用户名: 密码: 验证码:
机械刻划光栅刻线误差及其修正方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的迅速发展,大面积且高质量的平面衍射光栅在各国军事、天文、核能、航天航空以及民用领域的需求越发迫切。机械刻划法是光栅主要制作方法之一,是制作某些特殊用途光栅的最佳选择,如低刻线密度的红外激光光栅和所有中阶梯光栅等。对于机械刻划法而言,光栅刻线误差是影响大面积光栅性能指标(衍射波前、杂散光和分辨本领等)的关键因素。鉴于此,本论文受“十一五”国家科技支撑计划重大项目和国家重大科研装备研制项目资助,从机械刻划光栅的刻线误差入手,探索提高大面积机械刻划光栅质量的方法,主要对机械刻划光栅刻线误差与基底面型误差和光栅衍射波前及其它性能指标之间的关系、刻线误差对光栅性能影响及其机械修正方法和刻线摆角误差实时修正方法等做了较为深入的研究。第一,推导出了光栅锥面衍射下光栅刻线误差、基底面型误差与衍射波前之间的关系表达式,通过测量光栅对称级次衍射波前,实现了刻线误差与基底面型误差分离以及二者的数字化定量提取;通过二维快速傅里叶变换方法分析光栅衍射波前,考察了刻线误差与基底面型误差对光栅性能指标的影响。借助上述方法可以通过重构的光栅衍射波前,分析光栅性能指标,同时还可以反演光栅全表面刻线误差与面型误差的大小,为光栅制造和使用技术提供理论依据。第二,阐述了在单色平行光入射条件下含有等间距刻线弯曲和刻线位置误差的平面光栅在焦平面上成像的光线追迹模型,分析了上述两种刻线误差对光栅衍射谱成像性能的影响;理论分析结果表明,刻线弯曲和刻线位置误差分别主要影响光栅弧矢和子午方向光谱性能,刻线弯曲对光栅分辨本领和杂散光影响较小,该结果可为机械刻划光栅制作技术的研究重点提供指导。第三,采用有限元分析方法对长春光机所2号刻划机可机械修正的主要光栅刻线弯曲来源——刻划刀架系统结构不对称、石英导轨系统刚度不足和刻划刀架系统驱动方式不合理等问题进行了分析,并提出了相应的机械修正方法,最后对部分机械修正方法进行了实验验证,实验与仿真结果在趋势上具有较好的一致性。第四,针对2号刻划机中的主要刻线位置误差展开机械修正方法研究;通过对刻划刀架系统与微定位工作台平行性进行机械修正,解决了光栅刻线不完整问题;提出了鞍型滑块与刻划刀架连接方式的机械修正方案,设计了柔性铰链式连接方式来取代原有的固定连接方式,有效解决了刻划刀架系统运行不稳定问题,机械修正后结构与原结构相比,其光栅刻线位置误差有了明显下降,有效抑制了光栅杂散光,提高了2号光栅刻划机的光栅质量。第五,对2号光栅刻划机微定位工作台系统数学模型中的主要参数与工作台动态性能之间的关系进行了仿真分析,并对BP神经网络PID和传统PID算法的控制精度进行了实验分析;结果表明,增大宏微两级工作台之间的连接刚度或阻尼在总体趋势上均可改善微定位工作台性能,而且BP神经网络PID算法是更适合2号刻划机工作台的控制算法,上述分析结果对大光栅刻划机宏微两级工作台设计和改进及控制算法选择具有一定参考意义。第六,给出了一种单压电陶瓷式光栅刻划机工作台摆角误差实时修正方法,并针对工作台摆角测量中出现的问题,采用三路激光干涉仪和zygo衍射波前测量仪对摆角测量误差来源进行交互验证分析,最终通过光栅刻划实验验证了本文提出的摆角修正方法的可行性;实验结果表明,采用本文给出的单压电陶瓷式方法,有效抑制了光栅刻线摆角误差,该摆角修正方法可望应用于实时修正大面积机械刻划光栅的刻线摆角误差。
With the rapid development of science and technology, large-area andhigh-quality plane diffraction gratings are being demanded more and more urgentlyin the national military, astronomy, nuclear energy, aerospace and civilian areas.Machine-ruling method is one of the major methods for making grating and is thebest choice for making some special gratings, such as low line-density grating forinfrared laser and all echelle gratings etc… For Machine-ruling method, grating’sline error is one of the important factors that effect the performance of large areagrating (diffraction wavefront, stray light and resolving power etc.).In view of uponreasons, the paper, which is funded by the National Key Technologies R&D Programfor the11th Five-year Plan and National R&D Projects for Key ScientificInstruments, is mainly focused on line errors of machine-ruling grating and methodsfor improve the quality of machine-ruling gratings with large areas. The relationshipamong grating’s diffraction wavefront, grating performances, line error andsubstrate’s surface error is analyzed deeply; Influence and revising method ofmachine-ruling grating’s line error on grating performance is studied detailedly; thereal-time revising method of yaw angle error of grating line is also elaborated. Firstly,the relationship among line error, surface error and diffraction wavefront undercondition of cone diffraction is deduced. Grating’s diffraction wavefronts ofsymmetric orders were measured by interferometer, and the separation of grating lineerror and surface error of substrate is realized from measured digitized results.Grating’s diffraction wavefront is analyzed by Two-dimensional fast Fouriertransform method and the influence of grating line error and surface error on gratingperformance is discussed. With the aid of aforesaid method, grating performance can be analyzed by reconstructing grating’s diffraction wavefront, and grating line errorand surface error on the whole surface of grating can be deduced, both of which canprovide a theoretical basis for grating’s substrate processing, grating manufactureand application. Secondly, the paper provides an light-tracing mathematical model inwhich collimated monochromatic light incidents on a plane grating which