene on chromosome 10q26. Mol Vis 2004, 10:57-61.
    167. Klein ML, Schultz DW, Edwards A, Matise TC, Rust K, Berselli CB, Trzupek K,Weleber RG, Ott J, Wirtz MK, Acott TS: Age-related macular degeneration. Clinical features in a large family and linkage to chromosome 1q. Arch Ophthalmol 1998, 116:1082-1088.
    168. Stone EM, Nichols BE, Streb LM, Kimura AE, Sheffield VC: Genetic linkage of vitelliform macular degeneration (Best's disease) to chromosome 11q13. Nat Genet 1992, 1:246-250.
    169. Marmorstein AD, Marmorstein LY: The challenge of modeling macular degeneration in mice. Trends Genet 2007, 23:225-231.
    170. Sung YH, Song J, Lee HW: Functional genomics approach using mice. J Biochem Mol Biol 2004, 37:122-132.
    171. Nolan PM, Peters J, Strivens M, Rogers D, Hagan J, Spurr N, Gray IC, Vizor L, Brooker D, Whitehill E, et al: A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat Genet 2000, 25:440-443.
    172. Hrabe de Angelis MH, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D, Marschall S, Heffner S, Pargent W, Wuensch K, Jung M, et al: Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 2000, 25:444-447.
    173. Justice MJ, Noveroske JK, Weber JS, Zheng B, Bradley A: Mouse ENU mutagenesis. Hum Mol Genet 1999, 8:1955-1963.
    174. Srivastava AK, Kapur S, Mohan S, Yu H, Kapur S, Wergedal J, Baylink DJ: Identification of novel genetic loci for bone size and mechanosensitivity in an ENU mutant exhibiting decreased bone size. J Bone Miner Res 2005, 20:1041-1050.
    175. Hardisty RE, Mburu P, Brown SD: ENU mutagenesis and the search for deafness genes. Br J Audiol 1999, 33:279-283.
    176. Nolan PM, Peters J, Vizor L, Strivens M, Washbourne R, Hough T, Wells C, Glenister P, Thornton C, Martin J, et al: Implementation of a large-scale ENU mutagenesis program: towards increasing the mouse mutant resource. Mamm Genome 2000, 11:500-506.
    177. Zheng QY, Johnson KR, Erway LC: Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear Res 1999, 130:94-107.
    178. Rafael JA, Nitta Y, Peters J, Davies KE: Testing of SHIRPA, a mouse phenotypic assessment protocol, on Dmd(mdx) and Dmd(mdx3cv) dystrophin-deficient mice. Mamm Genome 2000, 11:725-728.
    179. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, et al: Positional cloning of the mouse circadian clock gene. Cell 1997, 89:641-653.
    180. Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS: Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 1994, 264:719-725.
    181. Percec I, Thorvaldsen JL, Plenge RM, Krapp CJ, Nadeau JH, Willard HF, Bartolomei MS: An N-ethyl-N-nitrosourea mutagenesis screen for epigenetic mutations in the mouse. Genetics 2003, 164:1481-1494.
    182. Shima N, Hartford SA, Duffy T, Wilson LA, Schimenti KJ, Schimenti JC: Phenotype-based identification of mouse chromosome instability mutants. Genetics 2003, 163:1031-1040.
    183. Keays DA, Nolan PM: N-ethyl-N-nitrosourea mouse mutants in the dissection of behavioural and psychiatric disorders. Eur J Pharmacol 2003, 480:205-217.
    184. Ohl F, Keck ME: Behavioural screening in mutagenised mice--in search for novel animal models of psychiatric disorders. Eur J Pharmacol 2003, 480:219-228.
    185. Nishimura I, Drake TA, Lusis AJ, Lyons KM, Nadeau JH, Zernik J: ENU large-scale mutagenesis and quantitative trait linkage (QTL) analysis in mice: novel technologies for searching polygenetic determinants of craniofacial abnormalities. Crit Rev Oral Biol Med 2003, 14:320-330.
