用户名: 密码: 验证码:
石墨烯负载过渡金属氧化物及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展,人们对于清洁能源以及生态环境越来越关注。超级电容器作为一种新型的储能器件,由于其无污染、高效的优良特性,越来越受到人们的重视。锂离子二次电池具有高能量密度、高输出电位和无污染等优势,在手机、相机、笔记本电脑等小型电器方面获得广泛应用,同时,在新能源存储和电动汽车领域也展示了良好的应用前景。
     石墨烯自2004年问世以来,已经在诸多领域引起了广泛的关注,各国科学家都在争先恐后的研究石墨烯的各种特殊的性质。石墨烯的理论比表面积高达2630m2/g,而且其导电性非常好,是制造储能器件的理想材料。本论文旨在为满足高性能超级电容器和锂离子电池的需求,基于石墨烯与过渡金属氧化物之间的交互作用原理合成系列具有新型结构的、适于能量存储的石墨烯/金属氧化物纳米材料。探索纳米结构复合材料的形成机理,并研究电极形貌结构等参数对于其电化学性能的影响。论文的主要研究结果如下:
     (1)通过200~900℃不同温度热解氧化石墨,得到不同氧化程度的石墨烯,利用XRD、FTIR、EDS、Raman、BET等测试探讨不同热解温度石墨烯的微观结构,系统研究了层间距、氧含量、比表面积和无序程度对其电容性能的影响。研究发现含氧基团对电容性能起主导作用,200℃热解得到的石墨烯具有最高的比电容,在0.4A/g电流密度下为260.5F/g。
     (2)运用自组装机制的水热法,合成了多孔氧化铜/石墨烯片-片复合材料。实验过程中,首先通过形貌控制合成氢氧化铜纳米线前驱体,随后沿[010]晶面定向排列形成氧化铜片状结构。电容测试发现,在0.6A/g的电流密度下石墨烯/氧化铜复合材料的电容达到331.9F/g。当电流密度提高到2A/g和8A/g时,容量分别保持在305F/g和221F/g,显示了良好的倍率性能。2A/g的电流密度下经过1000循环后容量依然保持在95.1%,显示其作为超级电容器材料极大的应用前景。
     (3)采用不同方法,合成了不同结构系列NiO/石墨烯复合材料。
     a.共沉淀法制备单层石墨烯/NiO纳米复合材料:在这种复合材料中石墨烯作为导电网络,提高了氧化镍的导电性;同时石墨烯的限域作用,可有效防止氧化镍颗粒过度增长(~5nm),并将不同的氧化镍颗粒隔离开来,防止纳米颗粒团聚,进一步提高复合材料比表面积。
     b.以十六烷基三甲基溴化铵(CTAB)为表面活性剂,回流法制备花状氧化镍/石墨烯。通过改变回流时间,调节石墨烯上氧化镍的负载量,并提出花状球形结构可能的形成机理。
     c.以甘油/水为混合溶剂,水热法制备花状多孔氧化镍/石墨烯复合材料。电化学测试表明该材料独特的三维孔状结构保证了电极活性物质与电解液的充分接触,片上的纳米孔道缩短了离子在电极活性物质体相的扩散距离,加之石墨烯良好的导电性有效改善了复合材料的电化学性能。
     (4)通过在较低温度下的水热法,以醋酸钠小分子为结构导向剂,合成α-FeOOH/GNS复合物前驱体,300℃下退火2小时,得到形貌结构保持的氧化铁纳米棒/石墨烯复合物。通过对不同水热时间产物的透射电镜分析,提出棒状结构氧化铁/石墨烯复合材料的生长机理:在水热过程中,α-FeOOH刚开始时表现出无规则的片状,随着水热时间的延长,片状会发生卷曲,然后断裂成为棒状,呈典型的卷曲-破裂-生长(RGB)生长机制。电化学测试结果表明,复合材料0.1C首次可逆容量达到1063.2mAh/g,并显示出良好的倍率和循环性能。
     (5)利用石墨烯和柠檬酸共同修饰,通过喷雾干燥方法合成Li_3V_2(PO_4)_3/(G+C)材料,并研究石墨烯、无定形碳对产物形貌结构及电化学性能的影响。三维结构的石墨烯和Li_3V_2(PO_4)_3一次颗粒相互交织缠绕,有利于电子的迁移;同时柠檬酸碳化生成的碳层包覆在Li_3V_2(PO_4)_3表面,减小了颗粒生长并提高其导电性。该材料在0.1C倍率、电压区间为3.0~4.3V和3.0~4.8V的放电比容量分别能达到131.4和181.5mAh/g,接近于理论容量,而且在100次循环后只有微弱的容量衰减。
With the economic development, the clean energy and ecological environmenthave become increasingly concerned. As a new kind of energy storage device,supercapacitor has been thought as the most important energy storage device becauseof high power density, excellent cycle ability and environment protection.Meanwhile, lithium-ion batteries (LIBs) have been used widely in portable electronicdevices such as cell phones, digital camera and laptop, because of their high energydensity, high voltage and non-pollution. Furthermore, they have a greatapplication-potential in the fields of energy storage for renewable energy sources andelectric vehicles.
     Graphene, a monolayer of carbon atoms packed into a dense honeycomb crystalstructure, has attracted tremendous attention from both the experimental andtheoretical scientific communities since it was found in2004. Due to the uniquenanostructure and extraordinary properties, graphene based materials have shownpromising applications in electronics and energy storage.
     In this work, we designed various novel graphene/transition metal oxidecomposites with suitable nanostruetures for supercapacitors and rapidinsertion/desertion of lithium ions by utilizing the confinement effect and interfacialinteraction between metal oxide and graphene sheets (GNS). Then, the formationmechanisms of these nano-structured composites were studied. And the effects ofmorphologies on the electrochemical performances for these graphene/transitionmetal oxide composites were investigated in detail.
