用户名: 密码: 验证码:
基于流固耦合理论的混凝土泵车动力响应与疲劳强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土泵车的臂架姿态复杂多变使泵车工况复杂,结构设计的轻量化要求以及机动灵活的使用要求使泵车结构复杂。泵车泵送工作中,车体振动导致臂架振动较大,且臂架动应力分布随臂架姿态的调节而变化。基于以上原因,对混凝土泵车的结构强度研究,尤其是臂架部分的动力学研究,有很好的应用价值。本文采用流固耦合理论和有限单元理论,对泵车关键结构——臂架进行动力学仿真分析,并结合现场动态测试试验和臂架母材焊接接头疲劳试验,展开臂架结构疲劳强度的研究。
     (1)针对混凝土泵车的工作原理和结构特点,结合现有输液管流固耦合理论的研究成果,提出基础有平动位移的悬臂输液管理论模型,并通过多体运动学理论和Hamilton变分原理,建立该模型的运动微分方程。考虑泵车臂架系统的多节臂和变截面的特点,采用有限单元理论建立臂架系统的流固耦合运动微分方程。
     (2)通过分析确定了臂架水平旋转至垂直于不同侧的前支腿和后支腿支撑点连线时为混凝土泵车的不利工况,并以此作为测试工况进行现场试验。根据全车有限元静强度分析和模态分析结果,选取其中应力较大的部位和动态薄弱部位作为测点位置,测试应力/应变历程。通过前支腿支撑油缸活塞杆应变历程测试数据,分析计算出转台垂向振动振幅响应、速度响应和加速度响应,作为臂架振动仿真分析的外部激扰,为仿真分析提供计算边界条件。在MTS(MechanicalTesting&Simulation)疲劳试验机上对泵车母材焊接接头试样进行应力比r=0.2的拉伸试验,获得不同应力水平时,焊接接头的循环次数,从而得到焊接试样疲劳极限σ_(0.2)=205MPa,并绘制Goodman疲劳极限线图用于疲劳强度评估。
     (3)选取混凝土流速U=2.265m/s和U=0m/s对比仿真分析,发现臂架振动响应均值相同,但稳态时两者振动幅值比值A_(U=0/A_(U=2.265)最大接近2,而改变Rayleigh阻尼系数则对臂架振动响应影响不大,说明混凝土的流动增加臂架振动阻尼效应显著。结合Matlab仿真分析与Ansys臂架三维有限元模型,对比测点应力测试结果与仿真计算结果,两者应力历程变化趋势相似,用Goodman疲劳极限线图评估,发现两者应力均值和应力幅值较接近,验证了仿真模型的合理性。对比臂架动荷系数法和流固耦合动态仿真计算结果,总体应力分布规律基本相同,但最大应力值有一定差异,且发生位置也不尽相同,说明考虑流固耦合的动力学仿真与实际情况更加接近,其仿真结果更能真实反映应力发生位置和应力值。
     (4)建立含倾角参数α的臂架流固耦合动力学方程,计算α=0°、20°、52°和80°时,臂架结构动应力历程,分析发现在臂架连接端焊缝位置易出现大应力集中现象,且随着臂架姿态的调整,应力值和发生位置均有改变。将各姿态下各节臂架的大应力点绘制于Goodman疲劳极限线图内,发现该泵车臂架在局部加筋位置疲劳强度不足,大应力发生位置较多位于箱梁内部,无法检测和维修,因此在设计阶段应对大应力点进行结构改进。
     (5)对疲劳强度不足的结构位置进行加强,并对加强后结构重新进行疲劳强度评估,分析结果说明加强方案可行,能满足疲劳强度要求。
     以上研究注重解决工程问题,研究方法和结论基于试验进行,分析方法可用于同类型产品的设计研发和强度校核。
Attitude change of pump truck arms leads to the complicated working conditions.Design requirements of light-weight and maneuverability make arm structure complicated.Truck body vibration results in big vibration response of arms.Stress distribution on arms isvariable as arms attitude changs.So,it is necessary to carry out study on structure strength ofpump truck,especially on dynamics of arms.The arms,which are the key part of pump truck,are studied based on the fluid-solid theory and finite element theory.And the research onfatigue strength of arms is performed by the method of combining field test on pump truckwith experimentation on the fatigue resistance of the base material welded joints.
