用户名: 密码: 验证码:
基于循环平稳信号处理的滚动轴承故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滚动轴承是机械设备中常用、关键的零部件,其工作状态是否正常直接关系到整台机组乃至整条生产线的生产质量和安全。研究滚动轴承的监测和诊断技术,对于避免重大事故及变革维修体制等具有重要的理论研究价值和实际应用意义。
     本文在分析了滚动轴承现有诊断技术的基础上,根据滚动轴承近似对称的结构特征及其旋转的工作方式,针对当轴承元件出现损伤时,由损伤点引起冲击调制使观测到的振动信号表现出循环平稳性这一现象,深入研究了基于循环统平稳信号处理的滚动轴承振动信号特征提取方法。具体内容如下:
     1)研究了一阶循环统计量。基于旋转机械振动中常见的调幅振动信号模型,证明了这类信号的循环平稳性。对比了循环均值和时域同步平均分析,指出这两者在提取信号中的一阶周期性特征信息方面具有相同的效果,但是二者的理论基石却完全不一样。对时域同步平均方法予以改进,得到循环时变同步平均方法,该方法能够更全面地反映一阶多周期信号中的多周期特征。研究还指出,循环均值不能实现对调幅信号的解调功能,因此不适合用来分析调幅信号。
     2)深入研究了循环自相关函数的解调性能。对比循环自相关函数解调、基于Hilbert变换的包络解调及平方解调,指出了它们虽在解调时具有相似的功效,但却存在本质上的差异:循环自相关函数是通过非线性二次变换和循环因子的共同作用获取循环平稳信号中的周期成分,将调幅信息直接解调到循环频率轴上;包络解调法有解调功能,却忽略了载波信息;而平方解调则是通过平方变换,实现对信号解调。包络解调和平方解调都只是实现了循环自相关函数解调的局部功能。
     3)对循环自相关函数在特定循环频率处的切片信息进行了研究。对比了循环自相关函数的模、实部和虚部切片分析。结果表明:循环自相关函数模的切片分析可以在不同循环频率处获取到调幅振动信号中的不同特征信息,并且在某些特定的循环频率处,可提取出单一的特征频率成分。在理论研究和仿真分析的基础上,找出了循环自相关函数模的切片分析的一般性规律。
     4)研究了谱相关密度函数。引入时域平滑循环周期图法,用于获取循环平稳信号的谱相关密度函数。谱相关密度函数通常可以采用对称与非对称两种变换形式加以实现。不同的变换形式会对谱相关密度函数的信息具体表现形式产生影响。推导了谱相关密度函数的一般表达式,给出了一般换形式下谱相关密度函数分布规律图。同时研究指出尽管变换形式不同,但是谱相关密度函数反映的信息特征实质是一样的,都可以揭示出循环平稳信号中的全部信息。
     5)针对故障滚动轴承冲击调幅振动信号的特点,改进了循环平稳度的定义,用于判别非平稳信号中包含周期成分强弱的程度。针对具有不同循环平稳度的非平稳信号,研究指出要采用不同的信号分析与处理方法,才能有效地识别和诊断。
     6)噪声干扰是信号特征提取中会遇到的一个重要问题,本文探讨性研究了白噪声对循环谱密度的影响,指出了二阶循环统计量对加性白噪声的渐进免疫性能。
     7)本文也研究了高阶循环统计量理论及其实现方法。在理论研究的基础上,本文对比了二阶统计量、高阶统计量和循环统计量的一些性能指标,指出高阶循环统计量具有更好的抗噪声干扰性能。将二阶循环统计量的切片分析理论引入到高阶循环统计量分析中,能够更加直观地将信号的高阶循环统计量分布表述出来,为高阶循环统计量的工程应用奠定了一定的基础。但是,高阶循环统计量具有算法复杂、计算效率低等缺陷,在一定的程度上限制了其实用性。
     8)鉴于二阶循环平稳分析对白噪声的渐进免疫性、对有色噪声的敏感性以及高阶循环平稳分析的计算复杂性,传统的循环平稳分析方法对几乎循环平稳信号的循环平稳特征提取存在缺憾。本文根据Morlet小波自身的特点以及连续小波变换的优越性,针对弱冲击调制信号,采用最小熵Morlet匹配小波基选择原理选择适合提取冲击特征的小波基,利用最大似然估计阈值消噪方法,实现弱冲击信号的冲击特征强化。对于旋转机械早期故障而言,因为早期故障引起的弱冲击调制导致了几乎循环平稳现象,利用基于Morlet小波的弱冲击信号冲击特征强化方法,强化这类几乎循环平稳信号的循环平稳特征,从而为这类信号有效地进行循环平稳分析奠定了基础。
     9)本文还研究了故障滚动轴承的循环平稳振动模型,在传统振动模型基础上,本文引入冲击的幅值、周期以及响应等三个时变量因子,得到了可以模拟内圈、外圈以及滚动体等故障的综合振动模型。新模型与传统模型相比,更加贴近故障滚动轴承的实际情况。并通过仿真实验,证明了该模型的循环平稳性。
     10)最后,本文进行了大量的实验研究,对不同类型故障的滚动轴承,对比了传统功率谱分析、包络分析、平方解调分析、二阶循环平稳分析、循环双谱分析,基于Morlet小波的循环平稳特征强化分析等分析方法的分析结果,论证了理论研究成果的正确性和有效性。将循环统计量分析方法和改进的BP神经网络相结合,构建了一个滚动轴承故障智能诊断系统,为滚动轴承的智能诊断提供了一种新的解决思路。
Rolling element bearing is one of the most widely used components in almost all kinds of machinery. Its working condition has influence on product quality and working safety in industry directly. So it is very significant to research on bearing condition monitoring and fault diagnosis techniques, especially for bearing early fault.