     1. Graphene oxide is prepared from nature graphite via a way of modifiedHummer’s method, and then reduced by pyrolytic deoxidation method. GNS withdifferent reduction levels have been produced through thermal reduction of grapheneoxide in the temperature range of200–900°C. The effects of interlayer spacing, oxygen content, BET specific surface area and disorder degree on their specificcapacitance are explored systematically. The variation of oxygen-containing groupsis shown to be a main factor influencing the electrochemical double layer capacitorsperformances of the pyrolytic graphene. The highest capacitance of260.5F/g at acharge/discharge current density of0.4F/g is obtained for the sample thermallyreduced at about200°C.
     2. The layer-by-layer porous CuO/graphene nanocomposites have beensuccessfully synthesized by the oriented attachment mechanism based on a facilehydrothermal method. The as-prepared composite is characterized using XRD,Raman, SEM, TEM and nitrogen adsorption/desorption. The growth mechanism isdiscussed by monitoring the early growth stages. It is shown that the CuOnanoleaves are formed through oriented attachment of tiny Cu(OH)2nanowires.Electrochemical characterization demonstrates that the leaf-like CuO/graphene arecapable of delivering specific capacitance of331.9and305F/g at the current densityof0.6and2A/g, respectively. A capacity retention of95.1%can be maintained after1000continuous charge-discharge cycles, which should be attributed to theimprovement of electrical contact by graphene and mechanical stability bylayer-by-layer structure.
     3. Series of NiO/graphene composites have been synthesized by many differentmethods.(1) Co-precipitation method was used to synthesize mono-graphene/NiOnanocomposite, in which graphene conduct as conductive matrix and NiO with adiameter of3-5nm were grown on the two sides of graphene. The two-dimensionstructure can prevent the aggregation of nanomaterials, enlarge specific surface areaand improve wetting ability of the composite. The test results reflect that thecomposite with novel structure shows high capacity and excellent cyclic ability, thespecific capacitance is525F/g at current density of200mA/g and the capacityretention is95.4%after1000cycles.(2) The flower-like NiO/graphene compositeswere synthesized by a refluxing method in the presence of graphene, the amount of NiO loaded is adjusted by controlling the refluxing times. The three-dimensionalcomposites possessed improved electrochemical performance and high specificcapacitance. At the electric current density of200mA/g, the discharge specificcapacitance of the obtained composite materials was about687.6F/g. Thiscapacitance is very impressive by comparison with pure NiO, which owns only276.4F/g at the same conditions. The capacity retention of90.8%can be maintainedafter2000continuous charge-discharge cycles, demonstrating its promising potentialto be used for supercapacitors.(3) The hydrothermal method is an important methodfor nanomaterials. The flower-like porous NiO/graphene was synthesized byhydrothermal method with mixed glycerol and DI-water solvents, and characterizedby SEM, TEM, XRD, BET and so on. Then the electrochemical performances of theobtained composite materials were studied by CHI660C. It shows that the dischargespecific capacitance was about413F/g at the current density of200mA/g. Whengalvanostatic charge/discharge at current density of1A/g, the capacity retention is89.8%after2000cycles.
     4. A nanorod-like Fe2O3/graphene nanocomposite is synthesized by a faciletemplate-free hydrothermal method and a following calcination in the air at300°Cfor2h. The Fe2O3nanorods with diameter of20-30nm and length of150-250nmare homogenous distributed on both sides of graphene. The morphologies ofintermediates at different hydrothermal reaction times are investigated by TEMcharacterization and a possible growth mechanism of this one-dimensional structureis proposed. It is shown that the α-FeOOH rod-like precursors are formed through arolling-broken-growth (RGB) model, which are then transformed into α-Fe2O3nanorods during calcinations, preserving the same rod-like morphology.Electrochemical characterizations demonstrate that the nanorod-like Fe2O3/graphenecomposites exhibit a very large reversible capacity of1063.2mAh/g at currentdensity of100mA/g as well as good cycling performance.
     5. The Li_3V_2(PO_4)_3material modified by graphene and citric acid shows high specific capacity and excellent cycling stability. The3D network graphene andLi_3V_2(PO_4)_3primary nanoparticles embedded in micro-sized spherical secondaryparticles interlaced with each other. And this special nanostructure facilitatedelectron migration throughout the secondary particles. Meanwhile, the citricacid-derived amorphous carbon species are covered on the surface of Li_3V_2(PO_4)_3,which would diminish particle growth and improve the conductivity. The dischargecapacity of the composite could severally achieve131.4and181.5mAh/g in thevoltage range3.0–4.3V and3.0–4.8V at0.1C discharge rate, both of them showedfaint capacity decay when cycled for100times.
引文
[1] A. Nishino. Capacitors: operating principles, current market and technical trends[J]. J. Power Sources,1996,60:137-147.
    [2] B. E. Conway, V. Birss. J. Wojtowicz. The role and utilization ofpseudocapacitance for energy storage by supercapacitors [J]. J. Power Sources,1997,66(1-2):1-14.
    [3] W. G. Pell, B. E. Conway, W. A. Adams. Electrochemical efficiency in multipledischargerrecharge cycling of supercapacitors in hybrid EV applications [J]. J.Power Sources,1999,80(1-2):134-141.
    [4] B. E. Conway. Electrochemical Supercapacitors [M]. New York, KluwerAcademic/Plenum Publishers,1999.
    [5] J. J. Niu, W. G. Pell, B. E. Conway, Requirements for performancecharacterization of C double-layer supercapacitors: Applications to a highspecific-area C-cloth material [J]. J. Power Sources,2006,156:725-740.
    [6] B. E. Conway. Electrochemical Supercapacitor: Scientific Principles andTechnological Applications [M]. Kluwer-Plenum, New York,1999.
    [7] V. Ruiz, A. G Pandolfo. Polyfurfiiryl alcohol derived activated carbons for highpower electrical double layer capacitors [J]. Electrochim. Acta,2010,55:7495-7500.