containsline's curved error and line location error and corresponding diffraction light isimaged on the focal plane. The influence of above-mentioned grating line errors ongrating performance is studied. Results show that grating line's curve and locationerror predominately influence grating sagittal and meridional spectral performanceseparately, and line's curved error has little effect on grating resolving power andscattered light. Upon results may provide guidance for making of machine-rulinggrating. Thirdly, the problem of asymmetry of ruling tool system, stiffness of quartzguide system and rationality of driven approach for ruling tool system, which aresome main reasons for grating’s line curve of CIOMP-2ruling engine in China, areanalyzed by finite element method, and corresponding mechanical correction methodare provided. some correction methods are verified by experiments, and experimentand simulation results are consistent on the changing trend. Fourthly, the structureand mechanical amended the original structure compared to the position error of thegrating lines have decreased significantly, effectively inhibit the grating stray light,and improve the quality of the grating of the grating ruling machine. The mechanicalcorrection method for main grating-line position errors in CIOMP-2ruling engine isstudied. The problem of incomplete grating lines is solved by mechanicallycorrecting the parallelism of the ruling tool system and micro-positioning table. Inorder to solve the problem of instability of ruling tool system, a correction methodfor connection mode of saddle slider and ruling tool is provided by using flexiblehinge instead of the fixed connection, and this method is an effective solution to theproblem of instability of ruling tool system. Compared to the origin ruling toolsystem, the modified ruling tool system’s grating-line position errors is decreasedsignificantly, stray light is effectively suppressed, and grating quality of CIOMP-2ruling engine is improved. Fifthly, relationship among main parameters of themathematical model of micro-positioning table system and dynamic performance ofmicro-positioning table system is analyzed by simulation, and thepositioning-accuracy difference between BP-neural-network PID control andtraditional PID control is compared by experiment analysis. Results show that thedynamic performance of the micro-positioning table can be improved by increasingthe connection stiffness (or damping) between micro-positioning table and macro-positioning table on the general trend, and BP-neural-network PID control ismore suitable for CIOMP-2ruling engine than traditional PID control. Upon analysisresults has some reference significances for the design and improvement ofmacro-micro table of grating ruling engine. Sixthly, in order to solve the problem ofyaw angle of micro-positioning table of ruling engine,a single-PZT correctionmethod is provided. The sources of measurement error of yaw angle is analyzed bymeasurement results from three laser interferometer and one diffraction-wavefrontmeasuring machine of Zygo Company. In final, experimental verification of thesingle-PZT correction method is performed. The results show that the single-PZTcorrection method can effectively suppress yaw errors of grating line. Thesingle-PZT correction method may be applied to correct the yaw angle of gratinglines of large-area and high-quality gratings which are made by grating rulingengines in real time.
引文
[1] M. C. Hutley. Diffraction Gratings[M]. New York: Academic Press,1982
    [2] H. Lin, L. F. Li. Fabrication of extreme-ultraviolet blazed gratings by use ofdirect argon–oxygen ion-beam etching through a rectangular photoresist mask[J].Appl. Opt.,2008,47:6212-6218.