    186. Ashley MV, Dow BD: The use of microsatellite analysis in population biology: background, methods and potential applications. Exs 1994, 69:185-201.
    187. Dietrich W, Katz H, Lincoln SE, Shin HS, Friedman J, Dracopoli NC, Lander ES: A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 1992, 131:423-447.
    188. Bird DC, Bujas-Bobanovic M, Robertson HA, Dursun SM: Lack of phencyclidine-induced effects in mice with reduced neuronal nitric oxide synthase. Psychopharmacology (Berl) 2001, 155:299-309.
    189. Black MD, Selk DE, Hitchcock JM, Wettstein JG, Sorensen SM: On the effect of neonatal nitric oxide synthase inhibition in rats: a potential neurodevelopmental model of schizophrenia. Neuropharmacology 1999, 38:1299-1306.
    190. Bujas-Bobanovic M, Bird DC, Robertson HA, Dursun SM: Blockade of phencyclidine-induced effects by a nitric oxide donor. Br J Pharmacol 2000, 130:1005-1012.
    191. Bujas-Bobanovic M, Robertson HA, Dursun SM: Effects of nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester on phencyclidine-induced effects in rats. Eur J Pharmacol 2000, 409:57-65.
    192. Herken H, Uz E, Ozyurt H, Akyol O: Red blood cell nitric oxide levels in patients with schizophrenia. Schizophr Res 2001, 52:289-290.
    193. Klamer D, Engel JA, Svensson L: The neuronal selective nitric oxide synthase inhibitor, Nomega-propyl-L-arginine, blocks the effects of phencyclidine on prepulse inhibition and locomotor activity in mice. Eur J Pharmacol 2004, 503:103-107.
    194. Yao JK, Leonard S, Reddy RD: Increased nitric oxide radicals in postmortem brain from patients with schizophrenia. Schizophr Bull 2004, 30:923-934.
    195. Yilmaz N, Herken H, Cicek HK, Celik A, Yurekli M, Akyol O: Increased levels of nitric oxide, cortisol and adrenomedullin in patients with chronic schizophrenia. Med Princ Pract 2007, 16:137-141.
    196. Lauer M, Johannes S, Fritzen S, Senitz D, Riederer P, Reif A: Morphological abnormalities in nitric-oxide-synthase-positive striatal interneurons of schizophrenic patients. Neuropsychobiology 2005, 52:111-117.
    197. Curtis D, Kalsi G, Brynjolfsson J, McInnis M, O'Neill J, Smyth C, Moloney E, Murphy P, McQuillin A, Petursson H, Gurling H: Genome scan of pedigrees multiply affected with bipolar disorder provides further support for the presence of a susceptibility locus on chromosome 12q23-q24, and suggests the presence of additional loci on 1p and 1q. Psychiatr Genet 2003, 13:77-84.
    198. Grozdanovic Z, Bruning G, Baumgarten HG: Nitric oxide--a novel autonomic neurotransmitter. Acta Anat (Basel) 1994, 150:16-24.
    199. Ignarro LJ: Physiology and pathophysiology of nitric oxide. Kidney Int Suppl 1996, 55:S2-5.
    200. Matsuoka A, Stuehr DJ, Olson JS, Clark P, Ikeda-Saito M: L-arginine and calmodulin regulation of the heme iron reactivity in neuronal nitric oxide synthase. J Biol Chem 1994, 269:20335-20339.
    201. Knudsen GM, Nishida CR, Mooney SD, Ortiz de Montellano PR: Nitric-oxide synthase (NOS) reductase domain models suggest a new control element in endothelial NOS that attenuates calmodulin-dependent activity. J Biol Chem 2003, 278:31814-31824.