     Some techniques of condition monitoring for rolling element bearing have been analyzed in the thesis. Since symmetry or approximately symmetry of working parts of a bearing and its uniquely periodical rotating working mode, vibration of a destroyed bearing generally exhibits strong periodicity. These periodical pulses bring amplitude modulation (AM) characteristic. Considering the above reasons, a new signal processing method for bearing condition monitoring is studied in this thesis.
     Firstly, first-order cyclic statistics, named Cyclic Mean (CM) value, is studied. An example result has been obtained by cyclic mean for the amplitude modulation signal, which proved the signal exhibit cyclostationarity. The results of CM analysis and Synchronous Average (SA) analysis are compared. It is pointed out that the two methods possess similar performance for identifying the first-order periodical feature of the signal. However, their basis theories are different, the CM is based on sine-wave generating algorithm, but the SA is just based on the average estimate. A modified Cyclic Temporary Synchronous Average (CTSA) method is put forward. The CTSA analysis method can exhibit the first-order multi-periodical characteristics of the signal much more clearly. Our research also indicates that cyclic mean does not possess demodulation function.
     A further conclusion is introduced that Cyclic Autocorrelation Function (CAF) possesses demodulation capability. Comparing CAF with envelope demodulation and square demodulation, it is proved that the three methods have a similar performance on extracting feature frequencies of an AM signal. However, the three methods also have essential difference. CAF can obtain the periodical information for a cyclostationary signal by nonlinear transform and cyclic factor. It demodulates the AM components to cyclic frequency axis directly. Envelop demodulation technique only extracts AM frequencies from the original signal, and does not obtain any information about carrier wave. Square demodulation technique is just a special part of the CAF when time lag is equal to zero.
     Further study focuses on the slices of amplitude of CAF at different cyclic frequencies. The results show that the slices of the module of CAF can extract different information corresponding to different cyclic frequencies. At some certain cyclic frequencies, the module of CAF even can extract pure feature frequency. Several examples have been analyzed and common rules are summarized.
     Spectrum Correlation Density Function (SCDF) is studied in this thesis. The time smoothed and frequency smoothed cyclic periodogram are imported to obtain SCDF. Slices of SCDF for some cyclic frequencies are analyzed, and the similar rules are obtained as CAF. There are many kinds of transform modes of SCDF. The symmetrical and nonsymmetrical transformations are commonly used. The result of SCDF via a usual transformation is deducted. The result shows that different transform will affect information expression for SCDF. However, the essences which the SCDF provided are the same.
     Degree of Cyclostationary (DCS) is discussed, and a special DCS definition for engineering application is provided. It is a scale for the intensity of periodical information for non-stationary signal. A viewpoint is referred that corresponding signal processing technique should be adopted to analyze signal with different DCS.
     Higher-order cyclic statistics (HOCS) theory is also discussed. Some performances have been compared with second-order statistics, higher-order statistics and higher-order cyclic statistics. The conclusion is that HOCS has better anti-interference performance. The slice analysis method of SOCS is extended to HOCS domain, which can express the results of HOCS more clearly. However, HOCS has some limitations, such as the implement method is complexly and the calculation data is too long.
     A new cyclostationary characteristic strengthening method of weak cyclostationary signal based on Morlet Continuous Wavelet Transform (CWT) is advanced. This method uses the characteristics of Morlet Wavelet and the advantage of CWT, according to the minimum of entropy principle and the threshold maximum likelihood estimate method, and at last can strengthen the cyclostationary characteristics of the weak cyclostationary signal.
     The traditional vibration model of fault rolling element bearings is modified and gets a new cyclic model. The new model uses three random time-varying parameters to simulate the time-varying of the amplitude, the period of the impulse and the response of the system to this impulse. These improvements make the new model approach to the real work condition of rolling element bearings much more closely.
     Experimental research is well done at last. Several different kinds of rolling element bearing local faults are investigated. The vibration data are acquired and analyzed, the results verifies the accuracy of corresponding theoretical research in the present study and demonstrates its availability and feasibility in engineering practices. An intelligence diagnosis system of rolling element bearings based on cyclic statistics and BP Neural Networks is established, which provides a new kind of method to solve the intelligence diagnosis problem of rolling element bearings.