    [3]巴音贺希格.衍射光栅色散理论与光栅设计、制作和检验方法研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2004
    [4]韩建.平面全息光栅曝光系统及光栅掩模槽形控制的基础问题研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2012
    [5] Flamand J., Bonnemason F. and Thevenon A. The blazing of holographic gratingsusing ion-etching. Proc.SPIE[J],1989,1055:288–294
    [6] T. harada, Sakuma and Masaru Fuse. Fabrication of blazed gratings and grismsutilizing anisotropic etching of silicon[J]. Proc. SPIE,1998,3450:11–16
    [7] M. koike and T. harada. New blazed holographic gratings fabricated by anaspherical recording with an ionetching method[J]. Proc. SPIE,1987,815:96–101
    [8] L. Mashev and S. Tonchev. Formation of blazing holographic diffractiongratings[J]. Appl. Phys,1982, B28:349–353
    [9]钟俊.宏观尺度的纳米级定位控制技术研究[D]:[博士学位论文].合肥:中国科学技术大学,2011
    [10]吴迪,黄凌霞,何勇,等.作物和杂草叶片的可见-近红外反射光谱特性[J].光学学报,2008,28(8):1618-1622
    [11]李刚,赵静,李家星等.可见-近红外反射光谱用于疾病快速筛查[J].光学学报,2011,31(3):0317001-1-0317001-6
    [12]杨跃忠,曹文熙,孙兆华等.海洋高光谱辐射实时观测系统的研制[J].光学学报,2009,29(1):102-107
    [13] T Jitsuno1, S Motokoshi, T Okamoto et al.. Development of91cm size gratingsand mirrors for LEFX laser system[C], Journal of Physics: ConferenceSeries,2008,112:1-4
    [14]于磊,曲艺,林冠宇等.120~180nm星载远紫外电离层成像光谱仪光学系统设计与研究,光学学报,2011,31(1):0112011
    [15] Dennis Nevejans, Eddy Neefs, Emiel van Ransbeeck et al..Compacthigh-resolution spaceborne echelle grating spectrometer with acousto-optical tunablefilter based order sorting for the infrared domain from2.2to4.3μm [J],AppliedOptics,2006,45(21):5191-5206
    [16]邓琳,遂丹凤,祁志美等.基于双光栅的马赫-曾德尔干涉仪的初步研制[J].光学学报,2009,29(7):1973-1976
    [17] Strong J. The Johns Hopkins University and diffraction gratings[J]. J. Opt. Soc.Am.1960,50(12):1148-1152.
    [18]赵复垣.刻划阶梯光栅的原理和应用特性[J].光谱学与光谱分析,1993,13(3):101-107.
    [19]杨德才.中阶梯光栅及其应用[J].现代科学仪器,1992,4:29-31.
    [20]朱永田.8-10m级光学/红外望远镜高分辨率光谱仪[J].天文学进展,2001,19(3):336-345
    [21] Schroeder D J. An echelle spectrometerspectrograph for astronomical use[J].Appl Opt,1967,6(11):1976-1980
    [22] TULI R G. Instrumentation in astronomy VIII[C]. Washington, USA: SPIE,1994:674-68
    [23]张展霞,刘洪涛,何家耀.电荷耦合器件及其应用进展[J].光谱学与光谱分析,2000,20(2):160-166
    [24]黄本立,杨凡原,王小如,袁东星.多道光谱仪发展的新动向—中阶梯光栅光谱仪[J].光谱学与光谱分析,1991,11(2):61-67
    [25]安德煜,龚为穗,莫胜钧. ICP/Echelle中阶梯光栅光谱仪[J].华南师范大学实验中心化学系,1993(3):44-48
    [26]王庆有,刘志红,张展霞,李文冲. CCD检测器在ICP-AES中的应用研究[J].分析仪器,1994,4:1-3
    [27] JOHN STRONG.The Johns Hopkins University and Diffraction Gratings[J],J.Opt.Soc.Am.,1960,12(50):1148:1150
    [28]于海利.基于双频激光干涉测量的大行程纳米定位技术及其应用研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2011
    [29] George R. Harrison and James E. Archer. Interferometric Calibration of PrecisionScrews and Control of Ruling Engines[J]. J. Opt. Soc. Am.,1951,8(41):495-503
    [30] George R. Harrison and Stephen W. Thompson. Large diffraction gratings ruledon a commercial measuring machine controlled interferometrically[J]. J. Opt. Soc.Am.,1970,60(5):591-595.