    [8] J. Mahon Peter, J. Drummond Calum. Supercapacitors-nanostructured materialsand nanoscale processes contributing to the next mobile generation [J]. Aust. J.Chem.,2001,54:473-476.
    [9] A. G. Pandolfo, A. F. Hollenkamp. Carbon properties and their role insupercapacitors [J]. J. Power Sources,2006,157:11-27.
    [10]J. K. Chang, M. T. Lee, W. T. Tsai. In situ Mn K-edge X-ray absorptionspectroscopic studies of anodically deposited manganese oxide with relevance tosupercapacitor applications [J]. J. Power Sources,2007,166:590-598.
    [11]D. Kalpana, K. S. Omkumar, S. Suresh Kumar, N.G. Renganathan. A novel highpower symmetric ZnO/carbon aerogel composite electrode for electro chemicalsupercapacitor [J]. Electrochim. Acta,2006,52:1309-1316.
    [12]M. Winter, R. J. Brodd. What are batteries, fuel cells, and supercapacitors [J].Chem. Rev.,2004,104(10):4245-4269.
    [13]王晓峰,高琦,梁声.纳米氧化钌的制备及碳纳米管复合电极的超级电容特性[J].稀有金属材料与工程,2006,35(2):295-298.
    [14]P. Simon, Y. Gogotsi. Materials for electrochemical capacitors [J]. Nature Mater.,2008,7(11):845-854.
    [15]V. Srinivasan, J. W. Weidner. Mathematical modeling of electrochemicalcapacitors [J]. J. Electrochem. Soc.,1999,146(5):1650-1658.
    [16]张丹丹,姚宗干.大容量高储能密度电化学电容器的研究进展[J].电子元件与材料,2000,19(1):34-37.
    [17]K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park, S. H. Chang. Symmetric redoxsupercapacitor with conducting polyaniline electrodes [J]. J. Power Sources,2002,103(2):305-309.
    [18]C. Arbizzani, M. Mastragostino, F. Soavi. New trends in electrochemicalsupercapacitors [J]. J. Power Sources,2001,100(1-2):164-170.
    [19]Z. Algharaibeh, X. R. Liu, P. G. Pickup. An asymmetric anthraquinone-modifiedcarbon/ruthenium oxide supercapacitor [J]. J. Power Sources,2009,187(2):640-643.
    [20]N. W. Duffy, W. Baldsing, A. G. Pandolfo. The nickel-carbon asymmetricsupercapacitor-preformance, energy density and electrode mass ratios [J].Electrochim. Acta,2008,54(2):535-539.
    [21]B. Andrew. Ultracapacitors: why, how, and where is the technology [J]. J. PowerSources,2000,91(1):37-50.
    [22]陈列春.超级电容器电极材料的制备与研究.广东工业大学硕士学位论文,2008.8-9.
    [23]I. Bispo-Fonseca, J. Aggar, C. Sarrazin, P Simon, J. F Fauvarque. Possibleimprovements in making carbon electrodes for organic supercapacitors [J]. J.Power Sources,1999,79(2):238-241.
    [24]F. Lufrano, P. Staiti, Performance improvement of nafion based solid stateelectrochemical supercapacitor [J]. Electrochim. Acta,2004,49(16):2683-2689.
    [25]唐致远,徐国祥.电子聚合物在电化学电容器中的应用[J].化工进展,2002,21(9):652-655.
    [26]I. B. Weinstock. Recent advances in the US department of energy’s energystorage technology research and development programs for hybrid electric andelectric vehicles [J], J. Power Sources,2002,110(2):471-475.
    [27]L. Eliad, G. Salitra, A. Soffer, D. Aurbach. Ion sieving effects in the electricaldouble layer of porous carbon electrodes: estimating effective ion size inelectrolytic solutions [J]. J. Phys. Chem. B,2001,105(29):6880-6887.
    [28]S. Biswas, L. T. Drzal. Multiayered nanoarchitecture of graphene nanosheetsand polypyrrole nanowires for high performance supercapacitor electrodes [J],Chem. Mater.,2010,22(20):5667-5671.
    [29]E. Faggiole, P. Rena, V. Danel, X. Andrieuc, R. Mallantd, H. Kahlene.Supercapacitors for the energy mangement of electric vehicles [J]. J. PowerSources,1999,84(2):261-269.
    [30]C. Masarapu, H. F. Zeng, K. H. Hung, B. Q. Wei. Effect of temperature on thecapacitance of carbon nanotube supercapacitors [J], ACS Nano,2009,3(8):2199-2206.
    [31]程夕明,孙逢春.电动汽车能量存储技术概况.电源技术,2001,25(1):47-49.
    [32]D. H. Ftitts. An analysis of electrochemical capacitors [J]. J. Electrochem. Soc.,1997,144(6):2233-2241.
    [33]王晓峰,解晶莹,孔祥华,刘庆国.“超电容”电化学电容器研究进展.电源技术,2001,25:167-170.
    [34]朱修锋,景晓燕,张密林.金属氧化物超级电容器及其应用研究进展.功能材料与器件学报,2002,23(2):73-76.
    [35]邓梅根,张治安,胡永达,杨邦朝.双电层电容器电极材料最新研究进展.碳素技术,2003,4:26-29.
    [36]李劼,宋海申,李荐.沥青调制温度对活性炭材料结构及电容特性的影响.中国有色金属学报,2007.17(3):481-486.
    [37]T. Weng, H. Teng. Characterization of high porosity carbon electrodes derivedfrom mesophase pitch for electric double-layer capacitors [J], J. Electrochem.Soc,2001,148(4): A368-373.
    [38]海永强,张文峰,王碧燕.超级电容器用活性炭的制备及性能.电池,2006.36(2):92-94.
    [39]S. Mitani, S. I. Lee, S. H. Yoon, Y. Korai, I. Mochida. Activation of raw pitchcoke with alkali hydroxide to prepare high performance carbon for electricdouble layer capacitor [J]. J. Power Sources,2004,133:298-301.