    202. Zoche M, Beyermann M, Koch KW: Introduction of a phosphate at serine741 of the calmodulin-binding domain of the neuronal nitric oxide synthase (NOS-I) prevents binding of calmodulin. Biol Chem 1997, 378:851-857.
    203. Hecker M, Mulsch A, Busse R: Subcellular localization and characterization of neuronal nitric oxide synthase. J Neurochem 1994, 62:1524-1529.
    204. Spratt DE, Taiakina V, Palmer M, Guillemette JG: Differential binding of calmodulin domains to constitutive and inducible nitric oxide synthase enzymes. Biochemistry 2007, 46:8288-8300.
    205. Newman E, Spratt DE, Mosher J, Cheyne B, Montgomery HJ, Wilson DL, Weinberg JB, Smith SM, Salerno JC, Ghosh DK, Guillemette JG: Differential activation of nitric-oxide synthase isozymes by calmodulin-troponin C chimeras. J Biol Chem 2004, 279:33547-33557.
    206. Dreyer J, Schleicher M, Tappe A, Schilling K, Kuner T, Kusumawidijaja G, Muller-Esterl W, Oess S, Kuner R: Nitric oxide synthase (NOS)-interacting protein interacts with neuronal NOS and regulates its distribution and activity. J Neurosci 2004, 24:10454-10465.
    207. Kalinchuk AV, Stenberg D, Rosenberg PA, Porkka-Heiskanen T: Inducible andneuronal nitric oxide synthases (NOS) have complementary roles in recovery sleep induction. Eur J Neurosci 2006, 24:1443-1456.
    208. Magee TR, Ferrini MG, Davila HH, Zeller CB, Vernet D, Sun J, Lalani R, Burnett AL, Rajfer J, Gonzalez-Cadavid NF: Protein inhibitor of nitric oxide synthase (NOS) and the N-methyl-D-aspartate receptor are expressed in the rat and mouse penile nerves and colocalize with penile neuronal NOS. Biol Reprod 2003, 68:478-488.
    209. Xu Q, Wink DA, Colton CA: Nitric oxide production and regulation of neuronal NOS in tyrosine hydroxylase containing neurons. Exp Neurol 2004, 188:341-350.
    210. Liou YJ, Tsai SJ, Hong CJ, Liao DL: Association analysis for the CA repeat polymorphism of the neuronal nitric oxide synthase (NOS1) gene and schizophrenia. Schizophr Res 2003, 65:57-59.
    211. Shinkai T, Ohmori O, Hori H, Nakamura J: Allelic association of the neuronal nitric oxide synthase (NOS1) gene with schizophrenia. Mol Psychiatry 2002, 7:560-563.
    212. Reif A, Herterich S, Strobel A, Ehlis AC, Saur D, Jacob CP, Wienker T, Topner T, Fritzen S, Walter U, et al: A neuronal nitric oxide synthase (NOS-I) haplotype associated with schizophrenia modifies prefrontal cortex function. Mol Psychiatry 2006, 11:286-300.
    213. Hata Y, Takai Y: Roles of postsynaptic density-95/synapse-associated protein 90 and its interacting proteins in the organization of synapses. Cell Mol Life Sci 1999, 56:461-472.
    214. Boehning D, Snyder SH: Novel neural modulators. Annu Rev Neurosci 2003, 26:105-131.
    215. Kornau HC, Schenker LT, Kennedy MB, Seeburg PH: Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 1995, 269:1737-1740.
    216. Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M: Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 1999, 284:1845-1848.
    217. Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA, Snyder SH: CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron 1998, 20:115-124.
    218. Moghaddam B: Bringing order to the glutamate chaos in schizophrenia. Neuron 2003, 40:881-884.
    219. Boks MP, Rietkerk T, van de Beek MH, Sommer IE, de Koning TJ, Kahn RS: Reviewing the role of the genes G72 and DAAO in glutamate neurotransmission in schizophrenia. Eur Neuropsychopharmacol 2007, 17:567-572.
