用户名: 密码: 验证码:
珍稀濒危植物珙桐(Davidia involucrata)苞片差异表达基因的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
珙桐生活史中较独特的发育事件是其较小的头状花序下形成的2~3个大型苞片。一般认为,苞片是叶片的变态或自叶片演化而来。然而自1869年珙桐被发现以来,未见关于珙桐苞片在该物种进化生物学、生殖生态学及其生活史中的作用和地位的报道。该物种是研究植物苞片发育的分子机理及探讨苞片与叶片发育的相互关系的理想材料,也是探讨苞片在植物生殖生物学及生殖生态学中作用和功能的理想材料。
     本研究利用新近发展的抑制性差减杂交技术(SSH)成功构建了珙桐幼嫩苞片和叶片差减文库。共分析了237个克隆的插入片段,其大小介与100到2000bp之间。用正向扣除产物和反向扣除产物作探针分别与237个克隆的插入片段PCR产物杂交,结果表明有167个克隆代表了只在苞片中表达或在苞片中表达量增加的基因。用地高辛标记的珙桐苞片、叶片和根的cDNA做探针,与差减杂交所获得克隆的PCR产物的杂交结果表明,有少数基因在这些器官中都是大量表达,而大多数在这些器官里的表达量均很少,除苞片外,一般均检测不到,有部分基因在苞片中优势表达。
     随机挑选了16个差异表达的克隆进行序列测定,经与GenBank数据库相关数据比较分析,发现有2个新的cDNA片段(ETS),有12序列与GenBank中已知蛋白或推测蛋白质(putative protein)序列有高低不同的同源性,它们参与基因的表达调控、植物的次生代谢、信号传导、抗逆、应激及防御反应等细胞生命活动过程。另外还有2个序列与数据库中已存在的未知蛋白质同源。这些
    
     四川大学博士学位论文
     基因片段在抑制性差减杂交前后的量均有较大的变化,即差减扣除后被大大富
     集了。
     分析本试验获得的烘桐苞片差异表达的有限几个部分或全长序列的cDNA
     发现:*)处于生长发育初期的苞片中有一些较为独特的基因表达。如PIB4基
     因编码的葡萄糖昔酶、PIAS基因编码的植物脂肪转移蛋白、PZD4基因编码的
     一种富含脯氨酸的蛋白都有参与植物的抗逆、防御或应激反应的功能八2)幼嫩
     苞片中有互为桔抗作用的基因同期表达。如编码脱落酸诱导或成熟过程中表达
     蛋白的PIF4基因与编码植物生长素响应蛋白的.PIHll基因都同期在苞片中优
     势表达。
     通过抑制性差减杂交的到克隆PIAS,反向NOrthern杂交表明它在玖桐苞片
     中优势表达,即在苞片中的表达水平远远超过在处于同时期的叶片中的表达水
     平。RTPCR结果证明它在苞片中强烈表达而在处于同时期的叶片中几乎检测不
     到其表达。对得到的该片段分析表明,它是一种脂肪转移蛋白(LTP)基因的部分
     序列。采用 5’-端 RACE技术获得了该基因的全长 CDNA序列* N。其推测
     的氨基酸序列与GenBank中注册的LTP蛋白前体的同源性达63%,且具有植物
     Lh蛋白共同特征,如8个保守的半肌氨酸位点,较高的等电点oI==8.9似及缺
     少色氨酸等。推测的氨基酸序列具有两个显著的跨膜螺旋:第一个螺旋位于第5
     个(Gly和第35个仰)氨基酸之间,第二个螺旋位于第28(Alg和第46队eul个氨
     基酸之间。推测的最可能的信号肽切割位点位于第28(Alal和29(Alal个氨基酸之
     间。椎测的成熟肽共有92个氨基酸,分子量9.ZkDa。上述所有证据表明,我们
     克隆到一个烘桐苞片优势表达的脂肪转移蛋白基因NsLTP。构建T PI AS和
     poE30的重组质粒,转化大肠杆菌M15,IPTG诱导表达,Westhe杂交证实PIAS
     在大肠杆菌中得到了表达。
A unique developmental aspect involved in the life cycle of Davidia involucrata Baill. is the formation of two or three large-sized attractive white bracts surrounding a relatively small-sized capitulum. It has long been believed that plant bract is one kind of metamorphism of or evolved directly from leaf. Nonetheless nothing has been done on its role and function in the evolutionary and reproductive biology and in the life cycle of this species, saying nothing of its developmental mechanism, since the species was found from West China in 1869. This species is one of perfect materials to examine the developmental mechanism of plant bract, to explore the developmental relationship between leaf and bract, as well as to study the role and essential function of bract on plant reproductive biology and ecology.