引文
[1] 陈进主编. 机械设备振动监测与故障诊断,上海交通大学出版社,1999
    [2] 黄文虎, 夏松波. 刘瑞岩等编著. 设备故障诊断原理、技术及应用,科学出版社,1996
    [3] 徐敏等编著. 设备故障诊断手册,西安交通大学出版社,1998
    [4] 佟德纯, 李华彪编著. 上海科学技术文献出版社,1997
    [5] N. A. Tandon and A. B. Choudhury. A Review of Vibration and Acoustic Measurement Methods for the Detection of Defects in Rolling Element Bearings,Tribology International,1999,32(8): 469~480
    [6] O. G. Gustafsson and T. Tallian. Detection of damage in assembled rolling bearings,Trans. Of ASLE,1962,5: 197~209
    [7] P. G. Wheeler. Bearing analysis equipment keeps downtime down,Plant Engineering,1968, 25: 87~89
    [8] R. Martin. Detection of ball bearing malfunctions,Instruments and control systems,1970,12: 79~82
    [9] D. R. Harting. Demodulated resonance analysis system,U.S. Patent 3842, 663,October 22, 1974
    [10] D. R. Harting. Incipient failure detection by demodulated resonance analysis,Instrumentation Technology, 1977, 9: 59~63
    [11] T. Koizumi, M. Kiso and R. Taniguchi. Preventive maintenance for roller and journal bearing of induction motor based on the diagnostic signature analysis,Trans. Of ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design,1986,108: 26~30
    [12] M. Subrahmanyam and C. Sujatha. Using neural networks for the diagnosis of localized defects in ball bearings, Tribology international,1997, 30(10): 739~752
    [13] 陈进,机械故障诊断中关于特征提取的若干研究前沿,面向 21 世纪的中国振动工程研究-中国科协第 30 次“青年科学家论坛”报告文集,航空工业出版社,1999: 110~122
    [14] L. Cohen. Time-frequency distribution - a review,In Processing. IEEE,1989, 77: 941~981
    [15] W. J. Staszewski, K Worden and G. R. Tomlinson. Time-frequency analysis in gearbox fault detection using the wigner-ville distribution and pattern recognition,Mechanical Systems and Signal Processing,1997, 11(5): 673~692
    [16] G. Michaelo,S. Sarkani and L D Lutes. Spectral characteristics of nonstationary random processes – a critical review, Structural Safety,1999, 21(2): 223~244
    [17] Y. Wu and R. Du. Feature Extraction and Assessment Using Wavelet Packets for Monitoring of Machining Processes,Mechanical System and Signal Processing,1996, 10: 29~53
    [18] H. Oehlmann,D. Brie and A. Richard. A. method for analyzing gearbox faults using time-frequency representations,Mechanical System and Signal Processing,1997,11(4): 529~545
    [19] W. J. Wang and P. D. McFadden. Early detection of gear fault by vibration analysis --I. calculation of the time-frequency distribution , Mechanical System and Signal Processing , 1993, 7(3):193~203
    [20] P. J. Loughlin and G. D. Bernard. Cohen-Posch (Positive) Time-Frequency Distributions and Their Application to Machine Vibration Analysis,Mechanical System and Signal Processing,1997, 11(4): 561~576
    [21] 张贤达,保铮,非平稳信号分析与处理,北京:国防工业出版社,1998
    [22] 张子瑜,基于非平稳非高斯信号处理的机械故障诊断研究:[博士论文],上海:上海交通大学,1999
    [23] W. A. Gardner and C. M. Spooner. The Cumulant Theory of Cyclostationary Time-Series, Part I: Foundation,IEEE Trans. on Signal Processing,1994, 42(12): 3387~3408,
    [24] J. M. Mendel. Tutorial on higher order statistics (spectra) in signal processing and system theory: Theoretical results and some applications,In Processing IEEE,1991, 79(3): 277~305
    [25] C. L. Nikias and J.M. Mendel,Signal Processing with Higher-Order Spectra,IEEE SignalProcessing Magazine,1993, (10): 10~37
    [26] B. G. Giannakis and A.V. Dandawate. Polyspectral analysis of (almost) cyclostationary signals: LPTV system identification and related applications,Asilomar Conference on Circuits, Systems & Computers,Nov 4-6,1991: 377-382
    [27] L. Izzo and A. Napolitano. The Higher Order Theory of Generalized Almost-Cyclostationary Time Series,IEEE Trans. on Signal Processing,1998, 46(11): 2975~2989
    [28] W. A. Gardner and C. M. Spooner. The Cumulant Theory of Cyclostationary Time-Series, Part I: Foundation,IEEE Trans. on Signal Processing,1994, 42(12): 3387~3408,
    [29] C. M. Spooner and W.A Gardner. The Cumulant Theory of Cyclostationary Time-Series, Part II: Development and Applications,IEEE Trans. on Signal Processing,1994, 42(12): 3409~3429
    [30] C. L. Nikias. and M. R. Raghuveer. Bispectrum estimation: A digital signal processing framework,In processing IEEE,1987, 75(7): 869~891