    [40]H. Teng, Y. J. Chang, C. T. Hsieh. Performance of electric double-layercapacitors using carbons prepared from phenol-formaldehyde resins by KOHetching [J], Carbon,2001,39:1981-1987.
    [41]张琳,李步广,刘洪波,张红波,何月德.酚醛树脂为原料制备双电层电容器用电极材料的工艺研究.炭素技术,2004,23(4):1-6.
    [42]Y. Yamada, O. Tanaike, T. T. Liang, H. Hatoria, S. Shiraishib, A. Oyab. Electricdouble layer capacitance performance of porous carbons prepared bydefluorination of polytetrafluoroethylene with potassium [J], Electrochem. SolidState Lett.,2002,5(12): A283-A285.
    [43]B. Xu, F. Wu, S. Chen, C. Z. Zhang, G. P. Cao, Y. S. Yang. Activated carbonfiber cloths as electrodes for high performance electric double layer capacitors[J]. Electrochim. Acta,2007,52:4595-4598.
    [44]C. H. Kim, S. I. Pyun, H. C. Shin. Kinetics of double layer charging/dischargingof activated carbon electrodes-role of surface acidic functional groups [J]. J.Electrochem. Soc,2002,149(2): A93-98.
    [45]K. Okajima, K. Ohta, M. Sudoh. Capacitance behavior of activated carbon fiberswith oxygen-plasma treatment [J]. Electrochim. Acta,2005,50:2227-2231.
    [46]C. Merino, P. Soto, E. Vilaplana-Ortego. Carbon nanofibers and activated carbonnanofibers as electrodes in supercapacitors [J]. Carbon,2005,43:551-557.
    [47]R. Saliger, U. Fischer, C. Herta, J. Fricke. High surface area carbon aerogels forsupercapacitors [J]. J. Non-Crvst. Solids,1998,225(1):81-83.
    [48]赵淑红,吴锋,苏岳锋.电化学电容器碳基电极材料研究进展.材料导报,2003,17(4):46-50.
    [49]C. Schmitt, H. Probstle, J. Fricke, Carbon cloth-reinforced and activated aerogelfilms for supercapacitors [J]. J. Non-Cryst. Solids,2001,285:277-281.
    [50]P. Petricevic, M. Glora, J. Fricke. Planar fibre reinforced carbon aerogels forapplication in PEM fuel cells [J]. Carbon,2001,39:857-861.
    [51]H. Tamon, H. Ishizaka, T, Yamanmoto, T. Suzuki. Influence of freeze-dryingconditions on the mesoporosity of organic gels as carbon precursors [J]. Carbon,2000,38(7):1099-1102.
    [52]S. T. Mayer. Method of low pressure and/or evaporation drying of aerogel, WOpatent,1994,94/22943.
    [53]S. Iijima. Helical microtubules of graphic carbon [J], Nature,1991,354:56.
    [54]C. Niu, E. K. Sichiel, R. Hoch, D. Moy, H. Tennent. High powerelectrochemical capacitors based on carbon nanotube electrodes [J], Appl. Phys.Lett,1997,70:1480-1483.
    [55]H. Zhang, G. P. Cao, Y. S. Yang. Electrochemical properties of ultra-long,aligned, carbon nanotube array electrode in organic electrolyte [J], J. PowerSources,2007,172:476-480.
    [56]马仁志,魏秉庆,徐录才,梁吉,吴德海.应用于超级电容器的碳纳米管电极的几个特点.清华大学学报(自然科学版),2000,40(8):7-8.
    [57]E. Frackowiak, F. Beguin. Carbon materials for the electrochemical storage ofenergy in capacitors [J]. Carbon,2001,39(6):937-940.
    [58]S. Biswas, L. T. Drzal. Multiayered nanoarchitecture of graphene nanosheetsand polypyrrole nanowires for high performance supercapacitor electrodes [J].Chem. Mater,2010,22(20):5667-5671.
    [59]A. H. CastroNeto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim. Theelectronic properties of graphene [J]. Rev. Mod. Phys,2009,81:109-112
    [60]K. S. Novoselov, A. K. Geim, S. V. Morozov,D. Jiang, Y. Zhang,S. V. Dubonos,I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5296):666-669.
    [61]M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff. Graphene-basedultracapacitors [J]. Nano Lett.,2008,8:3498-3502.
    [62]D. Li, M. B. Muller, S. Gilje, R. Kaner, G. Wallace. Processable aqueousdispersions of graphene nanosheets [J]. Nat. Nanotechnol.,2008,3:101-105.
    [63]B. Zhao, P. Liu, Y. Jiang, D. Y. Pan, H. H. Tao, J. S. Song, T. Fang, W. W. Xu.Supercapacitor performances of thermally reduced graphene oxide [J]. J. PowerSources,2012,198:423-427.
    [64]B. O. Park, D. C. Lokhande, H. S. Park, K. D. Jung, O. S. Joo. Performance ofsupercapacitor with electrodeposited ruthenium oxide film electrodes-effect offilm thickness [J]. J Power Sources,2004,134(1):148-152.
    [65]I. D. Raiistrick. The electrochemistry of semiconductors and electronicsprocesses and devices [J], New Jersey: Luduing F Noyes,1992.
    [66]J. P. Zheng, T. R. Jow. A new charge storge mechanism for electrochemicalcapacitors [J]. J. Electrochem. Soc.,1995,142(1):6-8.
    [67]J. P. Zheng, J. Huang, T. R. Tow. The limitations of energy density ofelectrochemical capacitors [J]. J. Electrochem. Soc,1997,144(6):2026-2031.
    [68]慈颖,李文军,郭燕川.超级电容器用RuO2/碳微线圈材料的研制.电池,2007,37(1):19-21.
    [69]J. H. Jiang, A. Kucernak. Anthony electrochemical supercapacitor materialbased on manganese oxide: preparation and characterization [J]. Electrochim.Acta,2002,47(15):2381-2386.