    220. Kapoor R, Lim KS, Cheng A, Garrick T, Kapoor V: Preliminary evidence for a link between schizophrenia and NMDA-glycine site receptor ligand metabolic enzymes, d-amino acid oxidase (DAAO) and kynurenine aminotransferase-1 (KAT-1). Brain Res 2006, 1106:205-210.
    221. Liu X, He G, Wang X, Chen Q, Qian X, Lin W, Li D, Gu N, Feng G, He L: Association of DAAO with schizophrenia in the Chinese population. Neurosci Lett 2004, 369:228-233.
    222. Hamshere ML, Bennett P, Williams N, Segurado R, Cardno A, Norton N, Lambert D, Williams H, Kirov G, Corvin A, et al: Genomewide linkage scan in schizoaffective disorder: significant evidence for linkage at 1q42 close to DISC1, and suggestive evidence at 22q11 and 19p13. Arch Gen Psychiatry 2005, 62:1081-1088.
    223. Devon RS, Anderson S, Teague PW, Burgess P, Kipari TM, Semple CA, Millar JK, Muir WJ, Murray V, Pelosi AJ, et al: Identification of polymorphisms within Disrupted in Schizophrenia 1 and Disrupted in Schizophrenia 2, and an investigation of their association with schizophrenia and bipolar affective disorder. Psychiatr Genet 2001, 11:71-78.
    224. Hennah W, Tomppo L, Hiekkalinna T, Palo OM, Kilpinen H, Ekelund J, Tuulio-Henriksson A, Silander K, Partonen T, Paunio T, et al: Families with the risk allele of DISC1 reveal a link between schizophrenia and another component of the same molecular pathway, NDE1. Hum Mol Genet 2007, 16:453-462.
    225. Thomson PA, Harris SE, Starr JM, Whalley LJ, Porteous DJ, Deary IJ: Associationbetween genotype at an exonic SNP in DISC1 and normal cognitive aging. Neurosci Lett 2005, 389:41-45.
    226. Thomson PA, Wray NR, Millar JK, Evans KL, Hellard SL, Condie A, Muir WJ, Blackwood DH, Porteous DJ: Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry 2005, 10:657-668, 616.
    227. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ: Schizophrenia and affective disorders--cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001, 69:428-433.
    228. Blackwood DH, Muir WJ: Clinical phenotypes associated with DISC1, a candidate gene for schizophrenia. Neurotox Res 2004, 6:35-41.
    229. Cannon TD: The inheritance of intermediate phenotypes for schizophrenia. Curr Opin Psychiatry 2005, 18:135-140.
    230. Cannon TD, Hennah W, van Erp TG, Thompson PM, Lonnqvist J, Huttunen M, Gasperoni T, Tuulio-Henriksson A, Pirkola T, Toga AW, et al: Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry 2005, 62:1205-1213.
    231. Burdick KE, Hodgkinson CA, Szeszko PR, Lencz T, Ekholm JM, Kane JM, Goldman D, Malhotra AK: DISC1 and neurocognitive function in schizophrenia. Neuroreport 2005, 16:1399-1402.
    232. Lipska BK, Peters T, Hyde TM, Halim N, Horowitz C, Mitkus S, Weickert CS, Matsumoto M, Sawa A, Straub RE, et al: Expression of DISC1 binding partners is reduced in schizophrenia and associated with DISC1 SNPs. Hum Mol Genet 2006, 15:1245-1258.
    233. Morris JA, Kandpal G, Ma L, Austin CP: DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum Mol Genet 2003, 12:1591-1608.
    234. Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K, Fujita T, Kuroda S, Katayama T, Tohyama M: Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 2003, 8:685-694.
    235. Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y, Sawamura N, Park U, Kudo C, Okawa M, et al: A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 2005, 7:1167-1178.
    236. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K, Okawa M, Yamada N, Hatten ME, Snyder SH, et al: Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci U S A 2003, 100:289-294.