    In virtue of the technique of suppression subtractive hybridization, we had successfully constructed a subtractive library of D. involucrata sprouting bract by taking homochronous leaf as driver in this study. Differential screening for the library revealed that, 167 of 237 clones randomly selected from the library are positive and represent genes that were exclusively or intensively expressed in bract, which contain inserts ranging from 100 to 2000 bp in length. Moreover, except a few clones were expressed predominantly in bract, absolute majority of subtraclive clones were expressed at low level in all checked organs, i.e., bract, leaf and root.
    Among sequenced 16 positive clones randomly selected, two represent novel expression tag sequences, two are homologous to two unknown proteins in GenBank; the rest are homologous to known or putative proteins or enzymes with definite functions by searching the GenBank through Blast program, which are involved in various life activities of cell such as regulation of gene expression, plant secondary metabolism, signal transduction, adversity resistance, stress response and defense reaction. Significant changes of quantities of these gene fragments were observed
    
    
    
    before and after SSH, which indicated they were enriched after SSH.
    Sequence analyses for those limited amount of inserts indicated that, (1) A few particular gene populations are expressed in D. involucrata sprouting bract, e.g., gene population encoding proteins that involve in plant defensive reactions and adversity resistance, such as P1A5 gene encoding a non-specific lipid-transfer protein, P1B4 gene encoding a raucaffricine-O-p-D- glucosidase and P2D4, encoding a proline-rich protein; (2) Gene populations with antagonistic effects occurred simultaneously in sprouting bract, e.g., P1F4 gene encoding an ABA stress ripening protein versus P1 H11 gene encoding an auxin-responsive protein.
    Reverse Northern hybridization indicated that P1A5 gene was over-expressed in bract compared with that in leaf. This expression pattern was further conformed by RT-PCR. Sequence analyses revealed that it is a partial sequence of a lipid transfer protein gene. A complete cDNA of 1047 bp was obtained by means of 5'-RACE (5'-Rapid Amplification of cDNA End) techniques using gene specific primer P1A5-1. The deduced amino acid sequence of P1A5 was most homologous to the lipid transfer protein 3 precursor isolated from upland cotton, the lipid transfer protein SDi-9 isolated from common sunflower, and the nonspecific lipid-transfer protein precursor allergen pru av3 isolated from sweet cherry. It also had common features of plant nsLTPs (non-specific lipid transfer proteins) such as eight conserved cysteine positions, high isoelectric points (8.9) and lack of tryptophans. The deduced amino acid sequence had two strong transmembrane helices, i.e., the first from position 5 (Gly) to position 35 (Val) and the second
    from position 28 (Ala) to position 46 (Leu). The cleavage site of putative signal peptide was predicted to occur between 28(Ala) and 29(Ala) thus the putative mature form of the protein composed of 92 amino acids with a molecular weight of 9.2 kDa. All these provide compelling evidence that the P1A5 clone b
引文
1.刁丰秋.1998.植物发育基因克隆技术的新进展.生物工程进展,18(2):12-16.
    2.万朝琨.1988.珙桐种子休眠的解剖学研究.中南林学院学报,8(1):35-39.
    3.三林,1982.珙桐露天沙床育苗.湖南林业科技,1:16
    4.方文培,宋滋圃.1975.中国植物志增补资料 2.珙桐科.四川大学学报(自),(1):63-68.
    5.王献溥等.1995,珙桐的生态学特性和栽培技术.广西植物,15(4):347-353.
    6.邓先宝,杨永兰,许文蔚.1993.珙桐的繁殖措施探讨.重庆林业科技,总(36):21-25.
    7.艾训儒.1998.用PO法对星斗山珙桐群落的排序研究.湖北民族学院学报(自),16(6):33-36.
    8.艾训儒.1998.星斗山自然保护区珙桐生长量,生物量,生产力研究.林业科技,23(4):7-9,
    9.艾训儒.1999.星斗山自然保护区珙桐种群结构特征研究.湖北民族学院学报(自),17(1):12-15.
    10.刘西俊等.1987.珙桐苗期水分状况的试验研究.西安植物园通讯,2:10-11.
    11.刘西俊等.1987.珙桐苗期水分状况的研究.西北植物学报,7(4):270-275.
    12.刘胜祥 黎维平.1997.神农架发现光叶珙桐群落.华中师范大学学报(自科版),31(4):470-470
    13.向桂琼等.1989.中国特有植物珙桐化学成分研究.植物学报,31(1):540-543.
    14.孙彬等.1993.两种珙桐叶片结构的观察.西北植物学报,13(3):198-202.
    15.朱玉贤,张翼凤,李惠英.1997.用cDNA差式分析法克隆受GA抑制的豌豆基因.中国科学(C辑),2,(3):253-357.
    16.毕世荣等.1983.珙桐组织培养.植物生理学通讯,(4):43-44.
    17.吴刚,肖寒,李静,马克明.2000.珍稀濒危植物珙桐的生存与人为活动的关系.应用生态学报,11(4):493-496.