     (1)The horizontally moving fluid-tube cantilever model is put forward incorporating thestructural features of pump truck and the research achievements on cantilever pipe conveyingfluid.Dynamic differential equation of the model is derived based on kinematical theory andHamilton variation principle.
     (2)The most dangerous working situation where arm direction is perpendicular tosupporting point diagonal is concluded by mechanical analysis.So the field test is conductedunder this situation.According to the results of the finite element calculation and modalanalysis on whole model,the locations of high stress and weak in lateral stiffness are selectedas measuring points.The vertical amplitude response,vertical velocity response and verticalacceleration response of revolving table,which are used as boundary conditions of simulationanalysis,are concluded based on the analysis of measuring date of cylinder piston rod at thefront support.In the test conditions of stress ratio R=0.2,tensile fatigue tests on basematerial welded joints are carried out using MTS fatigue testing machine.The tests show thatthe fatigue limit of welded joints is 205N/mm~2.Based on Goodman equation,the GoodmanFatigue Limit Diagram of base material welded joints is plotted.
     (3)By contrast calculation with two concrete fluid flow velocities of 0rn/s and 2.265rn/s,the mean value of vibration response of arms are identical and the maximum amplituderatio(A_(U=0/A_(U=2.265))is approximate to 2.And by contrast calculation with the two Rayleigh damping ratio of 0 and 0.00845,the amplitude ratio is approximate to 1.So it is concludedthat the concrete fluid flowing can enhance the structural damping significantly.Compared thesimulation results which are carried out by MATLAB and ANSYS with the measuring results,the similar change tendency of dynamic stress history is verified.And the simulation resultsof mean stress and stress amplitude are close to that in measuring results according toassessment analysis in Goodman Fatigue Limit Diagram.Compared the results carried out bythe dynamic load coefficient method and our method,the stress distribution law is basicallysimilar,but the high stress value and the high stress location are not the same.Thecomparison result shows the availability of our method.
     (4)Dynamic differential equation of the arm system containing parameter of dip angleαis derived.According to the simulation results of arm system with parameters of dip angleas follows:α=0°,α=20°,α=52°andα=80°,stress histories are obtained.Not only doeshigh stress concentration always occur in weld position located in end of arms,but stressvalue and position also change with parameterα.The problems of insufficient fatiguestrength take place in ribbed plates according to assessment analysis in Goodman FatigueLimit Diagram.So,it is necessary to strengthen structure in design stage because of ribbedplates beside in box beams unable to repair for finished product.
     (5)Reinforcement schemes are designed and the fatigue assessment analysis onreinforced structure is performed again.The result shows that the method used is feasible.
     The study in this dissertation pays much attention to solve practical engineering problem.Conclusions are made on bases of experimental data.Analysis methods provide goodreferences for design and strength assessment of this kind of structure.
引文
[1]Ziad A.Hanna.Vibration Fatigue Assessment Finite Element Analysis and Test Correlation.PhD thesis,University of Windsor,Ontario,2005.
    [2]Patrick F.R.Murphy.Load-Haul-Dump Vehicle Component Life Prediction Using Experimentally Acquired Load Histories,Ontario,2001,10.
    [3]Y.Yin,G.Y.Grondin,K.H.Obaia,et al.Fatigue life prediction of heavy mining equipment.Part 1:Fatigue load assessment and crack growth rate tests[J].Journal of Constructional Steel Research,2007,V63:1494-1505.
    [4]F.A.Conle,C.-C.Chu.Fatigue analysis and the local stress-strain approach in complex vehicular structures[J].International Journal of Fatigue,1997,V 19(1):317-323.
    [5]Tommy H.T.Chan,L.Guo,Z.X.Li.Finite element modelling for fatigue stress analysis of large suspension bridges [J].Journal of Sound and Vibration,2003,V261:443-464.