    [70]刘献明,张校刚.热解温度对MnO2电容行为的影响.无机材料学报,2003,18(5):1022-1026.
    [71]S. C. Pang, M. A. Anderson, T. W. Chapman. Novel electrode materals forthin-film ultracapacitor: comparison of electroe properties of sol-gel-derived andelectrodeposited manganese dioxide [J]. J. Electrochem. Soc,2000,147(2):444-450.
    [72]H. Y. Lee, J. B. Goodenough. Supercapacitor behavior with KCl electrolyte [J]. J.Solid State Chem,1999,144(1):220-223.
    [73]张宝宏,张娜.纳米MnO2超级电容器的研究.物理化学学报,2003,19(3):286-288.
    [74]Y. G. Wang, Y. Y. Xia. Electrochemical capacitance characterization of NiO withordered mesoporous structure synthesized by template SBA-15[J]. Electrochim.Acta,2006,51:3223-3227.
    [75]W Xing, F. Li, Z. F. Yan, G. Q. Liu. Synthesis and electrochemical properties ofmesoporous nickel oxide [J]. J. Power Sources,2004,134:324-330.
    [76]V. Srinivasan, J. W. Weidner. An electrochemical route for making porous nickeloxide electrochemical capacitors [J]. J. Electrochem Soc,1997,144:210-213.
    [77]王晓峰,孔祥华,刘庆国,谢晶莹.氧化镍超电容器的研究[J].电子元件与材料,2000,19(5):26-28.
    [78]Y. Z. Zheng, M. L. Zhang, P. Gao. Preparation and electrochemical properties ofmultiwalled carbon nanotubes–nickel oxide porous composite forsupercapacitors [J]. Mater. Res. Bull.,2007,42:1740-1747.
    [79]曹林,周盈科,陆梅,力虎林.纳米氧化钴的制备及其超电容性能.科学通报,2003,48(7):668-670.
    [80]L. Chuan, A. James, N. Branko. Characterization of sol-gel derived cobaltwergels as electrochemical capacitor [J]. J. Electrochem. Soc.,1998,145(12):4079-4101.
    [81]G. Wang, J. Huang, S. Chen. Preparation and supercapacitance of CuOnanosheet arrays grown on nickel foam [J]. J. Power Sources,2011,196(13):5756-5760.
    [82]L. J. Xie, W. Chu, J. H. Sun. Synthesis of copper oxide vegetable sponges andtheir antibacterial, electrochemical and photocatalytic performance [J]. J. Mater.Sci.,2011,46(7):2179-2184.
    [83]X. Zhang, W. Shi, J. Zhu. High-power and high-energy-density flexiblepseudocapacitor electrodes made from porous CuO nanobelts and single-walledcarbon nanotubes [J]. ACS Nano,2011,5(3):2013-2019.
    [84]J. S. Shaikh, R. C. Pawar, R. S. Devan. Synthesis and characterization of Rudoped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid[J]. Electrochim. Acta,2011,56(5):2127-2134.
    [85]J. S. Shaikh, R. C. Pawar, N. L. Tarwal. Supercapacitor behavior of CuO–PAAhybrid films: Effect of PAA concentration [J]. J. Alloy Comp.,2011,509(25):7168-7174.
    [86]J. S. Shaikh, R. C. Pawar, A. V. Moholkar. CuO–PAA hybrid films: Chemicalsynthesis and supercapacitor behavior [J]. Appl. Surf. Sci.,2011,257(9):4389-4397.
    [87]J. S. Shaikh, R. C. Pawar, S. S. Mali. Effect of annealing on the supercapacitorperformance of CuO-PAA/CNT films [J]. J. Solid State Electrochem.,2012,16(1):25-33.
    [88]李俊,王先友,黄伟国.超级电容器用MoO3/AC复合电极的制备.电池,2005,35(6):440-442.
    [89]H. Huang, S. C. Yin, T Kerr. Nanostructured composites: a high capacity, fastrate Li3V2(PO4)3/Carbon cathode for rechargeable lithium batteries [J]. Adv.Mater.,2002,14(21):1525-1528.
    [90]K. Brandt. Historieal development of secondary lithium batteries [J]. Solid StateIonies,1994,69(3~4):173-183.
    [91]M. S. Whittingham. Lithium batteries and cathode materials [J]. Chem. Rev.,2004,104:4271-4302.
    [92]Y. Takasu, T. Nakamura, H. Ohkawauchi. Dip-coated Ru-Mo/Ti electrodes forelectrochemical capacitors. Chem. Lett.,1998,12:1215-1216.
    [93]L. Jiao, L. Zhang, X. Wang. Narrow graphene nanoribbons from carbonnanotubes [J]. Nature,2009,458(7240):877-880.
    [94]G. Wang, X. Shen, J. Yao. Graphene nanosheets for enhanced lithium storage inlithium ion batteries [J]. Carbon,2009,47(8):2049-2053.
    [95]S. Liu, L. Zhang, J. Zhou. Fiberlike Fe2O3macroporous nanomaterialsfabricated by calcinating regenerate cellulose composite fibers [J]. Chem. Mater.,2008,20(11):3623–3628.
    [96]G. Eichinger. Safety aspects in primary high-rate lithium cells [J]. J. PowerSources,1993,43-44(1):259-266.
    [97]Z. I. Takohara, K. Kanamura. Historical development of rechargeable lithiumbatteries in Japan [J]. Electrochim. Acta,1993,38(9):1169-1177.
    [98]J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithiumbatteries, Nature,2001,414(11):359-367.
    [99]G. X. Wang, X. P. Shen, J. Yao, Graphene nanosheets for enhanced lithiumstorage in lithium ion batteries [J]. Carbon,2009,47:2049-2053.
    [100] C. Y. Wang, D. Li, C. O. Too, Electrochemical properties of graphene paperelectrodes used in lithium batteries [J]. Chem. Mater,2009,21(13):2604-2606.