    [31] George R. Harrison, Stephen W. Thompson, Harry Kazukonis and Joseph R.Connell.750-mm ruling engine producing large gratings and echelles[J]. J. Opt. Soc.Am.,1972,62(6):751-756.
    [32] I. R. Bartlett and P. C. Wildy.diffraction grating ruling engine with piezoelectricdrive[J],APPLIED OPTICS,1975,14(1),1-3
    [33] Toshiaki Kita, Tatsuo Harada. Ruling engine using a piezoelectric device forlarge and high-groove density gratings[J], APPLIED OPTICS,1992,31(10):1400
    [34] JOHN STRONG.New Johns Hopkins Ruling Engine[J],New York Meeting of theOptical Society of America,1951,41:3-14
    [35] George R. Harrison.The Production of Diffraction Gratings I. Development ofthe Ruling Art[J], J.Opt.Soc.Am.,1949,39(6):413-425
    [36] George R. Harrison and George W. Stroke.Interferometric Control of GratingRuling with Continuous Carriage Advance[J], J.Opt.Soc.Am.,1955,45(2):112-120
    [37] George R. Harrison.Techniques for ruling improved large diffraction gratingsFinal report[C], Massachusetts Institute of Technology,1971,1-14
    [38] George R. Harrison, Neville Sturgis et al..Interferometrically Controlled Rulingof Ten-Inch Diffraction Gratings[J], J.Opt.Soc.Am.,1959,49(3):205-211
    [39] George R. Harrison, Neville Sturgis et al..Ruling of Large Diffraction Gratingswith Interferometric Control[J], J.Opt.Soc.Am.,1957,47(1):15-22
    [40]王晓琳等.衍射光栅刻划机的高精度开环定位系统[J].仪器仪表学报,1999,2:63-67
    [41]王炜,杨厚民.光电控制间歇运动衍射光栅机控制系统的改造升级,光学精密工程[J],1996,10:105-110
    [42] Clyde MitchellU.Diffraction grating fabrication in Australia,Spectrochimica ActaPart B:Atomic Spectroscopy[J],1999,54:2041-2049
    [43] A.N.Mel' nikov, S.O.Mirumyants, and A.V.Lukin.Pendulum-type ruling enginefor fabricating ruled periodic relief–phase structures[J]. J. Opt. Technol.,2007,74(1):34-37
    [44] W. R. Horsfield.Ruling Engine with Hydraulic Drive[J].APPLIEDOPTICS,1965,4(2):189-193
    [45] Richard F. Jarrell and George W. Stroke.Some New Advances in Grating Ruling,Replication, and Testing[J].APPLIED OPTICS,1964,3(11):1251-1260
    [46]时轮,郝德阜,齐向东.高精度衍射光栅刻划机的最新技术进展[J].仪器仪表学报(增刊),2001,22(4):438-439
    [47] Yu Hai-li, Tang Yu-guo. Design of diffraction ruling engine micro-displacementsystem [J].20103rd international conference on computer and electrical engineering,2010,4:410-413.
    [48]时轮.一种亚纳米级栅距变化量的变栅距光栅分度控制方法的研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2003
    [49]李鸣鸣.大行程纳米定位系统若干关键技术研究[D]:[博士学位论文].上海:上海大学,2007
    [50]节德刚,刘延杰等.一种宏微双重驱动精密定位机构的建模与控制[J],光学精密工程,2005,13:171–177