    18.吴宗福等.1985.国家一级保护植物——珙桐.云南林业,4:27.
    19.吴泽民.1983.两种木本植物染色体数目的研究.广西植物,3(3):211-214.
    20.张家勋,李俊清,周宝顺,廉秀荣.1995.珙桐的天然分布和人工引种分析.北京林业大学学报,17(1):25-30.
    21.张家勋.1988.中国的鸽子树——珙桐.植物杂志,1:1-7.
    22.张家勋.1994.珙桐的形态和生物学特性.北京林业大学学报,16(4):33-37.
    23.张家勋等.1990.珍贵观赏树——珙桐栽培技术.农业科技通讯,(1):15.
    24.张家勋等.1995.珙桐繁殖和栽培技术研究.北京林业大学学报,17(3):24-29.
    
    
    25.张清华,郭泉水,徐德应,阎洪.2000.气候变化对我国珍稀濒危树种——珙桐地理分布的影响研究.林业科学,36(21):47-52.
    26.张清华等.1992.珙桐天然分布调查研究.见:主要珍稀濒危树种繁殖技术.北京:中国林业出版社,25-30.
    27.张清华等.1992.珙桐繁殖栽培技术的研究.见:主要珍稀濒危树种繁殖技术.北京:中国林业出版社,31-35.
    28.张著浩.1981.珙桐扦插育苗试验.林业科技通讯,1:2-3.
    29.张著浩等.1983.珙桐的引种繁殖.植物引种驯化集刊(第三集).北京:科学出版社,145-156.
    30.李凤兰,曹弘瑜等,1998,珙桐与喜树茎次生木质部解剖构造的比较.北京林业大学学报,20(1):75-78,
    31.李卓杰等.1989.珙桐种子休眠和萌发中酸性磷酸酶同工酶的研究.西南林学院学报,9(1):8-113,
    32.李建强,张敏华,黄宏文,蔡清.2000.珙桐的等位酶位点变异分析.武汉植物学研究,18(3):247-249.
    33.李捷,印莉萍,刘维仲.示差扣除杂交及其在分子生物学中的应用.生物技术通报,1999,(3):9-14.
    34.李博等,1990.鄂西七姊妹山珙桐群落及其保护对策研究.华中师范大学学报(自),24(1):323-334.
    35.杨一川等.1989.四川峨眉山珙桐群落的初步研究.植物生态学与地植物学学报,13(3):270-276.
    36.杨心兵,刘胜祥,杨福生.2000.湖北省后河自然保护区光叶珙桐种群结构的研究.生物学杂志,17(1):15-17.
    37.杨业勤.1980.美丽的中国鸽子树——珙桐.林业科技通讯,9:6-7.
    38.杨业勤.1982.珙桐的种子育苗.林业科技通讯,9:10-12.
    39.杨业勤等.1986a.贵州珙桐的生态学特征初步研究.;林业科学,22(4):426-430.
    40.杨业勤等.1986b.梵净山的珙桐林.见:梵净山科学考察集.北京:中国环境科学出版社,147-153.
    41.杨永兰.1993.珙桐、厚朴、鹅掌揪引种试验研究.重庆林业科技,总(36):8-10.
    42.杨涤新等.1983.珙桐的染色体数目简报.湖南林业科技,(1):6;
    43.汪正祥,刘胜祥,雷耘,杨福生.2000.湖北后河国家级自然保护区光叶珙桐群落物种多样性特征.华中师范大学学报(自),34(1):84-87.
    44.沈作奎.1998.星斗山自然保护区珙桐繁殖方式及生长分析.湖北林业科技,4:1-3.
    45.沈泽昊等. 1998. A preliminary ecological study of Davidia involucrata communities at Longchi region, in Dujiangyan county, Sichuan Province. 武汉植物学研究,16(1): 54-64.
    46.沈泽昊等.1999.四川卧龙地区珙桐群落的结构与更新研究.植物生态学学报,23(6):562-567.
    47.沈锡廉.1983.珙桐引种及其树苗繁殖试验情况.浙江林业科技,3(4):4.
    48.苏志先,张素兰.1999.珙桐种群生殖物候及其影响因子的研究.四川师范学院学报
    
    (自),20(4):313-318.
    49.陈迎辉等.1996.珙桐苗期猝倒病的防治技术.湖南林业科技,23(3):42-44.
    50.陈坤荣.1988.珙桐种子休眠原因研究初报.植物生理学通讯,(3):24-28.
    51.陈坤荣.1998.珙桐种子层积期间过氧化物酶同工酶的变化.西南林学院学报,18(3):143-147.
    52.陈坤荣.1998.珙桐繁殖的生物学特性.西南林学院学报,18(2):68-73.
    53.陈波涛等.1995.大方县箐梁子珙桐调查报告.贵州林业科技,23(1):27-30.