    237. Davis RL, Cherry J, Dauwalder B, Han PL, Skoulakis E: The cyclic AMP system and Drosophila learning. Mol Cell Biochem 1995, 149-150:271-278.
    238. Houslay MD, Schafer P, Zhang KY: Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov Today 2005, 10:1503-1519.
    239. Muller-Eberhard HJ, Nilsson U, Aronsson T: Isolation and characterization of two beta1-glycoproteins of human serum. J Exp Med 1960, 111:201-215.
    240. Pangburn MK, Schreiber RD, Muller-Eberhard HJ: Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J Exp Med 1981, 154:856-867.
    241. DeWan A, Bracken MB, Hoh J: Two genetic pathways for age-related macular degeneration. Curr Opin Genet Dev 2007, 17:228-233.
    242. Rodriguez de Cordoba S, Esparza-Gordillo J, Goicoechea de Jorge E, Lopez-Trascasa M, Sanchez-Corral P: The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol 2004, 41:355-367.
    243. Sandberg MA, Weiner A, Miller S, Gaudio AR: High-risk characteristics of fellow eyes of patients with unilateral neovascular age-related macular degeneration. Ophthalmology 1998, 105:441-447.
    244. Okamoto H, Umeda S, Obazawa M, Minami M, Noda T, Mizota A, Honda M, Tanaka M, Koyama R, Takagi I, et al: Complement factor H polymorphisms in Japanese population with age-related macular degeneration. Mol Vis 2006, 12:156-158.
    245. Grassi MA, Fingert JH, Scheetz TE, Roos BR, Ritch R, West SK, Kawase K, Shire AM, Mullins RF, Stone EM: Ethnic variation in AMD-associated complement factor H polymorphism p.Tyr402His. Hum Mutat 2006, 27:921-925.
    246. Yuzawa M, Hagita K, Egawa T, Minato H, Matsui M: Macular lesions predisposing to senile disciform macular degeneration. Jpn J Ophthalmol 1991, 35:87-95.
    247. Uyama M, Takahashi K, Ida N, Miyashiro M, Ando A, Takahashi A, Yamada E, Shirasu J, Nagai Y, Takeuchi M: The second eye of Japanese patients with unilateral exudative age related macular degeneration. Br J Ophthalmol 2000, 84:1018-1023.
    248. Gotoh N, Yamada R, Hiratani H, Renault V, Kuroiwa S, Monet M, Toyoda S, Chida S, Mandai M, Otani A, et al: No association between complement factor H gene polymorphism and exudative age-related macular degeneration in Japanese. Hum Genet 2006, 120:139-143.
    249. Kanda A, Chen W, Othman M, Branham KE, Brooks M, Khanna R, He S, Lyons R, Abecasis GR, Swaroop A: A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci U S A 2007, 104:16227-16232.
    250. Yang Z, Camp NJ, Sun H, Tong Z, Gibbs D, Cameron DJ, Chen H, Zhao Y, Pearson E, Li X, et al: A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 2006, 314:992-993.
    251. Dewan A, Liu M, Hartman S, Zhang SS, Liu DT, Zhao C, Tam PO, Chan WM, Lam DS, Snyder M, et al: HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 2006, 314:989-992.
    252. Swaroop A, Branham KE, Chen W, Abecasis G: Genetic susceptibility to age-related macular degeneration: a paradigm for dissecting complex disease traits. Hum Mol Genet 2007, 16 Spec No. 2:R174-182.
    253. Maller J, George S, Purcell S, Fagerness J, Altshuler D, Daly MJ, Seddon JM: Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet 2006, 38:1055-1059.
    254. Seddon JM, George S, Rosner B, Klein ML: CFH gene variant, Y402H, and smoking, body mass index, environmental associations with advanced age-related macular degeneration. Hum Hered 2006, 61:157-165.