    [6]M.Firat,U.Kocabicak.Analytical durability modeling and evaluation-complementary techniques for physical testing of automotive components[J].Engineering Failure Analysis,2004,V11:655-674.
    [7]Mario Leonardo Bo(?)ssio,In(?)cio Benvegnu Morsch,Armando Miguel Awruch.Fatigue lifetime estimation of commercial vehicles[J].Journal of Sound and Vibration,2006,V291:169-191.
    [8]Richard Malm,Andreas Andersson.Field testing and simulation of dynamic properties of a tied arch railway bridge [J].Engineering Structures,2006,V28:143-152.
    [9]Dong-Chan Lee,Chang-Soo Han.CAE (computer aided engineering)driven durability model verification for the automotive structure development[J].Finite Elements in Analysis and Design,2009,V45:324-332.
    [10]Cong Wang,Shixiao Fu,Weicheng Cui.Hydroelasticity based fatigue assessment of the connector for a ribbon bridge subjected to a moving load[J].Marine Structures,2009,V22:246-260.
    [11]黄玉盈.结构振动分析基础[M].武汉:华中工学院出版社,1986:204.
    [12]刘杰,戴丽,赵丽娟,才娟,张靖.混凝士泵车臂架柔性多体动力学建模与仿真[J].机械工程学报,2007,V43(11):131-135.
    [13]张大庆,吕彭民,何清华,郝鹏.混凝土泵车结构动强度试验研究[J].振动与冲击,2005,V24(3):111-113.
    [14]吕彭民,汪红兵,张大庆.混凝土泵车冲击载荷对结构动态特性的影响[J].中国公路学报,2003,16(4):115-117.
    [15]董忠红,汪洁,倪凤英,吕彭民.水混输送泵车结构可靠佳疲劳寿命研究[J].筑路机械与施工机械化,2004,7:38-40.
    [16]QC/T 718-2004,混凝土泵车[S].北京:中国计划出版社,2004.
    [17]李活陈晓娟.进口混凝土泵车臂架断裂部位的特征分析和修复[J].长沙:建设机械技术与管理,2006:110-112
    [18]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,V27:19-38.
    [19]苏海东.分析流固耦振的新方法及其应用研究[D].武汉:华中科技大学,2006.
    [20]Westergaard H M.Water pressures on dams during earthquakes[J].Trans.A.S.C.E.,1933:418-433
    [21]Chopra A K.Earthquake Response of Concrete Gravity Dams.AD 709640,California University,Berkeley,1970.
    [22]Kemal Hac(?)efendio(?)lu,Alemdar Bayraktar,Yasemin Bilici.The effects of ice cover on stochastic response of concrete gravity dams to multi-support seismic excitation[J].Cold Regions Science and Technology,2009,V55(3):295-303.
    [23]Yasemin Bilici,Alemdar Bayraktar,Kurtulus Soyluk,et al.Stochastic dynamic response of dam-reservoir-foundation systems to spatially varying earthquake ground motions[J].Soil Dynamics and Earthquake Engineering,2009,V29(3):444-458.
    [24]Xueye Zhu,O.A.Pekau.Seismic behavior of concrete gravity dams with penetrated cracks and equivalent impact damping[J].Engineering Structures,2007,V29(3):336-345.
    [25]郑哲敏,马宗魁.悬臂梁在一侧有水时的自由振动[J].力学学报,1959,V3(2):111-119.
    [26]居荣初,曾心传.弹性结构与液体的耦联振动理论(第一版)[M].北京:地震出版社,1983.
    [27]张悉德,张文.部分埋入水中椭圆柱体的弯曲自由振动[J].应用数学与力学,1986,V7(9).
    [28]王和慧,黄玉盈,刘忠族等.水中圆锥形柱腿的自振特性分析[J].应用力学学报,1996,V13(2):64-70.
    [29]金涛,黄玉盈.地面运动激励下水中椭圆柱体的弯曲响应[J].海军工程学院学报,1998(1):17-21.
    [30]Kornecki A.A note on beam-type vibrations of circular cylindrical shells[J].Journal of Sound and Vibration,1971,V14:1-6.