    [31] W. A. Gardner. Spectral characterization of Nth-order cyclostationarity,In Processing. Fifth IEEE/ASSP Workshop Spectrum Estimation, Modeling (Rochester, NY),October 10-12,1990: 251~255
    [32] WA Gardner and C.M. Spooner. Higher order cyclostationarity, cyclic cumulants, and cyclic polyspectra,In Processing Int. Symp. Inform. Theory, Application. (Honolulu),November 27-30,1990: 355~358
    [33] W. A. Gardner and T. L. Archer. Exploitation of cyclostationarity for identifying the Volterra kernels of nonlinear systems,IEEE Transaction Information theory,1993,39(2): 535~545
    [34] C. M. Spooner and W. A. Gardner,Estimation of cyclic polyspectra,In Processing 25th Ann. Asilomar Conference Signals, Computation. (Pacific Grove, CA),November 4-6,1991: 370~376
    [35] C. M. Spooner and W. A. Gardner. Performance evaluation of cyclic polyspectrum estimators,In Processing 26th Ann. Asilomar Conference Signals, Computation (Pacific Grove, CA),October,1992: 26~28
    [36] C. M. Spooner and W. A Gardner. An overview of the theory of higher order cyclostationarity,In Processing Workshop Nonstationary Stochastic Processes and Their Application,A.G. Miamee, Ed. Singapore: World Scientific,1992: 110~125
    [37] C. M. Spooner. Theory and application of higher order cyclostationarity,Ph.D. Dissertation, Department Electric Computation Engineering, University of CA, Davis, June,1992
    [38] C. M. Spooner and W.A. Gardner,Exploitation of higher order cyclostationarity for weak-signal detection and time-delay estimation,In Processing 6th Workshop Statistics Signal, Array Processing (Victoria, BC, Canada),October 7-9,1992:197~201
    [39] A. V. Dandawate and G. B. Giannakis. Polyspectral analysis of nonstationary signals: System identification, classification and ambiguity functions,In Processing Int. Signal Processing Workshop Higher Order Statistics (Chamrousse, France),July 10-12,1991:147~150
    [40] A. V. Dandawate and G. B. Giannakis,Ergodicity results for non-stationary signals: cumulants, ambiguity functions and wavelets,In Processing 25th Annual Conference Information Science, System. (Johns Hopkins University, Baltimore),March 20-22,1991: 976~983
    [41] A. V. Dandawate and G. B. Giannakis. Nonparametric polyspectral analysis of AM signals and processes with missing observations,In Processing 26th Conference Information Science, System. (Princeton University, Princeton, NJ),March 18-20,1992: 603~605
    [42] A. V. Dandawate and G. B. Giannakis. Cyclic-cumulant based identification of almost periodically time-varying systems: Parametric methods,In Processing Intl. Conference. ASSP 1992 (San Francisco, California, America),March 23-26,1992: 229~232
    [43] A. V. Dandawate and GB Giannakis,Detection and classification of cyclostationary signals using cyclic-HOS: A unified approach,In Processing Soc. Photo-opt. Instr. Engr., Adv. Signal Processing Algorithms, Implementations (San Diego, Canada), July,1992
    [44] A. V. Dandawate and GBGiannakis. Nonparametric identification of linear (almost) periodically time-varying systems using cyclic polyspectra,In Sixth Workshop Stat., Signal , Array Processing (Victoria, BC, Canada), Oct. 7-9,1992
    [45] G. B. Giannakis and AV Dandawate. Polyspectral analysis of non-stationary signals: Bases,consistency and HOS-WV,In Processing Int. Signal Processing Workshop Higher Order Statistics (Chamrousse, France), July 10-12,1991: 167~170
    [46] G. B. Giannakis and AV Dandawate. Polyspectral analysis of (almost) cyclostationary signals: LPTV system identification and related applications,In Processing. 25th Asilomar Conference Signals, System, Computation (Pacific Grove, Canada) ,November 4-6,1991: 377~382
    [47] G. B. Giannakis and S. Shamsunder. Non-Gaussian source localization via exploitation of higher order cyclostationarity,In Processing Sixth Workshop Statistics Signal, Array Processing (Victoria, BC, Canada) ,October 7-9,1992: 193~196
    [48] M. Rosenblatt. Stationary sequences and Random Fields,Boston: Birkhauser, 1985
    [49] M. B. Priestley. Spectral analysis and time series,London: Academic, 1981
    [50] C. L. Nikias. Higher order spectral analysis,In advances in spectrum analysis and array processing,S. Haykin, Ed. Englewood Cliffs,NJ: Prentice Hallv,1991
    [51] W. A. Gardner. Introduction to random processing with applications to signals and systems,New York: McGraw-Hill,1990