    [101] P. Poizot, S. Laruelle, S. Grugeon, Nano-sized transition-metal oxides asnegative-electrode materials for lithium-ion batteries [J]. Nature,2000,407:494-499.
    [102] S. Yang, X. Feng, S. Ivanovici, K. Mellen. Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materialsfor lithium storage [J]. Angew. Chem.2010,49:8408-8411.
    [103] D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li. Ternary self-assembly ofordered metal oxide graphene nanocomposites for electrochemical energystorage [J]. ACS Nano,2010,3:1587-1595.
    [104] Y. Qiu, K. Yan, S. Yang L. Jin, H. Deng, W. Li, Synthesis of size tunableanatase TiO2nanospindles and their assembly into Anatase@Titaniumoxynitride/Titanium nitride graphene nanocomposites for rechargeable lithiumion batteries with high cycling performance [J]. ACS Nano,2010,11:6515-6526.
    [105] S.-M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithiumstorage capacity of SnO2/graphene nanoporous electrodes withthree-dimensionally delaminated flexible structure [J]. Nano Lett.,2009,9:72-75.
    [106] H. Huang, S. C. Yin, L. F. Nazar. Approaching theoretical capacity ofLiFePO4at room temperature at high rates [J]. Electrochem. Solid-State Lett.,2001,4(10):170-172.
    [107] C.S. Sun, Z. Zhou. Improved high-rate charge/discharge performances ofLiFePO4/C via V-doping [J]. J. Power Sources,2009,193:841-845.
    [108] A. V. Murugan, T. Muraliganth, A. Manthiram. Comparison of microwaveassisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocompositecathodes for lithium ion batteries [J]. J. Phys. Chem. C.,2008,112:14665-14671.
    [109] B. L. Ellis, K. T. Lee, L. F. Nazar. Positive electrode materials for Li-ionand Li-batteries [J]. Chem. Mater.,2010,22:691-714.
    [110] P. Arora, E. R. White. Capacity fade mechanisms and side reactions inlithium-ion batteries [J]. J. Electrochem Soc.,1998,145(10):3647-3667.
    [111] M. Morcrette, C. Wurm, C. Masquelier. On the way to the optimization ofLi3Fe2(PO4)3positive electrode materials [J]. Solid State Sci.,2002,4:239.
    [112] J. S. Huang, L. Yang, K. Y. Liu. Synthesis and characterization of Li3V(22x/3)Mgx(PO4)3/C cathode material for lithium-ion batteries [J]. J. Power Sources,2010,195:5013–5018.
    [113] Y. Z. Li, Z. Zhou, X. P. Gao. A promising sol–gel route based on citric acidto synthesize Li3V2(PO4)3/carbon composite material for lithium ion batteries [J].Electrochimica. Acta,2007,52:4922–4926.
    [114] Y. Xia, W. Zhang. Synthesis and electrochemical properties of Nb-dopedLi3V2(PO4)3/C cathode materials for lithium-ion batteries [J]. Mater. Sci. Eng. B,2011,176:633-639.
    [1]马礼敦,高等结构分析,复旦大学出版社:上海,2001.
    [2]严风霞,王筱敏,现代光学仪器分析选论,华东师范大学出版社:上海,1992.
    [3]黄惠忠,纳米材料分析,化学工业出版社:北京,2003.
    [4]陈国珍,黄贤智,刘文远,分光光度法(上册),原子能出版社:北京,1980.
    [5]周伟舫,电化学测量,上海科学技术出版社,1983.
    [6]吴浩青,李永舫,电极过程动力学,高等教育出版社:北京,1998.
    [7]查全性等,电极过程动力学导论(第三版),科学出版社:北京,1984.
    [8]田昭武,电化学研究方法,科学出版社:北京,1984.
    [9]藤岛昭,相泽益男,井上撤著,陈震,姚建年译,电化学测量方法,北京大学出版社:北京,1995,204.
    [1] B. E. Conway Electrochemical Supercapacitors. New York, Kluwer Academic/Plenum Publishers,1999.
    [2] E. Frackowiak. Carbon materials for supercapacitor application [J]. Phys. Chem.Chem. Phys.,2007,9(15):1774-1785.
    [3] H. Pan, C. K. Poh, Y. P. Feng. Supercapacitor electrodes from tubes-in-tubecarbon nanostructures [J]. Chem. Mater.,2007,19(25):6120-6125.
    [4] S. T. Mayer, R. W. Pekala, J. L. Kaschmitter. The aerocapacitor: Anelectrochemical double-layer energy-storage device [J]. J. Electrochem. Soc.,1993,140(2):446-451.
    [5] T. Momma, X. Liu, T. Osaka. Electrochemical modification of active carbonfiber electrode and its application to double-layer capacitor [J]. J. Power Sources,1996,60(2):249-253.
    [6] K. S. Novoselov, A. K. Geim, S. V. Morozov. Electric field effect in atomicallythin carbon films [J]. Science,2004,306(5696):666-669.
    [7] A. K. Geim, K. S. Novoselov. The rise of graphene [J]. Nat. Mater.,2007,6(3):183-191.
    [8] L. L. Song, Z. Aruna, J. S. Guo. There is no corresponding record for this reference [J]. Patent Application11/499,861, August7,2006.
    [9] Y. Zhou, Q. Bao, L. A. L. Tang. Hydrothermal dehydration for the ‘green’ reduction of exfoliated graphene oxide to graphene and demonstration oftunable optical limiting properties [J]. Chem. Mater.,2009,21(13):2950-2956.
    [10] D. Teweldebrhan, A. A. Balandin. Response to “Comment on ‘Modification of graphene properties due to electron-beam irradiation”’[J]. Appl,Phys. Lett.,2009,95(24):246102-246102-2.
    [11] P. Lian, X. Zhu, S. Liang. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries [J]. Electrochim. Acta,2010,55(12):3909-3914.
    [12] I. Calizo, S. Ghosh, W. Bao. Raman nanometrology of graphene: Temperature and substrate effects [J]. Solid State Commun.,2009,149(27):1132-1135.