    [31]吴勤勤,雷国璞.关于输液管道系统的研究——进展与趋向[J].力学进展,1994,V24(1)-59-65.
    [32]Bishop R E D,Price W G.Hydroelasticity of Ships[M].Univ.Press,Cambridge,1979.
    [33]Bishop R E D,Price W G,Wu Y.General linear hydroelasticity theory of floating structures moving in a seaway[J].Phil.Trans.R.Soc.Lond.1985,A 316:375-426.
    [34]汤渭霖,何兵蓉.水中有限长加肋圆柱壳振动和声辐射近似解析解[J].声学学报,2001,25(1):1-5.
    [35]曾革委.潜艇结构辐射噪声的建模、求解及其声特性研究.[D].武汉:华中科技大学,2002.
    [36]Chen Junming,Huang Yuying.Vibration and acoustic radiation from orthogonally stiffened infinite cylindrical shell in water[J].China-Ocean Engineering,2002,V 16(4):437-452.
    [37]向宇.水下加肋非圆柱壳共振响应的建模、解法和声特性分析.[D].武汉:华中科技大学,2003.
    [38]陈军明.水下加肋壳结构声振问题的建模、解法和声特性分析研究.[R].武汉:华中科技大学,2003.
    [39]Xiang Yu,Huang Yuying.A semi-analytical and semi-numerical method for solving 2-D sound-structure interaction problems[J].Acta Mechanica Solida Sinica,2003,V16(2):116-126.
    [40]Chen Junming,Huang Yuying.Vibration and acoustic radiation from submerged stiffened spherical shell with deck-type internal plate[J].Acta Mechanica Solida Sinica,2003,V16(3).
    [41]温德超,郑兆昌,孙焕纯.储液罐抗震研究的发展[J].力学进展,1995,V25(1):60-76.
    [42]V.R.Panchal,R.S.Jangid.Variable friction pendulum system for seismic isolation of liquid storage tanks[J].Nuclear Engineering and Design,2008,V238(6),2008:1304-1315.
    [43]Kyung Hwan Cho,Moon Kyum Kim,Yun Mook Lim,et al.Seismic response of base-isolated liquid storage tanks considering fluid-structure-soil interaction in time domain[J].Soil Dynamics and Earthquake Engineering,2004,V24(11):839-852.
    [44]F.H.Hamdan.Seismic behaviour of cylindrical steel liquid storage tanks[J].Journal of Constructional Steel Research,2000,V53(3):307-333.
    [45]张立翔,黄文虎.输流管道非线性流固耦合振动的数学建模[J].水动力学研究与进展A辑,2000,V(15)1:116-128.
    [46]Pa(?)doussis M P.Flow-induced Instabilities of cylindrical structures[J].Applied Mechanics Reviews,1987,V40:163-175.
    [47]Pa(?)doussis M P,Li G X.Pipes conveying fluid:a model dynamical problem[J].Journal of Fluids and Structures,1993,V8:853-876.
    [48]黄玉盈等.输液管的非线性振动、分叉与混沌—现状与展望[J].力学进展,1998,V28(1):30-42.
    [49]倪樵.输液管稳定性与动力特性分析及算法研究[D].武汉:华中科技大学,2000.
    [50]徐鉴,杨前彪.输液管模型及其非线性动力学近期研究进展[J].力学进展,2004,V34(2):182-194.
    [51]Chen S S.Out-of-plane vibrations and stability of cured tubes conveying fluid[J].Journal of Applied Mechanic s,1973,V40:362-368.
    [52]Svetlitsky V A.Vibration of tubes conveying fluid[J].Journ al of the Acoustical Society of America,1977,V62:595-600.
    [53]Herrmann G.Stability of equilibrium ofelastic systems subjected to non-conservative force[J].Applied Mechanics Reviews,1967,20:103-108.
    [54]Mote C D Jr.Dynamics stability of axially moving materials[J].Flow-Induced Vibration Digest,1977,V4:2-11.
    [55]Blevins R D.Flow-Induced Vibration.New York:Van Nostrand Reinhold,1977:40-58.