    54.易咏梅,罗世家,李鑫,王利松,徐伟声.2000.珙桐茎的解剖构造及愈伤组织形成的研究.湖北民族学院学报(自),18(3):4-6.
    55.胡一民.1986.珙桐的引种初步研究.安徽林业科技,3:5-7.
    56.贺金生等.1995.我国珍稀特有植物珙桐的现状及其保护.生物多样性,3(4):213-221.
    57.钟章成等.1984.四川卧龙地区珙桐群落特征的初步研究.植物生态学与地植物学丛刊,8(4):253-263.
    58.徐荣章等.1992.珙桐异地保存与繁殖技术.见:主要珍稀濒危树种繁殖技术.北京:中国林业出版社,35-39.
    59.袁力等.1984.珙桐生长规律初探.陕西林业科技,2;7-9.
    60.袁力等.1985.珙桐育苗方法的探讨.西安植物园通讯,1:5-7.
    61.袁道陵等.1990.宣恩七姊妹山珙桐群落及其自然保护问题研究.环境科学与技术,(3):45-48.
    62.陶金川,宗世贤,杨志斌.1986.珙桐的地理分布与引种.浙江林学院学报,3(1):25-33.
    63.陶金川等.1993.珍稀植物幼苗形态初步研究(三).江西林业科技,(2):20-23.
    64.黄金生等.1996.珙桐叶肉细胞中的核内含体.植物学报,3(6):495-496.
    65.黄金生等.1996.珙桐叶细胞中的核内含体的超微结构.电子显微镜学报,15(5):398.
    66.傅立国,金鉴明.1992.中国植物红皮书——稀有濒危植物,北京:北京科学出版社.
    67.彭春良等.1989.湖南珙桐及其群落的初步研究.湖南林业科技,(1):9-13.
    68.焦健.1995.甘肃文县珙桐群落的组成结构数量特征.甘肃农业大学学报,30(2):189-193.
    69.焦健.1998.甘肃文县珙桐群落区系组成结构特征.甘肃农业大学学报,33(1):57-61..
    70.焦健.1998.甘肃文县珙桐群落优势种种群分布格局及动态变化趋势.甘肃农业大学学报,33(3):266-271.
    71.焦健.1998.甘肃文县珙桐群落的二维极点捧序.甘肃农业大学学报,33(4):393-397.
    72.焦健.1999.甘肃文县珙桐群落优势种群的种间联结性测定.甘肃农业大学学报,34(1):61-64.
    73.覃林,艾训儒.1999.珙桐群落中珙桐种群与主要共生树木种群间联结关系的研究,林业科技,24(5):16-17,50.
    74.黎明,苏金乐,杨芳绒,武荣花,郭宗民,金红.1999.珙桐营养器官解剖学研究.河南农业大学学报,33(4):357-359.
    75.戴大临等.1995.珙桐果皮中镍、钙元素的EDS分析.电子显微镜学报,14(2):99-103.
    76.Abel,S.,Nguyen,M.D.and Theologis,A.1995.The PS-IAA4/5-like family Of early auxin-
    
    inducible mRNAs in Arabidopsis thaliana. J. Mol. Biol., 251 (4) : 533-549.
    77. Adams M. D., Kelley J. M., Gocayne J.D. et al. 1991. Complimentary DNA sequencing: expressed sequence tags and the Human Genome Project Science, 252(5013) : 1651-1656.
    78. Alexandropoulos K; Cheng G; Baltimore D. 1995. Proline-rich sequences that bind to Src homology 3 domains with individual specificities. Proc. Natl. Acad. Sci., 92:3110-3114.
    79. Arondel V., Vergnolle C., Tchang R, Kader J.-C. 1990. Bifunctional Itpid-transfer: fatty acid-binding proteins in plants. Mol. Cell. Biochem., 98:49-56.
    80. Arondel, V., Kader, J. C. 1991. Lipid transfer in plants. Experientia, 46: 579-585.
    81. Bachem C. W. B., Hoeven van de R. S., Brujin S. M. et al. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant Journal, 9(5) : 745-753.
    82. Bernard R. G and Thompson J. E. 1993. Methods in Plant Molecular Biology and Biotechnology. CRC Press Inc., Boca Raton, Florida, USA.
    83. Bernhard W. R., Somerville C. R. 1989. Coidentity of putative-amylase inhibitors from barley and finger millet with phospholipid transfer proteins inferred from amino acid sequence homology. Arch. Biochem. Biophys., 169:695-697.
    84. Bradley D. J., Kjellbom P., Lamb C. J. 1992. Elicitor-and wound-induced oxidative cross-linking of a praline-rich plant cell wall protein: a novel, rapid defense response. Cell, 70:21-30.