    [13] T. V. Cuong, V. H. Pham, Q. T. Tran. Optoelectronic properties of graphene thin films prepared by thermal reduction of graphene oxide [J]. Mater. Lett.,2010,64(6):765-767.
    [14] M. J. McAllister, J. L. Li, D. H. Adamson. Single sheet functionalized graphene by oxidation and thermal expansion of graphite [J]. Chem. Mater.,2007,19(18):4396-4404.
    [15] D. Qu. Studies of the activated carbons used in double-layer supercapacitors [J]. J. Power Sources,2002,109(2):403-411.
    [16] B. Zhao, G. Zhang, J. Song. Bivalent tin ion assisted reduction for preparing graphene/SnO2composite with good cyclic performance and lithium storage capacity [J]. Electrochim. Acta,2011,56(21):7340-7346.
    [17] P. M. Ajayan, B. I. Yakobson. Graphene: Pushing the boundaries [J].Nat. Mater.,2011,10(6):415-417.
    [1] G. Wang, J. Huang, S. Chen. Preparation and supercapacitance of CuOnanosheet arrays grown on nickel foam [J]. J. Power Sources,2011,196(13):5756-5760.
    [2] X. Zhang, W. Shi, J. Zhu. High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes [J]. ACS Nano,2011,5(3):2013-2019.
    [3] J. S. Shaikh, R. C. Pawar, R. S. Devan. Synthesis and characterization ofRu doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid [J]. Electrochim. Acta,2011,56(5):2127-2134.
    [4] J. S. Shaikh, R. C. Pawar, A. V. Moholkar. CuO–PAA hybrid films: Chemical synthesis and supercapacitor behavior [J]. Appl. Surf. Sci.,2011,257(9):4389-4397.
    [5] Z. Zhang, H. Sun, X. Shao, D. Li, H. Yu, M. Han, Three-dimensionally orientedaggregation of a few hundred nanoparticles into monocrystalline architectures [J].Adv. Mater.,2005,17,42–47.
    [6] J. P. Liu, X. T. Huang, Y. Y. Li, K. M. Sulieman, X. He, F. L. Sun. Efficientmicrowave-assisted hydrothermal synthesis of CuO sea urchin-like architecturesvia a mesoscale self-assembly [J]. Cryst. Growth&Des.,2006,6:1690–1696.
    [7] B. Liu, H. C. Zeng. Mesoscale organization of CuO nanoribbons: formation of“dandelions”[J]. J. Am. Chem. Soc.,2004,126,8124–8125.
    [8] Y. Chang, H. C. Zeng. Large-scale synthesis of single-crystalline quasi-alignedsubmicrometer CuO ribbons [J]. Cryst. Growth&Des.,2004,4:397–402.
    [9] W. Z. Wang, O. K. Varghese, C. M. Ruan, M. Paulose, C. A. Grimes, Synthesis ofCuO and Cu2O crystalline nanowires using Cu(OH)2nanowire templates [J]. J.Mater. Res.,2003,18,2756–2759.
    [1] D. Y. Pan, S. Wang, B. Zhao, M. H. Wu, H. J. Zhang, Y. Wang, Z. Jiao. Listorage properties of disordered graphene nanosheets [J], Chem. Mater.,2009,21(14):3136-3142.
    [2] A. Chrissanthopoulos, S. Baskoutas, N. Bouropoulos. Synthesis andcharacterization of ZnO/NiO p-n heterojunctions: ZnO nanorods grow on NiOthin film by thermal evaporation [J], Photonic. Nanostruct.,2011,9(2):132-139.
    [3] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas,E. J. Zimney, E.A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff. Graphene-based compositematerials [J]. Nature,2006,442:282-286.
    [4] G. Zhu, C. Xi, H. Xu, D. Zheng, Y. Liu, X. Xu, X. Shen. Hierarchical NiOhollow microspheres assembled from nanosheet-stacked nanoparticles and theirapplication in a gas sensor [J]. RSC Adv.,2012,2:4236-4241.
    [5] M. K. Naskar, D. Kundu, M. Chatterjee. An aqueous-based synthesis offlower-like hydroxy sodalite particles in the presence of cetyltrimethyl-ammonium bromide [J]. J. Am. Cer. Soc.,2011,94(6):1643-1646.
    [1] P. Meduri, C. Pendyala, V. Kumar. Hybrid tin oxide nanowires as stable andhigh capacity anodes for Li-ion batteries [J]. Nano Lett.,2009,9(2):612-616.
    [2] H. Wang, L. F. Cui, Y. Yang. Mn3O4-graphene hybrid as a high-capacity anodematerial for lithium ion batteries [J]. J. Am. Chem. Soc.,2010,132(40):13978-13980.
    [3] B. Varghese, M. V. Reddy, Z. Yanwu. Fabrication of NiO nanowall electrodesfor high performance lithium ion battery [J]. Chem. Mater.,2008,20(10):3360-3367.
    [4] C. Wu, P. Yin, X. Zhu. Synthesis of hematite (α-Fe2O3) nanorods: diameter-sizeand shape effects on their applications in magnetism, lithium ion battery, andgas sensors [J]. J. Phys. Chem. B,2006,110(36):17806-17812.
    [5] X. Zhu, Y. Zhu, S. Murali. Nanostructured reduced graphene oxide/Fe2O3composite as a high-performance anode material for lithium ion batteries [J].ACS Nano,2011,5(4):3333-3338.
    [6] D. Chen, L. Tang, J. Li. Graphene-based materials in electrochemistry [J]. Chem.Soc. Rev.,2010,39(8):3157-3180.
    [7] Y. Zou, J. Kan, Y. Wang. Fe2O3-graphene rice-on-sheet nanocomposite for highand fast lithium ion storage [J]. J. Phys. Chem. C,2011,115(42):20747-20753.
