用户名: 密码: 验证码:
拟南芥MAP18调控花粉管生长方向的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花粉管是一种进行快速极性生长的细胞。花粉落到柱头上后,经历了萌发和极性生长,生长的花粉管受到胚珠信号的吸引通过珠孔进入胚珠,释放精细胞,从而完成双受精过程。花粉管的正常生长是保证双受精过程可以正常完成的必要条件,同时花粉管也是研究植物细胞生长调控机制的重要模式细胞。因此,研究花粉管的生长具有很重要的意义。
     MAP18((Microtubule-Associated Protein18)是本实验室最早报道的一个DREPP家族的微管结合蛋白,可以使微管去稳定,调控拟南芥细胞的各向异性生长。基因芯片的分析数据表明MAP18在拟南芥花粉及花粉管中的表达量是全株中最高的,但是还没有关于MAP18在花粉及花粉管中功能的报道,因此开展了本论文的研究。
     通过表型观察发现,虽然突变体map18的萌发率与野生型相同,但map18和MAP18OX花粉管均表现出生长方向发生异常的表型。体外萌发的map18的花粉管发生偏转,MAP18OX花粉管表现为弯曲波动且其程度与MAP18的表达量呈正相关。在体内萌发、生长的map18和MAP18OX花粉管均表现出扭曲和环绕胚珠生长的现象,并且有些花粉管由于其生长方向的异常导致了进入胚珠失败,从而造成了结实率下降。通过正反交实验证明了,map18和MAP18OX花粉管生长方向异常的表型与母本无关。这说明了MAP18对于调控花粉管的生长方向具有重要功能。
     为了说明MAP18控制花粉管生长方向的机制,对map18和MAP18OX花粉管内细胞骨架的组织方式和动态进行了观察,发现虽然MAP18表达量的改变不影响花粉管内微管骨架的组织方式,但是MAP18通过调控花粉管顶端及亚顶端区内微丝的组织方式和动态,从而影响了其生长方向。体外生化功能分析显示,MAP18具有依赖Ca2+的切割微丝的活性,并且MAP18的第1和2个V-E-E-K-K基序对于其切割微丝的活性十分重要。通过对表达MAP18点突变蛋白的植株的表型观察分析发现:MAP18是通过其Ca2+依赖性的切割微丝的活性来调控花粉管顶端及亚顶端的微丝动态,从而控制花粉管的生长方向。
     此外,通过对MAP18promoter:MAP18-eGFP花粉管观察发现,MAP18在花粉管中的定位是与花粉管的生长状态相关的。MAP18在伸长生长的花粉管在胫部区域主要定位于细胞质膜,而在顶端和亚顶端区域则无细胞质膜的定位。而当花粉管停止生长时MAP18在花粉管中主要定位于整个细胞质膜,包括顶端和亚顶端区域。恢复生长后MAP18又会从顶端和亚顶端区的质膜上消失。这表明MAP18在正常生长的花粉管中的定位模式是维持花粉管生长所必需的。但是,MAP18的Ca2+依赖性的切割微丝的活性变化并不影响其在伸长生长花粉管中的亚细胞定位。
     本学位论文的研究结果证明MAP18是一个新的控制花粉管生长方向的重要调控因子,MAP18通过其Ca2+依赖性的微丝切割活性参与调控花粉管的生长方向。此前对花粉管生长的研究多集中于对花粉管生长速率的调控机制,而对花粉管生长方向调控机制的研究较少。本论文的研究不仅鉴定到新的调控花粉管生长方向的调控因子,同时也证明了对微丝动态的调控不仅作用于花粉管生长速率的控制,同时也作用于花粉管生长方向的控制。本论文对MAP18调控花粉管生长方向机制的研究对于全面阐明花粉管生长调控的机理具有重要的科学理论意义。
Pollen tube growth is a rapid and polarized process that occurs exclusively at the tube tip. The elongation of pollen tubes within the female reproductive tissues is crucial for delivering sperm cells to ovules for fertilization. In addition, the growth of pollen tubes is a model system for studying polarized cell expansion or tip growth.
     Previously report has demonstrated that Arabidopsis thaliana Microtubule-Associated Protein18(MAP18) belongs to a DREPP family and regulates cortical microtubule organization by destabilizing microtubules. Bioinformation analysis indicates that MAP18is expressed highly in pollen and pollen tubes. However, there is no report about whether MAP18is involved in pollen tube growth yet. The investigation was therefore carried out in this thesis.
     Observations showed no obvious differences in germination or pollen tube elongation rate between wild type and mapl8mutant, suggesting that MAP18might not function in these processes. However, mapl8pollen tubes displayed abnormal growth patterns, with swollen tips and bending growth in vitro. In vivo observations also indicated that both mapl8and MAP18OX pollen tubes displayed entangled, sporadic growth patterns in the transmitting tracts, sometimes failing to reach the ovules and resulted in reduced micropyle targeting. These observations demonstrated that MAP18is involved in the regulation of the direction of pollen tube growth in Arabidopsis.
     To demonstrate the mechanism how MAP18regulates the direction of pollen tube growth, the cytoskeleton of map18and MAP18OX pollen tubes was observed. Althought no obvious changes of the microtubule cytoskeleton was observed in map18pollen tubes, the organization and dynamics of F-actin in the apical and subapical regions were siginificantly altered in growing map18and MAP18OX pollen tubes. These results suggest that MAP18functions in F-actin organization and dynamics in the apical and subapical regions. Biochemical analysis indicated that MAP18bound to and severed actin filaments in a Ca2+-dependent manner in vitro. Expressing the point mutation proteins of MAP18in map18pollen tubes demonstrated that the F-actin-severing activity of MAP18is critical for appropriate growth patterns of pollen tubes.
     In addition, observations showed that MAP18localized to the plasma membrane in the flank region but not in the the apical and subapical regions of growing pollen tubes. However, MAP18localized to whole plasma membrane in non-growing pollen tubes, but disappeared from the apical plasma membrane when tube growth was restarted. These observations indicated that the subcellular localization of MAP18is important for the function of MAP18.