    [51]李欣欣.宏/微两级驱动的大行程高精度二维定位平台基础技术研究[D]:
    [博士学位论文].杭州:浙江大学,2008
    [52]胡长德,赵美蓉等.大行程纳米级压电微动工作台的设计与试验研究[J].传感技术学报,2009,22:803–807
    [53]王立松,苏宝库等.大行程高精度两级定位工作台控制方法研究[J].机械设计与制造,4:71–72,2001
    [54]梁浩明.美国基特峰天文台的衍射光栅刻划机[J].光学精密工程,1984,4:22-31
    [55]张亮.立式电解加工机床关键部件有限元分析与优化[D]:[硕士学位论文].合肥:合肥工业大学,2009
    [56]刘海锋.网格结构精细化有限元分析方法研究[D]:[博士学位论文].杭州:浙江大学,2010年
    [57]王金福.炮身沿摇架大位移后坐系统的时空有限元建模方法研究[D]:[硕士学位论文].南京:南京理工大学,2012
    [58]姚建军.机枪系统动力学仿真及动力稳健优化设计方法研究[D]:[博士学位论文].南京:南京理工大学,2002
    [59]贾晓辉,张大卫.三自由度精密定位工作台的设计与运动学分析[J],天津大学学报,2010,43(5):457-463
    [60]戴蓉,谢铁邦,常素萍.纳米级定位精度一维位移工作台[J],中国机械工程,2006,17(2):115-118
    [61]沈健,俞涛,张海岩.新型二自由度微动工作台的设计和有限元分析[J],制造业信息化,2012,7:9
    [62]戴蓉,谢铁邦.白光干涉轮廓仪工作台的设计及有限元分析[J],武汉理工大学学报,2007,29(1):62-64
    [63]余虎,侯宏,戴杨.基于DOE的油烟机壳体辐射噪声的优化设计[J],机械科学与技术,2012,31(1):146-149
    [64]狄杰建,赵玉侠,张超英等.基于DOE法的主轴系统的优化设计[J],机械设计与制造,2012,10:79-80
    [65]陈刚,孙可,刘浩.严格耦合波方法计算立体正弦光栅衍射效率[J],激光杂志,2012,33(2):22-24
    [66]孔伟金,王书浩,魏世杰.基于严格耦合波理论的宽光谱金属介质膜光栅衍射特性分析[J],物理学报,60(11):114214-1-114214-5
    [67]马明者,李强等.机械刻划光栅的光线追迹方法[J],应用光学,2010,31(2):233-236
    [68] G.W.Stroke. Attainment of High-Resolution Gratings by Ruling underInterferometric Control[J], J.Opt.Soc.Am.,1961,51(12):1321-1339
    [69] SPENCER G.H,MURTY M V R K.General ray-tracing procedure[J].Journalof the Optical Society of America,1962,52(6):672-678
    [70] LUDWIG U W.Generalized grating ray-tracing equations[J].Journal of theOptical Society of America,1973,63(9):1105-1107.
    [71] KASTNER SO,NEUPERT W M.Image const-ruction for concave gratings atgrazing incidence,by ray tracing[J].Journal of the Optical Society of America,1963,53(10):1180-1184
    [72] WELFORD W T.Tracing skew rays through concave diffractiongratings[J].Journal of the Optical Society of America,1962,9(1):389-394
    [73] NODA H, Namioka T, SEYA M. Ray tracing through holographicgratings[J].Journal of the Optical Society of America.1974,64(8):1037-1041
    [74]王炜,杨厚民.平面变栅距光栅的原理及设计[J].光学学报,1999,19(9):1158-1162
    [75]时轮,马春翔.制作高密度衍射光栅的光电式刻划控制的研究[J].光学技术,2004,30(3):340-342
    [76]节德刚,刘延杰等.一种宏微双重驱动精密定位机构的建模与控制[J].光学精密工程,2005,13(2):171-178
    [77]徐湘元.自适应控制理论与应用[M].电子工业出版社,2007:8-31
    [78]鄢景华.自动控制原理[M].哈尔滨工业大学出版社,1996:52-162
    [79] Lennart Ljung. System Identification Theory for the User (Second Edition).Prentice Hall,1999.
    [80]周彤.面向控制的系统辨识导论.清华大学出版社,2002.
    [81]李言俊,张科.系统辨识理论及应用.国防工业出版社,2003
    [82]姚巍.自行车机器人系统辨识及MATLAB仿真[D]:[硕士学位论文].北京:北京邮电大学,2008
    [83]王秀峰,卢桂章.系统建模与辨识.电子工业出版社,2004.