    [56]Lundgren T S,Sethna P R,Bajaj A K.Stability boundaries for flow-induced motions of tubes with an inclined terminal nozzle[J].Joumal of Sound and Vibrations,1979,V64:553-571.
    [57]Semler C,Li G X,Pa(?)doussis M P.The non-linear equation of motion of pipes conveying fluid[J].Journal of Sound and Vibration,1994,V169(5):577-599.
    [58]C.Semler,M.P.Pa(?)doussis.Nonlinear analysis of the parametric responances of planar fluid-conveying cantilevered pipe[J].Joumal of Sound and Vibration,1996,V10:787-825.
    [59]金基铎,赵永健,林影.输流管的振动微分方程及单点弹性支承悬臂管的稳定性分析[J].沈阳航空工业学院学报,1995,V12(2):1-11.
    [60]D.A.Panussis,A.D.Dimarogonas.Linear in-plane and out-of-plane lateral vibrations of horizontally rotating fluid-tube cantilever[J].Journal of Fluids and Structures,2000,V(40):1-24.
    [61]M.A.Lanngthjem,Y.Sugiyama.Vibration and Stability Analysis of Cantilevered Two-Pipe Systems Conveying Different Fluids[J].Journal of Fluids and Structures,1999,V 13:251-268.
    [62]M.Wadham-Gagnon,M.P.Pa(?)doussis,C.Semler.Dynamics of cantilevered pipes conveying fluid.Partl:Nonlinear equations of three-dimensional motion[J].Journal of Fluids and Structures,2007,V23:545-567
    [63]徐鉴,杨前彪.流体诱发水平悬臂输液管的内共振和模态转换(Ⅰ)[J].应用数学与力学,2006,V27(7):819-824.
    [64]徐鉴,杨前彪.流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ)[J].应用数学与力学,2006,V27(7):825-832.
    [65]Osama J.Aldraihem.Analysis of the dynamic stability of collar-stiffened pipes conveying fluid[J].Journal of Sound and Vibration,2007,V(300):453-465.
    [66]包日东,闻邦椿.微分求积法分析弹性支承输流管道的稳定性[J].东北大学学报(自然科学版),2007,V28(7):1017-1020.
    [67]包日东,金志浩,闻邦椿.端部约束悬臂输流管道的分岔与混沌响应[J].振动与冲击,2008,V27(5):36-43.
    [68]赵少汴,王忠保.抗疲劳设计——方法与数据[M].北京:机械工业出版社,1997.
    [69]Suresh S.材料的疲劳[M].王中光等译,李家宝等校.北京:国防工业出版社,1994.
    [70]拉达伊D.焊接结构疲劳强度[M].郑朝云,张式程译,潘际炎,王兴铎校.北京:机械工业出版社,1994.
    [71]达根T V,伯恩J.疲劳设计准则[M].雷慰宗,刘元镛译.北京:国防工业出版社,1982.
    [72]林吉忠,刘淑华编著.金属材料的断裂与疲劳[M].北京:中国铁道出版社,1989.
    [73]Xiaoshan Liu,Guoqiu He,Xiangqun Ding,et al.Fatigue behavior and dislocation substructures for 6063 aluminum alloy under nonproportional loadings[J].International Joumal of Fatigue,2009,V31:1190-1195.
    [74]M.Y.P.Costa,M.L.R.Venditti,H.J.C.Voorwald,et al.Effect of WC-10%Co-4%Cr coating on the Ti-6A1-4V alloy fatigue strength[J].Materials Science and Engineering,2009,V507:29-36.
    [75]Hiroyuki Terada,Takao Okada.Problems of laboratory tests for durability evaluation of full-scale structures[J].International Journal of Fatigue,2009,V31:1068-1072.
    [76]Qianjin Yue,Li Zhang,Wenshou Zhang,et al.Mitigating ice-induced jacket platform vibrations utilizing a TMD system[J].Cold Regions Science and Technology,2009,V56:84-89.
    [77]K.Shiozawa,T.Hasegawa,Y.Kashiwagi,L.Lu.Very high cycle fatigue properties of bearing steel under axial loading condition[J].International Journal of Fatigue,2009,V31:880-888.