    [52] A. Papoulis. Probability, random variables, and stochastic processes,New York: McGraw-Hill,1965
    [53] A. Papoulis. Signal analysis,New York: McGraw-Hill,1977
    [54] H. V. Poor. An introduction to signal detection and estimation , 2nd. Ed. New York: Springer-Verlag,1994
    [55] W. A. Gardner. The Spectral Correlation Theory of Cyclostationary,Signal Processing Magazine,1986, 11: 13~36
    [56] .K. Mechefske and J Mathew. Fault Detection and Diagnosis in Low Speed Rolling Element Bearings PART II:The Use of Nearest Neighbour Classification,Mechanical System and Signal Processing,1992 6(4): 309~316
    [57] A Swami and JM. Mendel. Cumulant-Based Approach to The Harmonic Retrieval Problem,In Proc. ICASSP,1988: 2264~2267
    [58] A Swami and JM Mendel. Cumulant-Based Approach to The Harmonic and Related Problem,IEEE Trans. on Acoustic, Speech, and Signal Processing,1991, 39(5): 1099~1109
    [59] A. Ferrari and G. Alengin. Estimation of The Frequencies of A Complex Sinusoidal Noisy Signal Using Fourth Order Statistic,In Processing ICASSP,1991, (1): 3457~3460,
    [60] CK Papadopoulos and CL Nikias. Parameter Estimation of Exponentionally Damped Sinusoids Using Higher Order Statistics,IEEE Trans. on Acoustic, Speech, and Signal Processing,1990, 38(8): 1424~1436
    [61] 梁应敞,王树勋,戴逸松. 正弦参量的四阶累积量 ESPRIT 方法,电子学报,1994: 22(4): 6~12
    [62] X. D. Zhang, YC Liang and Y.D. Li.A Hybrid Approach to Harmonic Retrieval in Non-Gaussian Noise,IEEE Trans. on Information Theory,1994, 40: 1220~1226
    [63] 梁应敞,王树勋,戴逸松,非高斯有色噪声中的正弦信号频率估计,电子学报,1995, 23(4): 111~114
    [64] Y. C. Liang, XD Zhang and YD Li. A Unified Prefiltering-Based Approach to Harmonic Retrieval in Non-Gaussian ARMA Noise,In Processing. ICASSP,1995
    [65] 梁应敞,戴逸松,王树勋,非高斯 ARMA 噪声中谐波恢复的杂交 ESPRIT 方法,电子科学学刊,1994, 16(6): 561~568
    [66] X. D. Zhang and YC Liang. Prefiltering-Based ESPRIT for Estimating Sinusoidal Parameters in Non-Gaussian ARMA Noise,IEEE Trans. on Signal Processing,1995, 43(1): 349~353
    [67] 梁应敞. 非最小相位信号建模及谐波恢复的高阶统计量法研究: [博士论文],长春:吉林工业大学,1993
    [68] 张贤达, 保铮. 非平稳信号分析与处理,北京:国防工业出版社,1998
    [69] 梁应敞, 王树勋,戴逸松. 噪声中的谐波恢复研究现状,电子科学学刊,1995, 17(4): 404~411
    [70] JMM. Anderson, GB Giannakis and A. Swam. Harmonic Retrieval Using Higher-Order Statistics: A Deterministic Formulation,IEEE Trans. on Signal Processing,1995, 43(8): 1880~1889
    [71] 李宏伟,袁保宗. 谐波恢复中累量估计的强收敛问题,电子科学学刊,1999, 21(5): 592~ 599
    [72] 毛用才,保铮. 多个具有非零均值复乘性噪声的复谐波信号循环估计量的性能分析,电子科学学刊,1999, 21(3): 289~295
    [73] RS Holambel, AK Ray and JK Basu. Signal Phase Recovery Using the Bispectrum,Signal Processing Magazine,1996, 55(3): 321~337
    [74] 王成毅,王宏禹. 循环谱密度的两通道最大熵谱估计,电子科学学刊,1999, 21(4): 461~465
    [75] 张严,王树勋,李生红. 二次相位耦合的 3/2 维谱分析,电子学报,1996, 24(4): 109~112
    [76] 张严,王树勋. 非线性相位耦合的切片谱分析方法,电子学报,1998, 26(10): 104~109
    [77] KS Lii and M. Rosenblatt. Deconvolution and Estimation of Transfer Function Phase and Coefficients for Non-Gaussian Linear Processes,Ann. Stat.,1982, 10: 1195~1208
    [78] B. Friedlander and B. Poart. Adaptive IIR Algorithms Based on Higher-Order Statistics,IEEE Trans. on Acoustic, Speech, and Signal Processing,1989, 37(4): 485~495
    [79] 李会方,郝重阳,俞卡章. 非高斯信号的非因果非最小相位 ARMA 模型辨识,西北工业大学学报,1995, 13(3): 418~ 422
    [80] 余建航,张曾锠. 周期测量误差对周期信号相位谱的影响,振动、测试与诊断,1999, 19(3): 174~177
    [81] L. Izzo and A. Napolitano. Multirate Processing of Time Series Exhibiting Higher Order Cyclostationary,IEEE Trans. on Signal Processing,1998, 46(2): 429~439
    [82] GB Giannakias. Cumulants: A Powerful Toll In Signal Processing,In Processing IEEE,1987, 75: 1333~1334
    [83] GB. Giannakias and J.M. Mendel. Identification of Nonminimum Phase Systems Using Higher Order Statistics,IEEE Trans. Acoustic, Speech., Signal processing,1989, 37: 360~377
    [84] J.K. Tugnait. Approaches to FIR System Identification with Noisy Data Using Higher Order Statistics,IEEE Trans. Acoustic, Speech, Signal processing ,1990, 38(7): 1307~1317
    [85] J.K. Tugnait. New Results on FIR System Identification Using Higher Order Statistics,IEEE Trans. on Signal Processing,1991, 39(10): 2216~2221
    [86] S.A. lshebeili, A.N Venetsanopoulos and A.E. Cetin. Cumulant Based Identification Approaches for Nonminimum Phase Systems,IEEE Trans. on Signal Processing,1993, 41(4): 1576~1588