     These results revealed that MAP18functions as a key factor involved in controlling the direction of pollen tube growth by severing F-actin, and suggesting that regulations of the organization and dynamic of F-actin is important not only for the pollen tube growth but also for the control of the direction of pollen tube growth. This study demonstrates a new function of MAP18that involved in controlling the direction of pollen tube growth and provides insights into the mechanism that controls the direction of pollen tube growth based on the F-actin-severing activity of MAP18.
引文
Allwood, E.G., Smertenko, A.P., and Hussey, P.J. (2001). Phosphorylation of plant actin-depolymerising factor by calmodulin-like domain protein kinase. FEBS Lett.499,97-100.
    Andrianantoandro, E., and Pollard, T.D. (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol. Cell 24,13-23.
    Arnaud, D., Dejardin, A., Leple, J.C., Lesage-Descauses, M.C., and Pilate, G. (2007). Genome-wide analysis of LIM gene family in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa. DNA Res.14,103-116.
    Baltz, R., Schmit, A.C., Kohnen, M., Hentges, F., and Steinmetz, A. (1999). Differential localization of the LIM domain protein PLIM-1 in microspores and mature pollen grains from sunflower. Sex. Plant Reprod.12,60-65.
    Bamburg, J.R., and Bernstein, B.W. (2008). ADF/cofilin. Curr. Biol.18, R273-275.
    Bao, C., Wang, J., Zhang, R., Zhang, B., Zhang, H., Zhou, Y., and Huang, S. (2012). Arabidopsis VILLIN2 and VILLIN3 act redundantly in sclerenchyma development via bundling of actin filaments. Plant J.71,962-975.
    Barrero, R.A., Umeda, M., Yamamura, S., and Uchimiya, H. (2002). Arabidopsis CAP regulates the actin cytoskeleton necessary for plant cell elongation and division. Plant Cell 14,149-163.
    Baum, J., Papenfuss, A.T., Baum, B., Speed, T.P., and Cowman, A.F. (2006). Regulation of apicomplexan actin-based motility. Nat. Rev. Microbiol.4,621-628.
    Blanchoin, L., Boujemaa-Paterski, R., Henty, J.L., Khurana, P., and Staiger, C.J. (2010). Actin dynamics in plant cells:a team effort from multiple proteins orchestrates this very fast-paced game. Curr. Opin. Plant Biol.13,714-723.
    Blanchoin, L., and Staiger, C.J. (2010). Plant formins:diverse isoforms and unique molecular mechanism. Biochim. Biophys. Acta.1803,201-206.
    Boavida, L.C., and McCormick, S. (2007). Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J.52,570-582.
    Boevink, P., Oparka, K., Cruz, S.S., Martin, B., Betteridge, A., and Hawes, C. (1998). Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J.15,441-447.
    Brewbaker, J.L., and Kwack, B.H. (1963). The essential role of calcium ion in pollen germination and pollen tube growth. Am. J. Bot.859-865.
    Cai, G., and Cresti, M. (2009). Organelle motility in the pollen tube:a tale of 20 years. J. Exp. Bot.60, 495-508.
    Cardenas, L., Lovy-Wheeler, A., Kunkel, J.G., and Hepler, P.K. (2008). Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol. 146,1611-1621.
    Cardenas, L., Lovy-Wheeler, A., Wilsen, K.L., and Hepler, P.K. (2005). Actin polymerization promotes the reversal of streaming in the apex of pollen tubes. Cell Motil. Cytoskel.61,112-127.
    Cardenas, L., McKenna, S.T., Kunkel, J.G., and Hepler, P.K. (2006). NAD (P) H oscillates in pollen tubes and is correlated with tip growth. Plant Physiol.142,1460-1468.
    Carlier, M.F., Laurent, V., Santolini, J., Melki, R., Didry, D., Xia, G.X., Hong, Y., Chua, N.H., and Pantaloni, D. (1997). Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover:implication in actin-based motility. J. Cell Biol.136,1307-1322.
    Chang, F., Gu, Y., Ma, H., and Yang, Z. (2013). AtPRK2 promotes ROP1 activation via RopGEFs in the control of polarized pollen tube growth. Mol. Plant 6,1187-1201.
    Chaudhry, F., Guerin, C., von Witsch, M., Blanchoin, L., and Staiger, C.J. (2007). Identification of Arabidopsis cyclase-associated protein 1 as the first nucleotide exchange factor for plant actin. Mol. Bio. Cell 18,3002-3014.
    Chen, C.Y., Cheung, A.Y., and Wu, H.M. (2003). Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. Plant Cell 15,237-249.
    Chen, C.Y., Wong, E.I., Vidali, L., Estavillo, A., Hepler, P.K., Wu, H.M., and Cheung, A.Y. (2002). The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14,2175-2190.
    Chen, M., Liu, H., Kong, J., Yang, Y., Zhang, N., Li, R., Yue, J., Huang, J., Li, C., Cheung, A.Y., et al. (2011). RopGEF7 regulates PLETHORA-dependent maintenance of the root stem cell niche in Arabidopsis. Plant Cell 23,2880-2894.
    Cheung, A.Y., Niroomand, S., Zou, Y., and Wu, H.M. (2010). A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc. Natl. Acad. Sci. USA 107,16390-16395.
    Cheung, A.Y., Wang, H., and Wu, H.M. (1995). A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82,383-393.
    Cheung, A.Y., and Wu, H.M. (2004). Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell 16,257-269.
    Cheung, A.Y., and Wu, H.M. (2008). Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu. Rev. Plant Biol.59,547-572.
    Clement, M., Ketelaar, T., Rodiuc, N., Banora, M.Y., Smertenko, A., Engler, G., Abad, P., Hussey, P.J., and de Almeida Engler, J. (2009). Actin-depolymerizing factor2-mediated actin dynamics are essential for root-knot nematode infection of Arabidopsis. Plant Cell 21,2963-2979.
    Cooper, J.A., and Schafer, D.A. (2000). Control of actin assembly and disassembly at filament ends. Curr. Opin. Cell Biol.12,97-103.
