用户名: 密码: 验证码:
暖温带5种常见灌木对水分和光照的生理生态响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变化导致世界范围内的干旱日益严重,再加上自然和人为因素造成的环境因子的异质性和扰动,森林植被面临着越来越严重的生存压力,植物与环境尤其是变化的环境的关系问题再一次成为生态学家关注的焦点。植物体通过根、茎、叶等各个组成部分的相互协调适应不同的环境,利用现代化的实验控制手段和仪器分析手段研究植物对环境生理生态方面的适应机制成为进几十年来全球变化生态学的重要研究方向。本论文以暖温带常见的灌木荆条(Vitex negundo var. heterophylla)为主要研究对象,从它本身的生长特性以及对水分、光照等环境因子的响应机制方面解释了其成为暖温带广布优势种的原因,并将荆条与暖温带其它常见灌木酸枣(Ziziphus jujuba var. spinosa)、扁担木(Grewia biloba var. parviflora)、紫穗槐(Amorpha fruticosa)和火炬树(Rhus typhina)进行了叶性状及生物量分配的比较研究,分析了几个物种生理生态学方面的差异,实验共分为五部分:前三部分研究了荆条对于水分和光照的生理生态响应以及野外荆条叶片性状的时空变化,后两部分比较了荆条与其它灌木,尤其是酸枣的生理生态特性的差异。本论文的研究结果将有助于理解灌木层共生物种的适应及生态位分化机制、随着演替的进行和未来的气候变化,物种组成可能的变化趋势,并为植被重建、制定区域生态环境可持续发展等方面提供科学数据和理论依据。
     利用大棚内的控制实验,研究了荆条幼苗对于不同土壤水分含量的生理、形态方面的适应。研究结果表明:随着水分胁迫的加深,荆条幼苗的叶片净光合速率、蒸腾速率、气孔导度、最大量子产量等生理指标逐渐下降,但是光合速率和蒸腾速率下降的程度并不一致,轻度水分胁迫下气孔因素对净光合速率的下降起主要作用,重度水分胁迫下非气孔因素起主要作用。荆条幼苗的生长高度、基径、冠幅、生物量产量均随着水分的减少而下降,轻度和中度水分胁迫并没有影响到荆条的相对生长速率,并且在轻度和中度水分胁迫下,生物量更多的分配于根中增强对水分的吸收能力。在重度水分胁迫下,荆条幼苗的生长几乎停滞,新陈代谢受到影响,幼苗出现了萎蔫现象,小苗不得不将同化物更多的投资于叶片进行光合生产。总之,保证荆条成活和良好生长的关键是幼苗期的水分供应和管护。
     利用遮阳棚和遮阳网,研究了荆条幼苗对于不同光照强度的适应机制,以及荆条幼苗对于林窗形成、人工伐林等因素带来的变化的光环境的适应。研究结果表明:荆条幼苗对于不同的光照条件具有良好的适应,低光下提高光吸收效率,高光下避免光抑制。低光下的荆条叶片具有低的比叶重(LMA)、高的单位质量叶绿素(Chl)含量、低的叶绿素a、b比值,个体水平上更多的地上生物量分配,这可以保证其对光能的充分吸收利用。高光下的荆条叶片具有良好的热耗散能力,避免过量光量子对叶片的伤害。光照转换(光照增强)之后,荆条的老叶和新叶共同适应新的环境,老叶的生理指标恢复的比较完全,而比叶重只有部分的恢复,对于新叶来说,叶片的含水量升高,叶绿素含量明显升高,特别是低光-高光处理下的新生叶的最大量子产量提高,非光化学淬灭下降,说明叶片的健康度提高,这有可能是低光-高光刚处理时老叶会有严重的光抑制,新生叶的这种生理功能的提高是为了植株在个体水平上的适应。也正是由于在刚转换时存在着严重的光抑制,造成了低光-高光处理下生物量提高的并不是最多。
     在野外选取了荆条典型的5个生长环境:林外、阔叶林林缘、阔叶林林下、针叶林林窗和针叶林林下,在不同的生长月份取样分析,研究了荆条叶性状不同时间和空间的变化趋势。研究结果表明:在荆条叶片的主要生长期内,叶性状具有明显的时间和空间的变化,不同的取样地点,叶性状具有相似的时间变化规律。叶性状的空间变化主要是由于光照因素造成的,遮荫下的植株采取叶片尺度(低比叶面积)和细胞尺度(高Ch1/N和低Ch1 a/b)上的可塑性提高了光捕获的能力。叶性状的时间变化主要是由于与气候条件相关的土壤环境因子造成的,因此,当我们将采自不同时间(月份)的叶片放在一起分析的时候,要特别注意采样时间的差异对结果的影响。除了环境因子的影响,随着荆条的个体发育,叶性状也会发生一些变化:比叶面积随着叶片生长而减小,说明由于富含碳的化合物的聚集和细胞壁的木质化而造成的叶片密度的增加;6月份叶片中的氮素更多的分配于叶绿素中,说明叶片的营养生长和生殖生长之间存在着氮分配的权衡。