    [87] AR. Fonollosa and J. Vidal,System identification using a linear combination of cumulant slices,IEEE Trans. on Signal Processing,1993, 41(7): 2405~2412
    [88] W.A. Gardner. Stationarizable random processes,IEEE Trans. Information Theory,Vol. IT-24,1978: 8~22
    [89] K. Ha and H.M. Kim. A New Phase Determination Method for Non-Minimum Phase MA Systems,Signal Processing Magazine,1996, 55(1): 55~64
    [90] A.T. Erdem and A.M. Jekalp. Linear Bispectrum of Signals and Identification of Nonminimum Phase FIR Systems Driven by Colored Input,IEEE Trans. Signal Processing,1992, 40: 1469~1476
    [91] D. Mattera and Lpaura. Higher-Order Cyclostationarity-Based Methods for Identifying Volterra by Input-Output Noisy Measurements,Signal Processing Magazine,1998, 67(1): 77~98
    [92] A. Napolitano , Cyclic Higher-Order Statistics: Input/Output Relations for Discrete-and Continuous-Time MIMO Linear Almost-Periodically Time-Variant Systems,Signal Processing Magazine,1995, 42(2): 147~166
    [93] D. Yellin and E Weinstein. Criteria for Multi-Channel Signal Separation,IEEE Trans. on Signal Processing,1994, 42(8): 2125~2168
    [94] S. Shamsunder and G.B Giannikis. Multichannel Blind Signal Separation and Reconstruction,In Processing 6th IEEE Digital Signal Processing Workshop,1994: 173~176
    [95] Y. Inouge and B. Sako,Identifiablity of Multichannel Linear Systems Driven by Colored Inputs and Its Application to Blind Signal Separation,In Processing ICASSP,1994: 57~60
    [96] Y. Inouge and K. Hirano. Cumulant-Based Blind Identification of Linear Multi-Input-Multi-Output Systems Driven by Colored Inputs,IEEE Trans. on Signal Processing,1997, 45(6): 1543~1552
    [97] A. Cherreuil and P. Loubation. MIMO Blind Second-Order Equalization Method and Conjugate Cyclostationarity,IEEE Trans. on Signal Processing,1999, 47(2): 572~578
    [98] 张桂才,史铁林,杨叔子,基于高阶统计量的机械故障特征提取方法研究,华中理工大学学报,1999, 27(3): 6~8
    [99] 苏文斌,史维祥,温熙森. 故障诊断中非线性耦合特征提取的研究,西安交通大学学报,1999, 33(1): 88~92
    [100] 苏文斌,史维祥,温熙森. 故障诊断中非线性耦合特征提取(一),机械研究与应用,1998, 11(2): 12~13
    [101] A.C. Mccormick and A.K. Nandi. Cyclostationarity in Rotating Machine Vibrations,Mechanical Systems and Signal Processing,1999, 12(2): 225~242
    [102] C. Capdessus, M.Sidahmed, and J.L. Lacoume. Cyclostationary Processes: Application in Gearing Faults Early Diagnosis,Mechanical Systems and Signal Processing,2000, 14(3): 371~385
    [103] W.A. Gander,Exploitation of Spectral Redundary in Cyclostationary Signals,IEEE Signal Processing Magazine,1991, 8(2): 14~36
    [104] S. Enserink and D. Cochran. A Cyclostationary Feature Detector,In Processing 28th Asilomar Conference,1994: 806~810
    [105] S. Colonnese and G. Scarano. Transient Signal Detection Using Higher Order Moments,IEEE Trans. on Signal Processing,1999, 47(2): 515~520
    [106] A.V. Dandanwate and G.B. Giannakis. Extraction of Almost Periodic Signals Using Cyclostationarity,In Processing. ICASSP,1994: 141~144
    [107] G. Zhou and G.B. Giannakis. Self Coupled Harmonics: Stationary and Cyclostationary Approaches,In Processing ICASSP,1994: 153~156
    [108] A .Murray and J. Penman. Extracting Useful Higher Order Features for Condition Monitoring Using Artificial Neural Networks,IEEE Trans. on Signal Processing,1997, 45(11): 2821~2828
    [109] A.K. Nandi, J.R Dickie, J.A Smith, et al. Classification of Conditions of Rotating Machines Using High Order Statistics,In Processing ICASSP,May 22,1997: 111~116
    [110] G B Giannakis and G Zhou. Harmonics in multiplicative and additive noise: Parameter estimation using cyclic statistics,IEEE Trans. Signal Processing,1995,43(9): 2217~2221
    [111] A.V. Dandawate and G.B. Giannakis. Nonparametric Polyspectral Estimations for Kth-Order (Almost) Cyclostationary Processes,IEEE Trans. On Information Theory,1994, 40(1): 67~84
    [112] W.A. Gardner and L.E. Franks,Characterization of cyclostationary random signal processes,IEEE Trans. Information Theory,Vol. IT-21,1975: 4~14
    [113] G.D. Zivanovic and W.A. Gardner. Degrees of Cyclostationarity and Their Application to Signal Detection and Estimation,IEEE Signal Processing Magazine,1991, 22: 287~297
    [114] 姜鸣, 陈进, 秦恺等. 一阶循环矩分析在旋转机械振动信号分析中的应用, 振动工程学报, 2001, 14(4):423-427.