    Cooper, J.A., and Sept, D. (2008). New insights into mechanism and regulation of actin capping protein. Int Rev Cel Mol Bio 267,183-206.
    Daher, F.B., and Geitmann, A. (2011). Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic 12,1537-1551.
    Daher, F.B., van Oostende, C., and Geitmann, A. (2011). Spatial and temporal expression of actin depolymerizing factors ADF7 and ADF10 during male gametophyte development in Arabidopsis thaliana. Plant Cell Physiol.52,1177-1192.
    Deeks, M.J., Cvrckova, F., Machesky, L.M., Mikitova, V., Ketelaar, T., Zarsky, V., Davies, B., and Hussey, P.J. (2005). Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol.168,529-540.
    Deeks, M.J., Fendrych, M., Smertenko, A., Bell, K.S., Oparka, K., Cvrckova, F., Zarsky, V., and Hussey, P.J. (2010). The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. J. Cell Sci.123,1209-1215.
    Deeks, M.J., Rodrigues, C., Dimmock, S., Ketelaar, T., Maciver, S.K., Malho, R., and Hussey, P.J. (2007). Arabidopsis CAP1-a key regulator of actin organisation and development. J. Cell Sci.120, 2609-2618.
    Dhonukshe, P., Grigoriev, I., Fischer, R., Tominaga, M., Robinson, D.G., Hasek, J., Paciorek, T., Petrasek, J., Seifertova, D., Tejos, R., et al. (2008). Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc. Natl. Acad. Sci. USA 105, 4489-4494.
    Dominguez, R., and Holmes, K.C. (2011). Actin structure and function. Annu. Rev. Biophys.40, 169-186.
    Dresselhaus, T., and Sprunck, S. (2012). Plant fertilization:maximizing reproductive success. Curr. Biol. 22, R487-489.
    Dutta, R., and Robinson, K.R. (2004). Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol.135,1398-1406.
    Emons, A.M.C., and Ketelaar, T. (2010). Root hairs, Vol 12 (Springer).
    Era, A., Tominaga, M., Ebine, K., Awai, C., Saito, C., Ishizaki, K., Yamato, K.T., Kohchi, T., Nakano, A., and Ueda, T. (2009). Application of lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha. Plant Cell Physiol.50,1041-1048.
    Fan, T., Zhai, H., Shi, W., Wang, J., Jia, H., Xiang, Y., and An, L. (2013). Overexpression of profilin 3 affects cell elongation and F-actin organization in Arabidopsis thaliana. Plant Cell Rep.32, 149-160.
    Fan, X., Hou, J., Chen, X., Chaudhry, F., Staiger, C.J., and Ren, H. (2004). Identification and characterization of a Ca2+ -dependent actin filament-severing protein from lily pollen. Plant Physiol. 136,3979-3989.
    Feijo, J.A., Sainhas, J., Holdaway-Clarke, T., Cordeiro, M.S., Kunkel, J.G., and Hepler, P.K. (2001). Cellular oscillations and the regulation of growth:the pollen tube paradigm. Bioessays 23,86-94.
    Frietsch, S., Wang, Y.F., Sladek, C., Poulsen, L.R., Romanowsky, S.M., Schroeder, J.I., and Harper, J.F. (2007). A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc. Natl. Acad. Sci. USA 104,14531-14536.
    Fu, Y. (2010). The actin cytoskeleton and signaling network during pollen tube tip growth. J. Integr. Plant Biol.52,131-137.
    Fu, Y., Wu, G., and Yang, Z. (2001). Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J. Cell Biol.152,1019-1032.
    Fu, Y., Xu, T., Zhu, L., Wen, M., and Yang, Z. (2009). A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr. Biol.19,1827-1832.
    Gabry, H. (2004). Blue light-induced orientation movements of chloroplasts in higher plants:recent progress in the study of their mechanisms. Acta. Physiol. Scand.26,473-479.
    Gibbon, B.C., Kovar, D.R., and Staiger, C.J. (1999). Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11,2349-2363.
    Goode, B.L., and Eck, M.J. (2007). Mechanism and function of formins in the control of actin assembly. Annu. Rev. Biochem.76,593-627.
    Gordon-Weeks, P.R., and Fischer, I. (2000). MAP IB expression and microtubule stability in growing and regenerating axons. Microsc. Res. Tech.48,63-74.
    Grunt, M., Zarsky, V., and Cvrckova, F. (2008). Roots of angiosperm formins:the evolutionary history of plant FH2 domain-containing proteins. BMC Evol. Biol.8,115.
    Gu, Y., Fu, Y., Dowd, P., Li, S., Vernoud, V., Gilroy, S., and Yang, Z. (2005). A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J. Cell Biol.169,127-138.
    Gu, Y., Vernoud, V., Fu, Y., and Yang, Z. (2003). ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J. Exp. Bot.54,93-101.
    Gutierrez, R., Lindeboom, J.J., Paredez, A.R., Emons, A.M., and Ehrhardt, D.W. (2009). Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat. Cell Biol.11,797-806.
    He, X., Liu, Y.-M., Wang, W., and Li, Y. (2006). Distribution of G-actin is related to root hair growth of wheat. Ann. Bot.98,49-55.
    Hepler, P.K., Kunkel, J.G., Rounds, C.M., and Winship, L.J. (2012). Calcium entry into pollen tubes. Trends Plant Sci.17,32-38.
    Hepler, P.K., Rounds, C.M., and Winship, L.J. (2013). Control of cell wall extensibility during pollen tube growth. Mol. Plant 6,998-1017.
    Hepler, P.K., Vidali, L., and Cheung, A.Y. (2001). Polarized cell growth in higher plants. Annu. Rev. Cell Dev. Biol.17,159-187.
    Hepler, P.K., and Winship, L.J. (2010). Calcium at the cell wall - cytoplast interface. J. Integr.52, 147-160.
    Heslop-Harrison, J., Heslop-Harrison, Y., Cresti, M., Tiezzi, A., and Ciampolini, F. (1986). Actin during pollen germination. J. Cell Sci.86,1-8.