    [78]Bianca de C.Pinheiro,Ilson P.Pasqualino.Fatigue analysis of damaged steel pipelines under cyclic internal pressure[J].International Journal of Fatigue,2009,V31:962-973.
    [79]V.Maurel,L.R(?)my,F.Dahmen,N.Haddar.An engineering model for low cycle fatigue life based on a partition of energy and micro-crack growth[J].International Journal of Fatigue,2009,V31:952-961.
    [80]Marina Franulovi(?),Robert Basan,Ivan Prebil.Genetic algorithm in material model parameters'identification for low-cycle fatigue[J].Computational Materials Science,2009,V45:505-510.
    [81] Seung K. Koh. Fatigue analysis of an automotive steering link[J]. Engineering Failure Analysis, 2009, V16: 914-922.
    [82] F. Colombo, E. Mazza, S.R. Holdsworth, et al. Thermo-mechanical fatigue tests on uniaxial and component-like 1CrMoV rotor steel specimens[J]. International Journal of Fatigue, 2008,V30: Pages 241-248.
    [83] Murat Aykan, Mehmet Celik. Vibration fatigue analysis and multi-axial effect in testing of aerospace structures[J]. Mechanical Systems and Signal Processing,2009,V23:897-907.
    [84] De-Feng Mo, He Guo-Qiu, Hu Zheng-Fei. Crack initiation and propagation of cast A356 aluminum alloy under multi-axial cyclic loadings[J]. International Journal of Fatigue,2008,V30: 1843-1850.
    [85] V. Shenoy, I.A. Ashcroft, GW. Critchlow. Strength wearout of adhesively bonded joints under constant amplitude fatigue[J]. International Journal of Fatigue, 2009,V31: 820-830.
    [86] S.Y. Lee, H. Choo, P.K. Liaw. In situ neutron diffraction study of internal strain evolution around a crack tip under variable-amplitude fatigue-loading conditions[J]. Scripta Materialia, 2009,V60:866-869.
    [87] Yongming Liu, Sankaran Mahadevan. Stochastic fatigue damage modeling under variable amplitude loading[J]. International Journal of Fatigue, 2007,V29: 1149-1161.
    [88] R.A. Cl(?)udio, A. Burgess, C.M. Branco. Failure analysis of scratch damaged shot peened simulated components at high temperature[J]. Engineering Failure Analysis, 2009,V16: 1208-1220.
    [89] Samirkumar M. Soni, Ronald F. Gibson, Emmanuel O. Ayorinde. The influence of subzero temperatures on fatigue behavior of composite sandwich structures[J]. Composites Science and Technology,2009,V69:829-838.
    [90] A. Fissolo, C. Gourdin, O. Ancelet,et al. Crack initiation under thermal fatigue: An overview of CEA experience: Part Ⅱ (of Ⅱ): Application of various criteria to biaxial thermal fatigue tests and a first proposal to improve the estimation of the thermal fatigue damage[J]. International Journal of Fatigue, 2009,V31:1196-1210.
    [91] Kimberli Jones, David W. Hoeppner. The interaction between pitting corrosion, grain boundaries, and constituent particles during corrosion fatigue of 7075-T6 aluminum alloy[J]. International Journal of Fatigue,2009,V31: 686-692.
    [92] Ziaur Rahman, Hiroaki Ohba, Takeo Yoshioka. Incipient damage detection and its propagation monitoring of rolling contact fatigue by acoustic emission[J]. Tribology International, 2009,V42: 807-815.
    [93] J.A. Ara(?)jo, L. Susmel, D. Taylor,et al. On the use of the Theory of Critical Distances and the Modified W(?)hler Curve Method to estimate fretting fatigue strength of cylindrical contacts[J].International Journal of Fatigue, 2007,V29: 95-107.
    [94] J.P. Casas-Rodriguez, I.A. Ashcroft, V.V. Silberschmidt. Damage in adhesively bonded CFRP joints: Sinusoidal and impact-fatigue[J]. Composites Science and Technology, 2008,V68: 2663-2670.