    85. Brigham L. A., Woo H. H., Nicoll S. M. 1995. Differential expression of proteins and mRNAs from border cells and root tips of pea. Plant Physiology, 109:457-463.
    86. Brisson L R, Tenhaken R., Lamb C. 1994. Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell, 6:1703-1712.
    87. Broekaert W. R, Cammue B. P. A., De Bolle M., Thevissen K., De Samblanx G W. and Osborn R.W. 1997. Antimicrobial peptides from plants. Crtt Rev, Plant Sci., 16:297-323.
    88. Brooks R. R., McCleave J. A., Schofield D. K. 1977. Cobalt and Nickel uptake by the Nyssaceae. Taxon, 26(2-3) : 197-201.
    89. Brown,GD. and Thomson,J.A. 1998. Isolation and characterisation of an aryl-beta-D-glucoside uptake and utilisation system (abg) from the gram-positive ruminal Clostridium species C. longisporum. Mol. Gen. Genet'., 257 (2) : 213-218.
    90. Browne B., McDonald E. 1978. The propagation of seed of Davidia involucrata Baill. Handkerchief tree. Irish Nat. J., 19(6) : 208.
    91. Callard D., Axeios M., Mazzolini L. 1996. Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant physiology, 112:705-715.
    92. Cammue B. P. A., Thevissen K., Hendricks M. et al. 1995. A potent antimicrobial protein from onion (Allium cepa L.) seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol, 109:445-455.
    93. Campos R A. P., Richardson M. 1984. The complete amino acid sequence of the α-amylase
    
    inhibitor 1-2 from seeds of ragi (Indian finger millet, Eleusine coracana Gaertn.). FEBS Lett., 167:221-225.
    94. Carvalhoa A. O., Machadob O. L. T., Cunhac M. D. et al. 2001. Antimicrobial peptides and immunolocalization of a LTP in Vigna unguiculata seeds. Plant Physiology and Biochemistry, 39(2) : 137-146.
    95. Clark A. M. and Bohnert H. J. 1993. Epidermis-specific transcripts. Necleotide sequence of a full-length cDNA of EPI12, encoding a putative lipid transfer protein. Plant Physiol., 103: 677-678.
    96. Clark M. S. (ed). 1997. Plant Molecular Biology-A Laboratory Manual. Springer-Verlag, Berlin Hedeberg.
    97. Corpet E, Gouzy J., Kahn D. 1998. The ProDom database of protein domain families. Nucleic Acids Res., 26:323-326.
    98. Corpet F., Servant F., Gouzy J., and Kahn D. 2000. ProDom and ProDom-CG: tools for protein domain analysis and whole genome comparisons. Nucleic Acids Res., 28:267-269.
    99. Coutos-Thevenol P., Jouenne T., Maes O., Guerbette P., Grosbios M., Le Caer J. P., Boulay M., Deloire A., Kader J.-C. and Guern J. 1993. Four 9-kDa proteins excreted by somatic embryos of grapevine are isoforms of lipid-transfer proteins. Ear. J. Biochem., 217:885-889.
    100. Crain R. C., Zilversmit D. B. 1980. Two nonspecific phospholipid exchange proteins from beef liver. 1. Purification and characterization. Biochemistry, 19:1433-1439.
    101. Den L. 1992. The introducing and culturing for ornamental plant Davidia involucrata Baill. Hortiscience, 27(6) : 680.
    102. Desormeaux A., Blochet J.-E., Pezolet M. et al. 1992. Amino acid sequence of a non-specific wheat phospholipid transfer protein and its conformation as revealed by infrared and Raman spectroscopy. Role of disulfide bridges and phospholipids in the stabilization of the α-helix structure. Biochim. Biophys. Acta, 1121:137-152.
    103. Deutch C. E., Vinicov 1. 1995. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Mol. Biol., 27:411-418.
    104. Diatchenko L, Lau Y. C., Campbell A. P. et al. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes. Proceedings of the National Academy of Sciences USA, 93:6025-6030.
    105. Diatchenko L., Lukyanov S., Lau Y. F., Siebert P. D. 1999. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods. Enzymol., 303:349-380.
    106. Diatchenko, L., Lau, Y.-F. C., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E. D. & Siebert, P. D. 1996. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA, 93:6025-6030.
    107. Douliez J-P., M'tchon T. and Marion D. 2000. Steady-state tyrosine fluorescence to study the lipid-binding proteins of a wheat non-specific lipid-transfer protein (nsLTP1) . Biochim. and
    
    Biophys. Acta, 1467:65-72.
    108. Duro G, Colombo P., Costa M. A., et al. 1997. Isolation and characterization of two cDNA clones coding for isoforms of the Parietaria judaica major allergen Par j 1. 0101. Int. Arch. Allergy Immunol., 112: 348-355.