    Higaki, T., Kutsuna, N., Okubo, E., Sano, T., and Hasezawa, S. (2006). Actin microfilaments regulate vacuolar structures and dynamics:dual observation of actin microfilaments and vacuolar membrane in living tobacco BY-2 Cells. Plant Cell Physiol.47,839-852.
    Higaki, T., Kutsuna, N., Sano, T., Kondo, N., and Hasezawa, S. (2010). Quantification and cluster analysis of actin cytoskeletal structures in plant cells:role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J.61,156-165.
    Higashida, C., Miyoshi, T., Fujita, A., Oceguera-Yanez, F., Monypenny, J., Andou, Y., Narumiya, S., and Watanabe, N. (2004). Actin polymerization-driven molecular movement of mDial in living cells. Science 303,2007-2010.
    Higashiyama, T., Kuroiwa, H., and Kuroiwa, T. (2003). Pollen-tube guidance:beacons from the female gametophyte. Curr. Opin. Plant Biol.6,36-41.
    Holdaway-Clarke, T.L., Feijo, J.A., Hackett, G.R., Kunkel, J.G., and Hepler, P.K. (1997). Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9,1999-2010.
    Holdaway-Clarke, T.L., and Hepler, P.K. (2003). Control of pollen tube growth:role of ion gradients and fluxes. New Phytol.159,539-563.
    Hormanseder, K., Obermeyer, G., and Foissner, I. (2005). Disturbance of endomembrane trafficking by brefeldin A and calyculin A reorganizes the actin cytoskeleton of Lilium longiflorum pollen tubes. Protoplasma 227,25-36.
    Huang, S., Blanchoin, L., Chaudhry, F., Franklin-Tong, V.E., and Staiger, C.J. (2004). A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depolymerization of actin filaments. J. Biol. Chem.279,23364-23375.
    Huang, S., Blanchoin, L., Kovar, D.R., and Staiger, C.J. (2003). Arabidopsis capping protein (AtCP) is a heterodimer that regulates assembly at the barbed ends of actin filaments. J. Biol. Chem.278, 44832-44842.
    Huang, S., Gao, L., Blanchoin, L., and Staiger, C.J. (2006). Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol Biol Cell 17,1946-1958.
    Huang, S., Jin, L., Du, J., Li, H., Zhao, Q., Ou, G., Ao, G., and Yuan, M. (2007). SB401, a pollen-specific protein from Solanum berthaultii, binds to and bundles microtubules and F-actin. Plant J.51,406-418.
    Huang, S., Robinson, R.C., Gao, L.Y., Matsumoto, T., Brunet, A., Blanchoin, L., and Staiger, C.J. (2005). Arabidopsis VILLIN1 generates actin filament cables that are resistant to depolymerization. Plant Cell 17,486-501.
    Hussey, P.J., Ketelaar, T., and Deeks, M.J. (2006). Control of the actin cytoskeleton in plant cell growth. Annu. Rev. Plant Biol.57,109-125.
    Hwang, J.U., Gu, Y., Lee, Y.J., and Yang, Z. (2005). Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol. Biol. Cell 16,5385-5399.
    Ide, Y., Nagasaki, N., Tomioka, R., Suito, M., Kamiya, T., and Maeshima, M. (2007). Molecular properties of a novel, hydrophilic cation-binding protein associated with the plasma membrane. J. Exp.Bot.58,1173-1183.
    Iwano, M., Entani, T., Shiba, H., Kakita, M., Nagai, T., Mizuno, H., Miyawaki, A., Shoji, T., Kubo, K., Isogai, A., et al. (2009). Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth. Plant Physiol.150,1322-1334.
    Jockusch, B., Murk, K., and Rothkegel, M. (2007). The profile of profilins. Rev. Physiol. Bioch. P. (Springer), pp.131-149.
    Justus, C.D., Anderhag, P., Goins, J.L., and Lazzaro, M.D. (2004). Microtubules and microfilaments coordinate to direct a fountain streaming pattern in elongating conifer pollen tube tips. Planta 219, 103-109.
    Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F., and Holmes, K.C. (1990). Atomic structure of the actin:DNase I complex. Nature 347,37-44.
    Kadota, A., Yamada, N., Suetsugu, N., Hirose, M., Saito, C., Shoda, K., Ichikawa, S., Kagawa, T., Nakano, A., and Wada, M. (2009). Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proc. Natl. Acad. Sci. USA 106,13106-13111.
    Kandasamy, M.K., McKinney, E.C., and Meagher, R.B. (2002). Plant profilin isovariants are distinctly regulated in vegetative and reproductive tissues. Cell Motil. Cytoskel.52,22-32.
    Kaothien, P., Ok, S.H., Shuai, B., Wengier, D., Cotter, R., Kelley, D., Kiriakopolos, S., Muschietti, J., and McCormick, S. (2005). Kinase partner protein interacts with the LePRK1 and LePRK2 receptor kinases and plays a role in polarized pollen tube growth. Plant J.42,492-503.
    Kato, M., Aoyama, T., and Maeshima, M. (2013). The Ca2+ -binding protein PCaP2 located on the plasma membrane is involved in root hair development as a possible signal transducer. Plant J.74, 690-700.
    Kato, M., Nagasaki-Takeuchi, N., Ide, Y., and Maeshima, M. (2010). An Arabidopsis hydrophilic Ca2+ -binding protein with a PEVK-rich domain, PCaP2, is associated with the plasma membrane and interacts with calmodulin and phosphatidylinositol phosphates. Plant Cell Physiol.51, 366-379.
    Ketelaar, T., de Ruijter, N.C., and Emons, A.M. (2003). Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs. Plant Cell 15,285-292.
    Ketelaar, T., Faivre-Moskalenko, C., Esseling, J.J., de Ruijter, N.C., Grierson, C.S., Dogterom, M., and Emons, A.M. (2002). Positioning of nuclei in Arabidopsis root hairs:an actin-regulated process of tip growth. Plant Cell 14,2941-2955.
    Khurana, P., Henry, J.L., Huang, S., Staiger, A.M., Blanchoin, L., and Staiger, C.J. (2010). Arabidopsis VILLIN1 and VILLIN3 have overlapping and distinct activities in actin bundle formation and turnover. Plant Cell 22,2721-2748.