    [8] C. Wu, Y. Xie, D. Wang. Selected-control hydrothermal synthesis of γ-ΜnO23D nanostructures [J]. J. Phys. Chem. B,2003,107(49):13583-13587.
    [9] J. Yang, J. H. Zeng, S. H. Yu. Formation process of CdS nanorods viasolvothermal route [J]. Chem. Mater.,2000,12(11):3259-3263.
    [10] J. Zhu, T. Zhu, X. Zhou. Facile synthesis of metal oxide/reduced grapheneoxide hybrids with high lithium storage capacity and stable cyclability [J].Nanoscale,2011,3(3):1084-1089.
    [11] M. Zhang, B. Qu, D. Lei. A green and fast strategy for the scalablesynthesis of Fe2O3/graphene with significantly enhanced Li-ion storageproperties [J]. J. Mate. Chem.,2012,22(9):3868-3874.
    [12] D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J. B. Leriche,J. M. Tarascon, Effect of particle size on lithium intercalation into Fe2O3[J]. J.Electrochem. Soc.150(2003)133-139.
    [13] P. Balaya, H. Li, L. Kienle. Fully reversible homogeneous andheterogeneous Li storage in RuO2with high capacity [J]. Adv. Funct. Mater.,2003,13(8):621-625.
    [14] D. Wang, D. Choi, J. Li, et al. Self-assembled TiO2–graphene hybridnanostructures for enhanced Li-ion insertion [J]. ACS Nano,2009,3(4):907-914.
    [1] K. Mizushima, P. C. Jones, P. C. Wiseman, J. B. Goodenough. LixCoO2(0    [2] X. H. Rui, Y. Jin, X. Y. Feng, L. C. Zhang, C. H. Chen. A comparative study onthe low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes forlithium-ion batteries [J]. J. Power Sources,2011,196(4):2109-2114.
    [3] S. C. Yin, P. S. Strobel, H. Grondey, L. F. Nazar. Li2.5V2(PO4)3: Aroom-temperature analogue to the fast-ion conducting high-temperature γ-phaseof Li3V2(PO4)3[J]. Chem. Mater.,2004,16:1456-1465.
    [4] C. Chang, J. Xiang, X. Shi, X. Han, L. Yuan, J. Sun. Hydrothermal synthesis ofcarbon-coated lithium vanadium phosphate [J]. Electrochim. Acta,2008,54(2):623-627.
    [5] J. Wang, X. Zhang, J. Liu, G. Yang, Y. Ge, Z. Yu, R. Wang, X. Pan. Long-termcyclability and high-rate capability of Li3V2(PO4)3/C cathode material usingPVA as carbon source [J]. Electrochim. Acta,2010,55(22):6879-6884.
    [6] Y. Q. Qiao, X. L. Wang, J. Y. Xiang, D. Zhang, W. L. Liu, J. P. Tu.Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearicacid as a carbon source [J]. Electrochim. Acta,2011,56(5):2269-2275.
    [7] J. C. Zheng, X. H. Li, Z. X. Wang, S. S. Niu, D. R. Liu, L. Wu, L. J. Li, J. H. Li,H. G. Guo. Novel synthesis of LiFePO4-Li3V2(PO4)3composite cathode materialby aqueous precipitation and lithiation [J]. J. Power Sources,2010,195(9):2935-2938.
    [8] S. M. Paek, E. Yoo, I. Honma. Enhanced cyclic performance and lithium storagecapacity of SnO2/graphene nanoporous electrodes with three-dimensionallydelaminated flexible structure [J]. Nano Letters,2009,9(1):72-75.
    [9] D. H. Wang, D. W. Choi, J. Li, Z. G. Yang, Z. M. Nie, R. Kou, D. H. Hu, C. M.Wang, L. V. Saraf, J. G. Zhang, I. A. Aksay, J. Liu. Self-assembledTiO2-graphene hybrid nanostructures for enhanced Li-ion insertion [J]. ACSNano,2009,3(4):907-914.
    [10] S. Q. Chen, Y. Wang. Microwave-assisted synthesis of a Co3O4-graphenesheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries[J]. J. Mater. Chem.,2010,20:9735-9739.
    [11] L. Wang, X. Zhou, Y. Guo. Synthesis and performance of carbon-coatedLi3V2(PO4)3cathode materials by a low temperature solid-state reaction [J]. J.Power Sources,2010,195(9):2844-2850.
    [12] X. H. Rui, C. Li, J. Liu, T. Cheng, C. H. Chen. The Li3V2(PO4)3/Ccomposites with high-rate capability prepared by a maltose-based sol-gel route[J]. Electrochim. Acta,2010,55(22):6761-6767.
    [13] P. Fu, Y. Zhao, Y. Z. Dong, X. M. Hou. Synthesis of high tap densityLi3V2(PO4)3/C cathode materials using mixed lithium precursors [J]. J. Phys.Chem. Solids,2010,71(3):394-399.
    [14] G. Q. Zhang, X. X. Li, H. T. Jia, X. X. Pang, H. W. Yang, Y. H. Wang, K. Q.Ding. Preparation and characterization of polyaniline (PANI) doped-Li3V2(PO4)3[J]. Int. J. Electrochem. Soc.,2012,7(1):830-843.
    [15] H. Liu, L. J. Fu, H. P. Zhang, J. Gao, C. Li, Y. P. Wu, H. Q. Wu. Effects ofcarbon coatings on nanocomposite electrodes for lithium-ion batteries [J].Electrochem. Solid-State Lett.,2006,9(12):529-533.
    [16] S. C. Yin, H. Grondey, P. Strobel, M. Anne, L. F. Nazar. Electrochemicalproperty: structure relationships in monoclinic Li3-yV2(PO4)3[J]. J. Am. Chem.Soc.,2003,125(34):10402-10411.
    [17] X. F. Zhou, F. Wang, Y. Zhu, Z. Liu. Graphene modified LiFePO4cathodematerials for high power lithium ion batteries [J]. J. Mater. Chem.,2011,21:3353-3358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700