    109. Fleming A. J., Mandel T., Hofmann S. et al. 1992. Expression pattern of a tobacco lipid transfer protein gene within the shoot apex. Plant J., 2: 855-862.
    110. Friderick M., Ausubel et al. 1995. Short Protocols in Molecular Biology (3rd ed.). John Wiley & Sons Inc.
    111. Garcia-Olmedo F., Molina A., Segura A. and Moreno M. 1995. The defensive role of nonspecific lipid-transfer proteins in plants. Trends in Microbiology, 3(2) : 72-74.
    112. Gausing K. 1994. Thionin genes specifically expressed in barley leaves and coleoptiles. Planta, 192:574-580.
    113. Gincel E., Simorre J.P., Caille A., Marion D., Plak M. and Vovelle F. 1994. Three-dimensional structure in solution of a wheat lipid transfer protein from multidimensional 1H-NMR data-a new folding for lipid carriers. Eur. J. Biochem. 226: 413-422.
    114. Goldblatt P. 1978. A contribution to cytology in Comales. Ann. Mo. Bot. Card., 65(2) : 650-655.
    115. Goodwin W., Pallas J. A., Jenlins G I. 1996. Transcripts of a gene encoding a putative cell wall-plasma membrane linker protein are specifically cold-induced in Brassica napus. Plant Mol.Biol., 31:771-781.
    116. Gough J., Karplus K., Hughey R., Chothia C. 2001. Assignment of homology to genome sequences using a library of hidden markov models that represent all proteins of known structure. Journal of Molecular Biology, 313(4) : 903-919.
    117. Guen L. L, Thomas, M. and Kreis, M. 1994. Gene density and organization in a small region of the Arabidopsis thaliana genome. Mol Gen. Genet., 245 (3) : 390-396.
    118. Gurskaya N. G., Diatchenko L., Chenchik A. et al. 1996. Equalizing cDNA subtraction based on selected suppression of polymerase chain reaction: cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristaie 13-acetatie. Anal. Biochem, 240(1) : 90-97.
    119. Gyorgyey J., Ne'meth K., Magyar Z. et al. 1997. Expression of a novel-type small praline-rich gene of alfalfa in induced by 2,4-dichlorophenoxiacetic acid in differentiated callus cells. Plant Mol. Biol., 34:593-602.
    120. Harty, R. N., J. Paragas, M. Sudol, and P. Palese. 1999. A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW-domains of cellular proteins: Implications for viral budding. J. Virol, 73:2921-2929.
    121. Heck G. R., Perry S. E., Nichols K. W. et al. 1995. AG115, a MADs domain protein expressed in developing embryos. The Plant Cell, 7(8) : 1271-1282.
    122. Heinemann K., Andersen K., Nielsen P., Bech Land Poulsen F. 1996. Structure in solution
    
    of a four helix lipid binding protein. Protein Sci., 5:13-23.
    123. Hubank M, Schatz D. G 1994. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic-Acids Research, 22(25) : 5640-5648.
    124. Iiendriks M., Meijer E. A., Thoma S., Kader J.-C. and De Vries S. C. 1994. The carrot extracellular lipid transfer protein EP2: Quantitative aspects with respect to its putative role in cutin synthesis. In: Coruzzi G and Puigdomenech (ed.), Plant Molecular Biology, Springer-Verlag, Berlin, NATO ASI Series II81, pp. 85-94.
    125. Kader J.-C. 1996. Lipid-transfer proteins in plants. Anna. Rev. Plant Physiol. Plant Mol. Biol., 47:627-654.
    126. Kamelina O. P., Shevchenko S. V. 1988. On the embryology of Davidia involucrata (Davidiaceae). Botanicheskii Zhurnal (Leninggrad), 73(2) : 203-213. (In Russian)
    127. Kang D., Lafrance R., Su Z, and. Fisher P. B. 1998. Reciprocal subtraction differential RNA display: an efficient and rapid procedure for isolating differentially expressed gene sequences. Proceedings of the National Academy of Sciences USA, 95:13788-13793.
    128. Koltunow A. M., Truettner J., Cox K. H. et al. 1990. Different temporal and spatial expression patterns occur during anther development Plant Cell, 2:1201-1224.
    129. Kristensen A. K., Brunstedt J., Nielsen K. K., Roepstorff P. and Mikkelsen J. D. 2000. Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves. Plant Science, 155:31-40.
    130. Krogh A., B., Larsson G, von Heijne, and E. L. L. Sonnhammer. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3) : 567-580.
    131. Kuang W. W., Thompson D. A., Hoch R. V. et al. 1998. Differential screening and suppression subtractive hybridization identified genes differentially expressed in an estrogen receptor-positive breast carcinoma cell line. Nucleic Acids research, 26(4) : 1116-1123.