    Kim, K., Galletta, B.J., Schmidt, K.O., Chang, F.S., Blumer, K.J., and Cooper, J.A. (2006). Actin-based motility during endocytosis in budding yeast. Mol Biol Cell 17,1354-1363.
    Klahre, U., Friederich, E., Kost, B., Louvard, D., and Chua, N.H. (2000). Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol 122,35-48.
    Kost, B., Spielhofer, P., and Chua, N.H. (1998). A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J.16, 393-401.
    Kovar, D.R., Drobak, B.K., and Staiger, C.J. (2000). Maize profilin isoforms are functionally distinct. Plant Cell 12,583-598.
    Kovar, D.R., Wu, J.Q., and Pollard, T.D. (2005). Profilin-mediated competition between capping protein and formin Cdc12p during cytokinesis in fission yeast. Mol Biol Cell 16,2313-2324.
    Kroeger, J.H., Geitmann, A., and Grant, M. (2008). Model for calcium dependent oscillatory growth in pollen tubes. J. Theor. Biol.253,363-374
    Kudryashov, D.S., Sawaya, M.R., Adisetiyo, H., Norcross, T., Hegyi, G., Reisler, E., and Yeates, T.O. (2005). The crystal structure of a cross-linked actin dimer suggests a detailed molecular interface in F-actin. Proc. Natl. Acad. Sci. USA 102,13105-13110.
    Kusano, K.i., Abe, H., and Obinata, T. (1999). Detection of a sequence involved in actin-binding and phosphoinositide-binding in the N-terminal side of cofilin. Mol. Cell Biochem. (Springer), pp. 133-141.
    Lausser, A., and Dresselhaus, T. (2010). Sporophytic control of pollen tube growth and guidance in grasses. Biochem. Soc. Trans.38,631-634.
    Lee, Y.J., and Yang, Z. (2008). Tip growth:signaling in the apical dome. Curr. Opin. Plant Biol.11, 662-671.
    Li, J., Henty-Ridilla, J.L., Huang, S., Wang, X., Blanchoin, L., and Staiger, C.J. (2012). Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis. Plant Cell 24,3742-3754.
    Li, J., Wang, X., Qin, T., Zhang, Y., Liu, X., Sun, J., Zhou, Y., Zhu, L., Zhang, Z., Yuan, M., et al. (2011). MDP25, a novel calcium regulatory protein, mediates hypocotyl cell elongation by destabilizing cortical microtubules in Arabidopsis. Plant Cell 23,4411-4427.
    Li, Y.Q., Moscatelli, A., Cai, G., and Cresti, M. (1997). Functional interactions among cytoskeleton, membranes, and cell wall in the pollen tube of flowering plants. Int. Rev. Cytol.176,133-199.
    Li, H., Wu, G., Ware, D., Davis, K.R., and Yang, Z. (1998). Arabidopsis Rho-related GTPases: differential gene expression in pollen and polar localization in fission yeast. Plant Physiol.118, 407-417.
    Li, H.J., Xue, Y., Jia, D.J., Wang, T., Hi, D.Q., Liu, J., Cui, F., Xie, Q., Ye, D., and Yang, W.C. (2011). POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. Plant Cell 23,3288-3302.
    Libault, M., Brechenmacher, L., Cheng, J., Xu, D., and Stacey, G. (2010). Root hair systems biology. Trends. Plant Sci.15,641-650.
    Liu, B.Q., Jin, L., Zhu, L., Li, J., Huang, S., and Yuan, M. (2009). Phosphorylation of microtubule-associated protein SB401 from Solanum berthaultii regulates its effect on microtubules. J. Integr. Plant Biol.51,235-242.
    Lovy-Wheeler, A., Kunkel, J.G., Allwood, E.G., Hussey, P.J., and Hepler, P.K. (2006). Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily. Plant Cell 18,2182-2193.
    Lovy-Wheeler, A., Wilsen, K.L., Baskin, T.I., and Hepler, P.K. (2005). Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221, 95-104.
    Mack, T.G., Koester, M.P., and Pollerberg, G.E. (2000). The microtubule-associated protein MAP1B is involved in local stabilization of turning growth cones. Mol. Cell Neurosci.15,51-65.
    Marton, M.L., and Dresselhaus, T. (2010). Female gametophyte-controlled pollen tube guidance. Biochem. Soc. Trans.38,627-630.
    Mathur, J., Mathur, N., and Hulskamp, M. (2002). Simultaneous visualization of peroxisomes and cytoskeletal elements reveals actin and not microtubule-based peroxisome motility in plants. Plant Physiol.128,1031-1045.
    Michard, E., Lima, P.T., Borges, F., Silva, A.C., Portes, M.T., Carvalho, J.E., Gilliham, M., Liu, L.H., Obermeyer, G., and Feijo, J.A. (2011). Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332, 434-437.
    Michelot, A., Berro, J., Guerin, C., Boujemaa-Paterski, R., Staiger, C.J., Martiel, J.L., and Blanchoin, L. (2007). Actin-filament stochastic dynamics mediated by ADF/cofilin. Curr. Biol.17,825-833.
    Miller, D.D., Callaham, D.A., Gross, D.J., and Hepler, P.K. (1992). Free Ca2+ gradient in growing pollen tubes of Lillium. J. Cell Sci.101,7-12.
    Miller, D.D., De Ruijter, N.C., and Bisseling, T. (1999). The role of actin in root hair morphogenesis: studies with lipochito - oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J.17,141-154.
    Morales, S., Jimenez-Lopez, J.C., Castro, A., Rodriguez-Garcia, M.I., and Alche, J. (2008). Olive pollen profilin (Ole e 2 allergen) co - localizes with highly active areas of the actin cytoskeleton and is released to the culture medium during in vitro pollen germination. J. Microsc-Oxford 231, 332-341.
    Mun, J.H., Yu, H.J., Lee, H.S., Kwon, Y.M., Lee, J.S., Lee, I., and Kim, S.G. (2000). Two closely related cDNAs encoding actin-depolymerizing factors of petunia are mainly expressed in vegetative tissues. Gene 257,167-176.