    [115] 陈再良, 王传洋. 一阶循环平稳新方法在旋转机械状态检测中的应用, 新技术新工艺, 2004(6):18-19.
    [116] Z.K. Zhu, Z. H. Feng and F. R. Kong. Cyclostationarity analysis for gearbox condition monitoring: approaches and effectiveness, Mechanical systems and signal processing, 2005, 19:467-482.
    [117] A. C. Mccormick and A. K. Nandi. Cyclostationarity in Rotating Machine Vibrations. Mechanical System and Signal Processing, 1998, 2(2):225-242.
    [118] L. Bouilaut and M. Sidahmed. Cyclostationary and Bilinear Approaches for Gears Vibrating Signals, Key Engineering Materials, 1999,167-168:(354-362).
    [119] L. Bouillaut and M.Sidahmed. Cyclostatioanry Approach and Bilinear Approach: Comparison, Applications to Early Diagnosis Helicopter Gearbox and Classification Method Based on HOCS, Mechanical Systems and Signal Processing, 2001,15(5):923-943.
    [120] C. Capdessus, M. Sidahmed and J. L. Lacoume. Cyclostationary Processes: Application in Gear Faults Early Diagnosis, Mechanical System and Signal Processing, 2000,14(3):371-385.
    [121] I. Antoniadis and G. Glossiotis. Cyclostationary analysis of rolling element bearing vibration signals, Journal of Sound and Vibration, 2001, 248(5):829-845.
    [122] C. Capdessus, M. Sidahmed and J. L. Lacoume. Cyclostationary Processes: Application in Gear Faults Early Diagnosis, Mechanical System and Signal Processing, 2000,14(3):371-385.
    [123] I. Antoniadis and G. Glossiotis. Cyclostationary analysis of rolling element bearing vibration signals, Journal of Sound and Vibration, 2001, 248(5):829-845.
    [124] R. B. Randall, J. Antoni and S. Chobsaard. The relationship between spectral correlation andenvelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals, Mechanical systems and signal processing, 2001, 15(5):945-962.
    [125] J. Antoni, J. Daniere and F. Guiliet. Effective vibration analysis of IC engines using cyclostationary, Part I- a methodology for condition monitoring, Journal of Sound and Vibration, 2002, 257(5):815-837.
    [126] J. Antoni, J. Daniere and F. Guiliet. Effective vibration analysis of IC engines using cyclostationary, Part II- New results on the reconstruction of the cylinder pressures, Journal of Sound and Vibration, 2002, 257(5):839-856.
    [127] Li Li and Liangsheng Qu. Cyclic statistics in rolling bearing diagnosis, Journal of Sound and Vibration, 2003, 267:253-265
    [128] J. Antoni, J. Daniere, F. Guillet, et.al. Cyclostationary modeling of rotating machine vibration signals, Mechanical Systems and Signal Processing, 2004,11(18):1285~1314.
    [129]姜鸣,陈进,秦恺.时变调幅信号的循环平稳特征,上海交通大学学报,2001,36(12):1798-1801.
    [130] 秦恺, 陈进, 姜鸣等. 一种滚动轴承故障特征提取的新方法——谱相关密度, 振动与冲击, 2001, 20(1):33-37.
    [131] 姜鸣, 陈进. 循环自相关函数的解调新能分析, 上海交通大学学报, 2002, 36(6):799-804.
    [132] 姜鸣, 陈进, 周福昌. 一种改进的循环自相关函数分析方法, 2002 年全国振动工程及应用学术会议论文集, 2002, 2: 958-963.
    [133] 姜鸣, 陈进. 循环周期图在滚动轴承故障诊断中的应用, 机械科学与技术, 2002, 21(1):108-110.