    [84]王希花.基于压电陶瓷迟滞非线性建模及控制系统的研究[D]:[博士学位论文].哈尔滨工程大学,2010
    [85]王宏亮,崔红娟,陈志华.压电陶瓷驱动微位移机构迟滞非线性改善方法研究[J],现代制造工程,2007,10:4-7
    [86]党选举,陈辉.非线性动态迟滞压电陶瓷的实时控制[J].压电与声光,2008,30(3):353-355
    [87]李尹.PID控制算法及其在风速控制中的应用[D]:[硕士学位论文].武汉:华中科技大学,2007
    [88]屈彬,王向阳,张运素.自适应PID控制与传统PID控制的无抖振切换[J].机电工程技术,2011,40(11):15-19
    [89]尹湛华.一种基于BPNN的复合型PID控制算法[J].控制理论与应用,2008,27(7):5-8
    [90]张丽虹,陈书谦. BP神经网络在PID控制器参数整定中的应用[J].计算机仿真,2010,10:171–174
    [91] Erwin G.Loewen,Evgeny Popov.Diffraction gratings and applications[M],MarcelDekker,Inc,1997.428-432
    [92] G.W.Stroke.Handbuch der Physik[J].ed.S.Flugge(Springer,Berlin),1967,29,445-574
    [93] S. Yokozeki and S. Sawa. Interferometric testing of grating using moiremethod[J].Jap. J. Appl. Phys.1975, Suppl.14-1:465-470
    [94] Zibgniew Jaroszewicz.Interferometric testing of the spacing error of a planediffraction grating[J].Optics Communications,1986,60(6):345–349
    [95]于海利,齐向东.巴音贺希格等.利用泽尼克系数求取衍射光栅的分辨本领[J].光谱学与光谱分析,2012,32(1):264-267
    [96] Moharam MG and Gaylord TK. Three-dimensional vector coupled-waveanalysis of planar-grating diffraction [J].J.Opt.Soc.Am.,1983,73(9):1105-1112
    [97]巴音贺希格.衍射光栅的第二类角色散及其特性分析[J].物理学报,2004,53(7):2118-2121
    [98]唐玉国,陈少杰,巴音贺希格,崔继承等.中阶梯光栅光谱仪的谱图还原与波长标定[J].光学精密工程,2010,18(10):2133
    [99] Koshi Takashima and Shigenori Nawata.diffraction grating ruling engine withpiezoelectric control[J].Japan.J.Appl.Phys,1978,vol.17(8):1445-1446
    [100] Harold D.Babcock and Horage W.Babcock. The Ruling of Diffraction Gratingsat the Mount Wilson Observatory[J].,JOURNAL OF THE OPTICAL SOCIETY OFAMERICA1951,41(11):776-786
    [101] George R. Harrison.The Diffraction Grating-An OpinionatedAppraisal[J].APPLIED OPTICS,1973,vol.12(9):2039-2048
    [102]朱向冰,何世平,付绍军等,云纹法检测变线距光栅的线密度[J].光学精密工程,2002,10(3):286-288
    [103]李晓天,巴音贺希格,齐向东等.刻线误差与面形误差对平面光栅光谱性能影响的二维快速傅里叶变换分析方法[J].光学学报,2012,32(11):1105001
    [104]徐向东,洪义麟,刘颖等.超高强度激光脉冲压缩用衍射光栅[J].物理,2005,34(10):748-751
    [105]刘文兵,冯国英等.光栅对压缩器在刻线不平行时的色散研究[J].激光技术,2006,30(3):334-335
    [106]巴音贺希格,李燕,吴娜.紫外平面刻划光栅杂散光数值分析及测试,光学精密工程,2009,17(8):1783-1788
    [107]顾华俭,宋从龙,王培钢.光栅单色仪远波段杂散光的抑制,苏州大学学报,1989,5(2):195-199
    [108]陈万英,唐玉国,巴音贺希格等.微型平像场近红外光谱仪的消杂散光设计,2010,3(3):263-267
    [109] A. KEITH PIERCE.Performance of an Eight-Inch Babcock Grating in a LargeVacuum Spectrograph[J].Journal of the Optical Society of America,1957,47(1):6-14
    [110] Thomas N. Woods, Raymond T. Wrigley III et al..Scattered-light properties ofdiffraction gratings[J].APPLIED OPTICS,1994,33(19):4273-4281
    [111]倪筱颖,魏明国,木壮志.离散系统参数自适应辨识的最小二乘正交变换方法[J].哈尔滨理工大学学报,1999,4(2):88-90
    [112]陈慧波,尚飞.输出快采样的ARMA模型最小二乘盲辨识方法[J].安阳工学院学报,2010,9(4):48-58
    [113]李虎.BP算法的改进及其在PID优化控制中的应用研究[D]:[硕士学位论文].西安:西安科技大学,2012
    [114]黄宜庆.PID控制器参数整定及其应用研究[D]:[硕士学位论文].淮南:安徽理工大学,2009
    [115]刘金琨.先进PID控制MATLAB仿真(第二版)[M].北京:电子工业出版社,2004.162-164
    [116]韩旭东,艾华.共光路移相单频激光干涉测长系统[J].光学技术,2004,30(2):197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700