    Niirnberg, A., Kitzing, T. and Grosse, R. (2011). Nucleating actin for invasion. Nat. Rev. Cancer 11, 177-187.
    Oda, T., Iwasa, M., Aihara, T., Maeda, Y., and Narita, A. (2009). The nature of the globular-to fibrous-actin transition. Nature 457,441-445.
    Oikawa, K., Yamasato, A., Kong, S.G., Kasahara, M., Nakai, M., Takahashi, F., Ogura, Y., Kagawa, T., and Wada, M. (2008). Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol.148,829-842.
    Okreglak, V., and Drubin, D.G. (2010). Loss of Aipl reveals a role in maintaining the actin monomer pool and an in vivo oligomer assembly pathway. J. Cell Biol.188,769-777.
    Palanivelu, R., and Preuss, D. (2000). Pollen tube targeting and axon guidance:parallels in tip growth mechanisms. Trends. Cell Biol.10,517-524.
    Papuga, J., Hoffmann, C., Dieterle, M., Moes, D., Moreau, F., Tholl, S., Steinmetz, A., and Thomas, C. (2010). Arabidopsis LIM proteins:a family of actin bundlers with distinct expression patterns and modes of regulation. Plant Cell 22,3034-3052.
    Parton, R.M., Fischer-Parton, S., Trewavas, A.J., and Watahiki, M.K. (2003). Pollen tubes exhibit regular periodic membrane trafficking events in the absence of apical extension. J. Cell Sci.116, 2707-2719.
    Pei, W., Du, F., Zhang, Y., He, T., and Ren, H. (2012). Control of the actin cytoskeleton in root hair development. Plant Sci.187,10-18.
    Pollard, T.D. (1986). Rate constants for the reactions of ATP-and ADP-actin with the ends of actin filaments. J. Cell Biol.103,2747-2754.
    Pollard, T.D. (2007). Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct.36,451-477.
    Pollard, T.D., Blanchoin, L., and Mullins, R.D. (2000). Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Bioph. Biom.29,545-576.
    Pollard, T.D., and Borisy, G.G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112,453-465.
    Pollard, T.D., and Cooper, J.A. (2009). Actin, a central player in cell shape and movement. Science 326, 1208-1212.
    Preuss, M.L., Schmitz, A.J., Thole, J.M., Bonner, H.K., Otegui, M.S., and Nielsen, E. (2006). A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana. J. Cell Biol.172,991-998.
    Qin, T., Liu, X., Li, J., Sun, J., Song, L., and Mao, T. (2014). Arabidopsis microtubule-destabilizing protein 25 functions in pollen tube growth by severing actin filaments. Plant Cell, tpc.113.119768.
    Qin, Y., and Yang, Z. (2011). Rapid tip growth:insights from pollen tubes. Semin. Cell Dev. Biol.22, 816-824.
    Qu, X., Zhang, H., Xie, Y., Wang, J., Chen, N., and Huang, S. (2013). Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. Plant Cell 25,1803-1817.
    Rathore, K.S., Cork, R.J., and Robinson, K.R. (1991). A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Dev. Biol.148,612-619.
    Ray, S.M., Park, S.S., and Ray, A. (1997). Pollen tube guidance by the female gametophyte. Development 124,2489-2498.
    Riederer, B.M. (2007). Microtubule-associated protein 1B, a growth-associated and phosphorylated scaffold protein. Brain Res. Bull.71,541-558.
    Riedl, J., Crevenna, A.H., Kessenbrock, K., Yu, J.H., Neukirchen, D., Bista, M., Bradke, F., Jenne, D., Holak, T.A., Werb, Z., et al. (2008). Lifeact:a versatile marker to visualize F-actin. Nat. Methods 5, 605-607.
    Ruzicka, D.R., Kandasamy, M.K., McKinney, E.C., Burgos-Rivera, B., and Meagher, R.B. (2007). The ancient subclasses of Arabidopsis Actin Depolymerizing Factor genes exhibit novel and differential expression. Plant J.52,460-472.
    Sagot, I., Klee, S.K., and Pellman, D. (2002). Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat. Cell Biol.4,42-50.
    Sheahan, M.B., Rose, R.J., and McCurdy, D.W. (2007). Actin-filament-dependent remodeling of the vacuole in cultured mesophyll protoplasts. Protoplasma 230,141-152.
    Shimmen, T. (2007). The sliding theory of cytoplasmic streaming:fifty years of progress. J. Plant Res. 120,31-43.
    Sliwinska, E., Mathur, J., and Bewley, J.D. (2012). Synchronously developing collet hairs in Arabidopsis thaliana provide an easily accessible system for studying nuclear movement and endoreduplication. J. Exp. Bot.63,4165-4178.
    Silva, P.A., Ul-Rehman, R., Rato, C., Di Sansebastiano, G.P., and Malho, R. (2010). Asymmetric localization of Arabidopsis SYP124 syntaxin at the pollen tube apical and sub-apical zones is involved in tip growth. BMC Plant Biol.10,179.
    Smertenko, A.P., Jiang, C.J., Simmons, N.J., Weeds, A.G., Davies, D.R., and Hussey, P.J. (1998). Ser6 in the maize actin-depolymerizing factor, ZmADF3, is phosphorylated by a calcium-stimulated protein kinase and is essential for the control of functional activity. Plant J.14,187-193.
    Smith, L.G., and Oppenheimer, D.G. (2005). Spatial control of cell expansion by the plant cytoskeleton. Annu. Rev. Cell Dev. Biol.21,271-295.
    Snowman, B.N., Kovar, D.R., Shevchenko, G., Franklin-Tong, V.E., and Staiger, C.J. (2002). Signal-mediated depolymerization of actin in pollen during the self-incompatibility response. Plant Cell 14,2613-2626.
    Sparkes, I.A., Teanby, N.A., and Hawes, C. (2008). Truncated myosin XI tail fusions inhibit peroxisome, Golgi, and mitochondrial movement in tobacco leaf epidermal cells:a genetic tool for the next generation. J Exp. Bot.59,2499-2512.