    [134] 李力, 屈梁生. 二阶循环统计量在机械故障诊断中的应用. 西安交通大学学报, 2002, 36(9):943-946.
    [135] 李力, 廖湘军. 应用循环自相关函数诊断齿轮故障, 三峡大学学报, 2003, 25(2):129-133.
    [136] 陈仲生, 杨拥民. 二阶循环平稳分析在转子早期碰磨故障识别中的应用, 机械科学与技术, 2004, 23(2):221-223.
    [137] 何俊, 陈进, 周福昌等. 循环自相关函数切片用于滚动轴承多故障诊断的研究, 振动与冲击, 录用.
    [138] 毕果, 陈进, 周福昌等. 调幅信号谱相关密度分析中白噪声影响的研究, 振动与冲击, 录用.
    [139] 王锋, 屈梁生. 小波-循环谱密度法在旋转机械故障诊断中的应用, 状态监测与诊断技术. 2002:38-39.
    [140] Fuchang Zhou, Jin Chen, Jun He, et al. Cyclic Statistics Based Neural Network for Early Fault Diagnosis of Rolling Element Bearings. Lecture Notes in Computer Science, 2004, 3174: 595-600.
    [141] W. A. Gardner and C. M. Spooner. Higher order cyclostationarity and cyclic cumulants. International Symposium on information theory and its Application. 1990, Nov. 27-30.
    [142] Dandawate and Amod Vasant Exploiting cyclostationarity and higher-order statistics in signal processing, Ph.D thesis, 1993.
    [143] Luciano Izzo and Antoni Napolitano. Higher-order statistics for Rice’s representation of cyclostationary signals, Signal processing, 1997, 56:279-292.
    [144] L. Izzo and A. Napolitano,Higher-Order Cyclostationarity Properties of Sampled Time-Series,IEEE Signal Processing Magazine,1996, 54: 303~307
    [145] W.A. Gardner,Measurement of Spectral Correlation,IEEE Trans. On Acoustic, Speech, and Signal Processing,1986, 34: 1111~1123
    [146] A.V. Dandawate and G.B. Giannakis. Asymptotic Theory of Mixed Time Averages and Kth-Order Cyclic-Moment and Cumulant Statistics,IEEE Trans. On Information Theory,1995, 41(1): 216~232
    [147] H.L. Hurd and N.L. Gerr. Graphical Methods for Determining the Presence Processes,Journal of Time Series Analysis,1991, 12(4): 337~350
    [148] A. Grossmann, J. Morlet. Decomposition of hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal., 1984, 15:723-736
    [149] Y. Meyer. Ondelettes at function splines, Seminaire EDP, Ecole Polytechnique, Pairs, Dec. 1986
    [150] S. Mallat. Multiresolution representation and wavelets, Phd Dissertation, Univ. of Pennsylvania, Pheladephia, PA, 1988
    [151] A. Hyvarinen. Sparse code shrinkage denoising of non-gaussian data by maximum likelihood estimation. Neural Computation, 1999, 11(7):1739~1768
    [152] M. Xu,Spike Energy and Its Applications,The Shock and Vibration Digest,1995, (516): 11~17
    [153] J. Mathew and R. J. Alfredson,the Condition Monitoring of Rolling Element Bearing Using Vibration Analysis,ASME Journal Vib. Acoust. Stress. Reliab. Des.,1984, 106(12): 447~453
    [154] N. Tandon,A. Comparison of Some Vibration Parameters for the Condition Monitoring of Rolling Element Bearings,Measurement,1994, (12): 285~289
    [155] 徐章遂, 房立清, 王希武等,故障信息诊断原理及应用,北京:国防工业出版社,2000
    [156] 刘泽九编,滚动轴承应用手册,北京:机械工业出版社,1996
    [157] 《振动与冲击手册》编辑委员会,振动与冲击手册 第三卷 工程应用,北京:国防工业出版社,1992
    [158] 王振华编,实用轴承手册,上海:科学技术文献出版社,1991
    [159] C.K. Mechefske and J. Mathew,Fault Detection and Diagnosis in Low Speed Rolling Element Bearings PART I: The Use of Parametric Spectra,Mechanical System and Signal Processing,1992, 6(4): 297~307
    [160] K Mechefske and J. Mathew,Fault Detection and Diagnosis in Low Speed Rolling Element Bearings PART II:The Use of Nearest Neighbour Classification,Mechanical System and Signal Processing,1992, 6(4): 309~316
    [161] 姜鸣,循环统计量理论及其在滚动轴承故障诊断中的应用研究:[博士论文],上海:上海交通大学,2002
    [162] M Chow. On the application and design of artificial neural networks for motor fault detection. IEEE Trans. Ind. Electron,1991, 38(6): 448~453
    [163] R.H. Eberhar and R.W. Dobbins. Neural network PC tools,New York: Academic Press,1990
    [164] R.H. Nielsen. Theory of the back propagation neural network,In Processing. of IJCNN,1989, 1: 2593~2605

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700