    132. Lee J. Y., Min K., Cha H., Shin D. H., Hwang K. Y. and Suh S. W. 1998. Rice non-specific lipid transfer protein: the 1. 6 A crystal structure in the unliganded state reveals a small hydrophobic cavity. J. Mol. Biol., 276:437-448.
    133. Li F. S., Barnathan E. S., Kariko K. 1994. Rapid method for screening and cloning cDNA generated in differential mRNA display: application of northern blot for affinity capturing of cDNAs. Nucleic Acids Research, 22(9) : 1764-1765.
    134. Liang P. and Pardee, A. B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 257:967-971.
    135. Liu, H. C., Creech, R. G, Jenkins, J. N. and Ma, D. P. 2000. Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3. Biochim. Biophys. Acta 1487 (1) : 106-111.
    136. Longnecker, R., Merchant, M., Brown, M. E. et al. 2000. WW-and SH3-domain interactions with Epstein-Barr virus LMP2A. Exp. Cell Res., 257(2) : 332-340.
    137. Maa D.-R, Honga T., Yangb S. et al. 1995. Differential expression of a lipid transfer protein gene in cotton fiber. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism,
    
    1257(1) : 81-84.
    138. Maa D.-P., Liua H.-C., Tana H. et al. 1997. Cloning and characterization of a cotton lipid transfer protein gene specifically expressed in fiber cells. Biochimica et Biophysica Acta (BBA)-Lipid and Lipid metabolism, 1344(2) : 111-114.
    139. McClintock, E. 1991. Davidia involucrata and Acer pentaphyllum. Pacific Horticulture, 52(3) : 57-61.
    140. Molina A. and Garcia-Olmedo F. 1993. Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. Plant J., 4:983-991.
    141. Molina A., Segura A., Garcia-Olmedo F. 1993. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett., 316:119-122.
    142. Nielsen H. and Anders Krogh. 1998. Prediction of signal peptides and signal anchors by a hidden Markov model. In Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology (ISMB 6) , AAAI Press, Menlo Park, California, pp. 122-130.
    143. Nielsen H., Engelbrecht J., Brunak S. and von Heijne G 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering, 10: 1-6.
    144. Ohlrogge, J. B., Browse, J., Somerville, C. R. 1991. The genetics of plant lipids. Biochim. Biophys. Acta, 1382:1-26.
    145. Opsahl F. H. G., Dewnff E. L., Dumas C. 1997. ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant Journal, 12(1) : 235-246.
    146. Orford S. J. and Timmis J. N. 2000. Expression of a lipid transfer protein gene family during cotton fibre development. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1483(2) : 275-284.
    147. Osafunea T., Tsuboib, S. Eharac, T. et al. 1996. The occurrence of non-specific lipid transfer proteins in developing castor bean fruits. Plant Science, 113(2) : 125-130.
    148. Ouvrard,O., Cellier,F., Ferrare,K., Tousch,D., Lamaze.T., Dupuis,J.M. and Casse-Delbart,F. 1996. Identification and expression of water stress-and abscisic acid-regulated genes in a drought-tolerant sunflower genotype. Plant Mol. Biol. 31 (4) : 819-829.
    149. Pardinas J. R., Nicholas J. C., Proury S. M. et al. 1998. Differential subtraction display: a unified approach for isolation of cDNAs from differentially expressed genes. Analytical Biochemistry, 257:161-168.
    150. Pyee J. and Kolattukudy P. E. 1995. The gene for the major cuticular wax-associated protein and three homologous genes from broccoli (Brassica oleracea) and their expression patterns. Plant J.,7. 49-59.
    151. Pyee J., Yu H. and Kolattukudy P. E. 1994. Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch. Biochem. Biophys., 311:460-468.
    152. Quandt, K. Freeh, K. Karas, H. Wingender, E. and Werner, T. 1995. Matlnd and
    
    Matlnspector-New fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Research, 23:4878-4884.
    153. Richers J., Spener F., Kader J.-C. 1985. A phospholipid transfer protein that binds long-chain fatty acid. FEBS Lett., 180:29-32.
    154. Richers J., Tober I., Spener F. 1984. Purification and binding characteristics of a basic fatty acid binding protein form Avena saliva seedlings. Biochim. Biophys. Acta, 794:313-319.
    155. Rost B. 1996. PHD: predicting one-dimensional protein structure by profile based neural networks. Methods in Enzymology, 266: 525-539.
    156. Rost B., C. Sander. 1993. Prediction of Protein Secondary Structure at Better than 70% Accuracy. Journal of Molecular Biology, 232(2) : 584-599.
    157. Rueckert D. G, Schmidt K. 1990. Lipid transfer proteins. Chem. Phys. Lipids, 56:1-20.
    158. Sambrook J., Fritsch E. F. and Maniatis T. 1989. Molecular Cloning-A Laboratory Manual (2nd ed.). New York: Clod Spring Harbor Laboratory Press.