    [95] R. K. Luo, B. L. Gabbitas, B. V. Bricklc.Fatigue life evaluation of railway vehicle Bogie using an integrated dynamic simulation[J].Proc Instn Mech Engrs,1994,V208:23-132.
    [96] R. K. Luo, B. L. Gabbitas, B. V. Bricklc,et al.Fatigue damage evaluation for a railway vehicle bogie using appropriate sampling frequenciese[J].Vehiele System Dynamics,1998,V28:405-415.
    [97]R.K.Luo,B.L.Gabbitas,B.V.Bricklc.An intergrated dynamic simulation of metro vehicle in a real operating environment[J].Vehicle System Dynamics,1993,V23:335—345.
    [98]R.K.Luo,B.L.Gabbitas,B.V.Bricklc.Fatigue design in railway vehicle bogies based on dynamic simulation[J].Vehicle System Dynamies,1996,V25:449-459.
    [99]F.A.Conle,C.-C.Chu.Fatigue analysis and the local stress-strain approach in complex vehicular structures[J].International Journal of Fatigue,1997,V 19:317-323
    [100]Stefan Dietz,Helmuth Netter,Saehau.Fatigue life prediction of a railway bogie under dynamic loads through simulation[J].Vehiele System Dynamies,1998,V29:385—402.
    [101]Dietz S,Knothe K,Kortüm W.Fatigue life simulations applied to railway bogies[R].The 4~(TH)Intemational Conference on railway bogies and running gears,Budapest,Hungary,1998.
    [102]Su Hong.Automotive CAE Durability Analysis Using Random Vibration Approach[R].MSC 2~(nd)World-wide Automotive Conference,Dearborn,MI,Oct,2000.
    [103]任尊松,孙守光,李强等.构架结构振动与动态应力仿真研究[J].机械工程学报,2004,V40(8):187-192.
    [104]陆正刚,胡用生.基于刚柔耦合系统的关键零部件动应力仿真和疲劳寿命计算[J].铁道车辆,2006,V44(1):6-11
    [105]缪炳荣.基于多体动力学和有限元法的机车车体结构疲劳仿真分析[D].成都:西南交通大学,2006.
    [106]王丹丹,谢基龙,王斌杰.基于实测载荷谱的转K6转向架摇枕的疲劳寿命仿真分析[J].铁道机车车辆,2008,V28(2):23-25,70.
    [107]陆鑫森.高等结构动力学[M].上海:上海交通大学出版社,1992:.
    [108]H.P.LEE.STABILITY OF A CANTILEVER BEAM WITH TIP MASS SUBJECT TO AXIAL SINUSOIDAL EXCITATIONS [J].Journal of Sound and Vibration,1995,V 183 (1):91-98.
    [109]Mohsen Dadfarnia,Nader Jalili,Bin Xian,et al.A Lyapunov-Based Piezoelectric Controller for Flexible Cartesian Robot Manipulators[J].Journal of Dynamic Systems,Measurement,and Control,2004,V126:347-358.
    [110]Pa(?)doussis M P.Fluid-Structure Interactions(Slender Structures and Axial Flow).Vol Ⅰ.London:Academic Press,1998:69-73.
    [111]Currie I.G.Fundamental Mechanics of Fluids[M].New York:Mcgraw-Hill,1974.
    [112]黄长礼,刘古岷.混凝土机械[M].北京:机械工业出版社,2001:55.
    [113]项彬,史建平,郭灵彦等.铁路常用材料Goodman疲劳极限线图的绘制与应用[M].中国铁道科学,2002,V23(4):72-76.
    [114]徐灏.疲劳强度[M].北京:机械工业出版社,1981.
    [115]黄明志.金属力学性能[M].西安:西安交通大学出版社,1986.
    [116]日本材料学会.金属材料疲劳设计便览[M].东京:养贤堂,1978.
    [117]Jack A Collins.Failure of Materials in Mechanical Design:Analysis,Prediction,Prevention[M].New York:A Wiley-Inter-science Publication,John Wiley& Sons,1993.
    [118]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社,2005:119-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700