    Staiger, C.J., and Blanchoin, L. (2006). Actin dynamics:old friends with new stories. Curr. Opin. Plant Biol.9,554-562.
    Staiger, C.J., and Hussey, P.J. (2004). Actin and actin-modulating proteins. The Plant Cytoskeleton in Cell Differentiation and Development Blackwell Scientific Publications, Oxford,32-80.
    Staiger, C.J., Poulter, N.S., Henty, J.L., Franklin-Tong, V.E., and Blanchoin, L. (2010). Regulation of actin dynamics by actin-binding proteins in pollen. J. Exp. Bot.61,1969-1986.
    Staiger, C.J., Sheahan, M.B., Khurana, P., Wang, X., McCurdy, D.W., and Blanchoin, L. (2009). Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. J. Cell Biol.184,269-280.
    Steinhorst, L., and Kudla, J. (2013). Calcium - a central regulator of pollen germination and tube growth. Biochim. Biophys. Acta.1833,1573-1581.
    Steinmetz, M.O., Goldie, K.N., and Aebi, U. (1997). A correlative analysis of actin filament assembly, structure, and dynamics. J. Cell Biol.138,559-574.
    Su, S., Z., Liu, Z., H., Chen, C., Zhang, Y., Wang, X., Zhu, L., Miao, L., Wang, X., C., and Yuan, M. (2010). Cucumber mosaic virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco. Plant Cell 22,1373-1387
    Szumlanski, A.L., and Nielsen, E. (2009). The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21,526-544.
    Szymanski, D.B., and Cosgrove, D.J. (2009). Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr. Biol.19, R800-811.
    Takagi, S., Takamatsu, H., and Sakurai-Ozato, N. (2009). Chloroplast anchoring:its implications for the regulation of intracellular chloroplast distribution. J. Exp. Bot.60,3301-3310.
    Tao, Z., and Ren, H. (2003). Regulation of gelsolin to plant actin filaments and its distribution in pollen. Science in China 46,379-388.
    Thomas, C., Hoffmann, C., Dieterle, M., van Troys, M., Ampe, C., and Steinmetz, A. (2006). Tobacco WLIM1 is a novel F-actin binding protein involved in actin cytoskeleton remodeling. Plant Cell 18, 2194-2206.
    Thomas, C., Moreau, F., Dieterle, M., Hoffmann, C., Gatti, S., Hofmann, C., van Troys, M., Ampe, C., and Steinmetz, A. (2007). The LIM domains of WLIM1 define a new class of actin bundling modules. J. Biol. Chem.282,33599-33608.
    Thomas, C., Tholl, S., Moes, D., Dieterle, M., Papuga, J., Moreau, F., and Steinmetz, A. (2009). Actin bundling in plants. Cell Motil. Cytoskel.66,940-957.
    Tsvetkov, A.S., Samsonov, A., Akhmanova, A., Galjart, N., and Popov, S.V. (2007). Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments. Cell Motil. Cytoskel.64,519-530.
    Ul-Rehman, R., Silva, P.A., and Malho, R. (2011). Localization of Arabidopsis SYP125 syntaxin in the plasma membrane sub-apical and distal zones of growing pollen tubes. Plant Signal Behav.6, 665-670.
    Valenta, R., Duchene, M., Pettenburger, K., Sillaber, C., Valent, P., Bettelheim, P., Breitenbach, M., Rumpold, H., Kraft, D., and Scheiner, O. (1991). Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science 253,557-560.
    Vavylonis, D., Wu, J.Q., Hao, S., O'Shaughnessy, B., and Pollard, T.D. (2008). Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science 319,97-100.
    Vidali, L., and Hepler, P.K. (2001). Actin and pollen tube growth. Protoplasma 215, 64-76.
    Vidali, L., and Hepler, P.K. (1997). Characterization and localization of profilin in pollen grains and tubes of Lilium longiflorum. Cell Motil. Cytoskel.36,323-338.
    Vidali, L., McKenna, S.T., and Hepler, P.K. (2001). Actin polymerization is essential for pollen tube growth. Mol. Biol. Cell 12,2534-2545.
    Vidali, L., Rounds, C.M., Hepler, P.K., and Bezanilla, M. (2009). Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS One 4, e5744.
    Vidali, L., Van Gisbergen, P.A., Guerin, C., Franco, P., Li, M., Burkart, G.M., Augustine, R.C., Blanchoin, L., and Bezanilla, M. (2009). Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proc. Natl. Acad. Sci. USA 106,13341-13346.
    Wang, H.J., Wan, A.R., and Jauh, G.Y. (2008). An actin-binding protein, L1LIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes. Plant Physiol.147,1619-1636.
    Wang, J., Xue, X., and Ren, H. (2012). New insights into the role of plant formins:regulating the organization of the actin and microtubule cytoskeleton. Protoplasma 249 Suppl 2, S101-107.
    Wang, T., Xiang, Y., Hou, J., and Ren, H.Y. (2008). ABP41 is involved in the pollen tube development via fragmenting actin filaments. Mol. Plant 1,1048-1055.
    Wang, X., Zhu, L., Liu, B., Wang, C., Jin, L., Zhao, Q., and Yuan, M. (2007). Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 functions in directional cell growth by destabilizing cortical microtubules. Plant Cell 19,877-889.
    Wang, Y., Zhang, W.Z., Song, L.F., Zou, J.J., Su, Z., and Wu, W.H. (2008). Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol.148,1201-1211.
    Way, M., and Weeds, A. (1988). Nucleotide sequence of pig plasma gelsolin:comparison of protein sequence with human gelsolin and other actin-severing proteins shows strong homologies and evidence for large internal repeats. J. Mol. Biol.203,1127-1133.
    Wightman, R., and Turner, S.R. (2008). The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J.54,794-805.
    Wu, J., Wang, S., Gu, Y., Zhang, S., Publicover, S.J., and Franklin-Tong, V.E. (2011). Self-incompatibility in Papaver rhoeas activates nonspecific cation conductance permeable to Ca2+ and K+. Plant Physiol.155,963-973.