    255. DeAngelis MM, Ji F, Kim IK, Adams S, Capone A, Jr., Ott J, Miller JW, Dryja TP: Cigarette smoking, CFH, APOE, ELOVL4, and risk of neovascular age-related macular degeneration. Arch Ophthalmol 2007, 125:49-54.
    256. Mori K, Gehlbach PL, Kabasawa S, Kawasaki I, Oosaki M, Iizuka H, Katayama S, Awata T, Yoneya S: Coding and noncoding variants in the CFH gene and cigarette smoking influence the risk of age-related macular degeneration in a Japanese population. Invest Ophthalmol Vis Sci 2007, 48:5315-5319.
    257. Hughes AE, Orr N, Patterson C, Esfandiary H, Hogg R, McConnell V, Silvestri G, Chakravarthy U: Neovascular age-related macular degeneration risk based on CFH, LOC387715/HTRA1, and smoking. PLoS Med 2007, 4:e355.
    258. Allen MD, Religa TL, Freund SM, Bycroft M: Solution structure of the BRK domains from CHD7. J Mol Biol 2007, 371:1135-1140.
    259. Woodage T, Basrai MA, Baxevanis AD, Hieter P, Collins FS: Characterization of the CHD family of proteins. Proc Natl Acad Sci U S A 1997, 94:11472-11477.
    260. Dirscherl SS, Krebs JE: Functional diversity of ISWI complexes. Biochem Cell Biol 2004, 82:482-489.
    261. Brehm A, Tufteland KR, Aasland R, Becker PB: The many colours of chromodomains. Bioessays 2004, 26:133-140.
    262. Bosman EA, Penn AC, Ambrose JC, Kettleborough R, Stemple DL, Steel KP: Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. Hum Mol Genet 2005, 14:3463-3476.
    263. Wright CG, Brown OE, Meyerhoff WL, Rutledge JC: Auditory and temporal bone abnormalities in CHARGE association. Ann Otol Rhinol Laryngol 1986, 95:480-486.
    264. Morgan D, Bailey M, Phelps P, Bellman S, Grace A, Wyse R: Ear-nose-throat abnormalities in the CHARGE association. Arch Otolaryngol Head Neck Surg 1993, 119:49-54.
    265. Aramaki M, Udaka T, Kosaki R, Makita Y, Okamoto N, Yoshihashi H, Oki H, Nanao K, Moriyama N, Oku S, et al: Phenotypic spectrum of CHARGE syndrome with CHD7 mutations. J Pediatr 2006, 148:410-414.
    266. Aramaki M, Udaka T, Torii C, Samejima H, Kosaki R, Takahashi T, Kosaki K: Screening for CHARGE syndrome mutations in the CHD7 gene using denaturing high-performance liquid chromatography. Genet Test 2006, 10:244-251.
    267. Jongmans MC, Admiraal RJ, van der Donk KP, Vissers LE, Baas AF, Kapusta L, van Hagen JM, Donnai D, de Ravel TJ, Veltman JA, et al: CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet 2006, 43:306-314.
    268. Lalani SR, Safiullah AM, Molinari LM, Fernbach SD, Martin DM, Belmont JW: SEMA3E mutation in a patient with CHARGE syndrome. J Med Genet 2004, 41:e94.
    269. Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM, van der Vliet WA, Huys EH, de Jong PJ, Hamel BC, et al: Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 2004, 36:955-957.
    270. Lalani SR, Safiullah AM, Fernbach SD, Harutyunyan KG, Thaller C, Peterson LE, McPherson JD, Gibbs RA, White LD, Hefner M, et al: Spectrum of CHD7 mutations in
    110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet 2006, 78:303-314.
    271. Nolan RP, Kamath MV, Floras JS, Stanley J, Pang C, Picton P, Young QR: Heart rate variability biofeedback as a behavioral neurocardiac intervention to enhance vagal heart rate control. Am Heart J 2005, 149:1137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700