    159. Schmid, R. 1978. Actinidiaceae, Davidiaceae and Paracryphiaceae systematic considerations. Bot. Jahrb. Syst. Pflamengesch Pflanzengeogr., 100(2) : 196-204.
    160. Schultz D. J., Craig R., Cox-Foster D. L., Mumma R. O., and Medford J. I. 1994. RNA isolation from recalcitrant plant tissue. Plant Molecular Biology Reporter, 12:310-316.
    161. Sevensson B., Sevendsen 1. et al. 1986. A 10 kD barley seed protein homology with an a-amylase inhibitor from Indian finger millet. Carlsberg Res. Commw., 51:493-500.
    162. Shin D. H., Lee J. Y., Qwang K. Y., Kim K. K. and Suh S. W. 1995. High resolution crystal structure of the non specific lipid transfer protein from maize seedlings. Structure, 3: 189-199.
    163. Simorre J.-P., Caille A., Marion D. et al. 1991. Two-and three-dimensional 1H NMR studies of a wheat phospholipid transfer protein: sequential resonance assignments and secondary structure. Biochemistry, 30:11600-11608.
    164. Smart, L. B., Cameron, K. D. and Bennett, A. B. 2000. Isolation of genes predominantly expressed in guard cells and epidermal cells of Nicotiana glauca. Plant Mol. Biol., 42 (6) : 857-869.
    165. Sonnhammer E. L.L., G.von Heijne, and A. Krogh. 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. In J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen, editors, Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology, pages 175-182, Menlo Park, CA, AAAI Press.
    166. Sossountzov L., Ruiz-Avila L., Vignols F. et al. 1991. Spatial and temporal expression of a maize lipid transfer protein gene. Plant cell, 3:923-933.
    167. Spongberg, S.A. 1993. Exploration and introduction of ornamental and landscape plants from eastern Asia. p. 140-147. In: J. Janick and J.E. Simon (eds.), New crops. Wiley, New York.
    168. Sterk P., Booij H., Schellekens G A. et al. 1991. Cell-specific expression of the carrot EP2
    
    lipid transfer protein gene. Plant Cell, 3:907-921.
    169. Sudol, M. 1996. Structure and function of the WW domain. Prog. Biophys. Mol. Bio/,. 65: 113.
    170. Suh, S. W., Kim, K. K., Shin, D. H., Hwang, K. Y., Lim, S., Sweet, R. S. 1994. Crystallisation and preliminary X-ray crystallographic analysis of phospholipid transfer protein from maize seedlings. Proteins, 19:80-83.
    171. Tchang F., Kader J.-C. 1988. Phospholipid transfer protein: full-length cDNA and amino acid sequence in maize. J. Biol. Chem., 263:16849-16855.
    172. Terras F. R. G, Goderis I. J., Van Leuven F. et al. 1992. In vitro anti-fungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol., 100:1055-1058.
    173. Thoma S., Hecht U., Kippers A. et al. 1994. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol., 105:35-45.
    174. Torres-Schumann S., Godoy J. A. and Pintor-Toro J. A. 1992. A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Mol. Biol, 18:749-757.
    175. Tsubio S., Osafune T, Tsugeki R. et al. 1992. Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. J. Biochem., 111: 500-508.
    176. Vielle-Calzada J. P., Nuccio M. L. 1996. Comparative gene expression in sexual and apomictic ovaries of Pennisetum ciliare (L.) Link. Plant Molecular Biology, 32:1085-1092.
    177. Von Stein O. D., Thies W. G., Hofinann M. et al. 1997. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Research, 25(13) : 2598-2602.
    178. Warzecha H., Obitz P. and Stockigt J. 1998. Purification, partial amino acid sequence and structure of the product of raucaffricine-O-β-D-glucosidase from plant cell culturesof Rauwolfia serpentina. Phytochemistry, 50:1099-1109.
    179. Watson L. and M. J. Dallwitz. 2000. The Families of Flowering Plants: Descriptions, Illustrations, Identification, and Information Retrieval (14th Version). CSIRO Publications: Melbourne.
    180. Wirtz, K. W. A. 1991. Phospholipid transfer proteins. Amu. Rev. Biochem. 60:73-99.
    181. Wong B. R., Park C. G., Lee S. V. et al. 1996. Identifying T-cell signaling molecules with the Clontech PCR-select cDNA subtraction kit Clontechniques, XI(3) : 32-33.
    182. Wu G S., Saftig P., Peters C., El-Deiry W.S. 1998. Potential role for Cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene, 16(17) : 2177-2183.
    183. Wyman, D. 1978. The dove tree. Am. Hortic., 57(1) : 6-7.
    184. Yu Y. G, Chung C. H., Fowler A., Such S. W. 1988. Amino acid sequence of a probable amylase/protease inhibitor from rice seeds. Arch. Biochem. Biophys., 265:466-475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700