    Wu, W. and Yan, L.F. (1997). Identification of gelsolin by western blotting in maize pollen. Chin. Sci. Bull.42:1784-1786
    Wu, Y., Yan, J., Zhang, R., Qu, X., Ren, S., Chen, N., and Huang, S. (2010). Arabidopsis FIMBRIN5, an actin bundling factor, is required for pollen germination and pollen tube growth. Plant Cell 22, 3745-3763.
    Xiang, Y., Huang, X., Wang, T., Zhang, Y., Liu, Q., Hussey, P.J., and Ren, H. (2007). ACTIN BINDING PROTEIN 29 from Lilium pollen plays an important role in dynamic actin remodeling. Plant Cell 19,1930-1946.
    Xu, T., Wen, M., Nagawa, S., Fu, Y., Chen, J.G., Wu, M.J., Perrot-Rechenmann, C., Friml, J., Jones, A.M., and Yang, Z. (2010). Cell surface-and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143,99-110.
    Xu, X., Zi, H., Sun, Y., and Ren, H. (2004). Dynamic organization of actin cytoskeleton during the polarity formation and germination of pollen protoplasts. Chin. Sci. Bull.49,1702-1706.
    Xue, X.H., Guo, C.Q., Du, F., Lu, Q.L., Zhang, C.M., and Ren, H.Y. (2011). AtFH8 is involved in root development under effect of low-dose latrunculin B in dividing cells. Mol. Plant 4,264-278.
    Yan, A., Xu, G., and Yang, Z.B. (2009). Calcium participates in feedback regulation of the oscillating ROP1 Rho GTPase in pollen tubes. Proc. Natl. Acad. Sci. USA 106,22002-22007.
    Yang, W., Ren, S., Zhang, X., Gao, M., Ye, S., Qi, Y., Zheng, Y., Wang, J., Zeng, L., Li, Q., et al. (2011). BENT UPPERMOST INTERNODE1 encodes the class Ⅱ formin FH5 crucial for actin organization and rice development. Plant Cell 23,661-680.
    Yang, Z. (2002). Small GTPases:versatile signaling switches in plants. Plant Cell 14 Suppl, S375-388.
    Yang, Z. (2008). Cell polarity signaling in Arabidopsis. Annu. Rev. Cell Dev. Biol.24,551-575.
    Ye, J., Zheng, Y., Yan, A., Chen, N., Wang, Z., Huang, S., and Yang, Z. (2009). Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell 21, 3868-3884.
    Ye, J., and Xu, M. (2012). Actin bundler PLIM2s are involved in the regulation of pollen development and tube growth in Arabidopsis. J. Plant Physiol.169,516-522.
    Yeoh, S., Pope, B., Mannherz, H.G., and Weeds, A. (2002). Determining the differences in actin binding by human ADF and cofilin. J. Mol. Biol.315,911-925.
    Yi, K., Guo, C., Chen, D., Zhao, B., Yang, B., and Ren, H. (2005). Cloning and functional characterization of a formin-like protein (AtFH8) from Arabidopsis. Plant Physiol.138, 1071-1082.
    Yokota, E., and Shimmen Ki, T.T. (1998). Actin-bundling protein isolated from pollen tubes of lily. Biochemical and immunocytochemical characterization. Plant Physiol.116,1421-1429.
    Yokota, E., and Shimmen, T. (1999). The 135-kDa actin-bundling protein from lily pollen tubes arranges F-actin into bundles with uniform polarity. Planta 209,264-266.
    Zhang, H., Qu, X., Bao, C., Khurana, P., Wang, Q., Xie, Y., Zheng, Y., Chen, N., Blanchoin, L., Staiger, C.J., et al. (2010). Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. Plant Cell 22,2749-2767.
    Zhang, Y., Xiao, Y., Du, F., Cao, L., Dong, H., and Ren, H. (2011). Arabidopsis VILLIN4 is involved in root hair growth through regulating actin organization in a Ca2+ -dependent manner. New Phytol. 190,667-682.
    Zhang, Z., Zhang, Y., Tan, H., Wang, Y., Li, G., Liang, W., Yuan, Z., Hu, J., Ren, H., and Zhang, D. (2011). RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. Plant Cell 23,681-700.
    Zhao, Y., Pan, Z., Zhang, Y., Qu, X., Zhang, Y., Yang, Y., Jiang, X., Huang, S., Yuan, M., Schumaker, K.S., et al. (2013). The actin-related protein2/3 complex regulates mitochondrial-associated calcium signaling during salt stress in Arabidopsis. Plant Cell 25,4544-4559.
    Zheng, Y., Xie, Y., Jiang, Y., Qu, X., and Huang, S. (2013). Arabidopsis actin-depolymerizing factor7 severs actin filaments and regulates actin cable turnover to promote normal pollen tube growth. Plant Cell 25,3405-3423.
    Zheng, Z.L., and Yang, Z. (2000). The Rrop GTPase switch turns on polar growth in pollen. Trends. Plant Sci.5,298-303.
    Zhu, L., Zhang, Y., Kang, E., Xu, Q., Wang, M., Rui, Y., Liu, B., Yuan, M., and Fu, Y. (2013). MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization. Plant Cell 25,851-867.
    Zimmermann, P., Hirsch-Hoffinann, M., Hennig, L., and Gruissem, W. (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol.136,2621-2632.
    李杰婕 拟南芥微管结合蛋白MAP25参与调控下胚轴细胞伸长机理的研究:[博士学位论文].北京:中国农业大学,2011
    刘宝全 含KKEE重复序列的植物微管结合蛋白SB401和MAP18与微管和微丝作用特点的研究:[博士学位论文].北京:中国农业大学,2008
    王伟 拟南芥类纤维素合酶基因CSLD1和CSLD4的功能分析:[博士学位论文].北京:中国农业大学,2011
    徐强一 拟南芥MAP18参与盐胁迫反应机制的研究:[博士学位论文].北京:中国农业大学,2010
    朱蕾拟南芥微管结合蛋白MAP18对微管动态调控机理的研究:[博士学位论文].北京:中国农业大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700