     利用形态学的测量手段,研究了荆条和酸枣对于水分和光照交叉作用的响应,研究表明:遮荫和干旱对于荆条幼苗形态的影响是正交的,对于酸枣幼苗形态的影响并不一定是正交的,还需要进一步的实验验证。酸枣和荆条具有不同的光能捕获策略,酸枣具有发达的分枝而荆条的分枝很少,取而代之的是长的复叶柄,这对于降低荆条叶片的自遮荫非常重要。对于遮荫的环境,两个物种具有不同的叶片水平和个体水平上的适应策略,而对于干旱的环境,两个物种的叶片可塑性都比较低,主要采用叶间距减小和根冠比增加的方式来提高水分吸收及运输效率。短的叶柄和蜡质的叶片是酸枣提高干旱耐受性的重要性状。不同的形态学特性和对光照和水分不同的响应赋予了这两个物种不同的生态学特性,荆条的耐荫性更强一些而酸枣的耐旱性更强一些,这对于两者在暖温带落叶阔叶林中的共存至关重要。
     在大棚中盆栽了荆条、酸枣、扁担木、紫穗槐和火炬树五种暖温带常见灌木,比较了它们生理生态方面的差异。研究发现:荆条、酸枣、扁担木、紫穗槐、火炬树在相同的生长环境下体现出了不同的生理生态特性。从叶片生理的角度看,外来物种火炬树和紫穗槐表现出很好的光合优越性,并且对于瞬时变化的光强具有很强的适应能力,这对于两者较好的利用光斑环境将非常有利,而荆条和酸枣对资源的利用比较保守,充分的利用正午的光照是荆条叶片生理的一大优势,扁担木的叶片有较强的气体交换能力,但是通过荧光分析,电子传递的最大值比较低而且正午过后荧光日变化的实际量子产量恢复值也比较慢,其叶片已经体现出来一些荫生性。叶片的结构性状与生理性状往往具有良好的对应关系。扁担木叶片的比叶重,叶绿素a、b的比值都最小,印证了扁担木叶片的荫生性。紫穗槐的支撑结构分配比例最高,这样更有利于支撑其运动的叶片。紫穗槐和火炬树高的光合能力和良好的耐旱能力是两个外来种能够定居下来的重要原因。良好的种子扩散能力、保守的光能利用策略、较强的干扰后恢复能力使得荆条成为暖温带地区的广布优势种。
     总之,荆条从叶片尺度到整株尺度、从营养生长到生殖生长的生理生态特性以及对于水分和光照良好的适应机制,使其成为暖温带灌木层的广布优势种。荆条叶性状在不同时间和空间的变化同样体现了其对环境因子的良好适应和调节能力。荆条和酸枣这两种具有不同叶片类型的物种,对于水分和光照的响应差异造成了两者生态位的分化。荆条、酸枣、紫穗槐、火炬树和扁担木具有不同的生理生态特性,这对于植被恢复中物种的选择和灌木层物种的分布、演替具有重要意义。
Drought is becoming more serious as global climate change in the world, coupled with light environmental heterogeneity and disturbance because of natural and man-made factor, forest ecosystems is suffering growing pressure to survive. The relationship of plants and environment, especially the changing environment, is foucused by ecologists once again. Plants adapt different environment according to the harmonization of root, stem and leaf. With the modern controlled experimental method and instrument analysis method to study the ecophysiological adaption mechanism to environment, is the important research aspect of global changing ecology. In this study, we chose Vitex negundo var. heterophylla as the main research objects. The species is the widely distributed in the shrub layer of north China. We explained why this species is so dominative of shrub layer in warm temperate zone from the growth characteristics and the response mechanism to water and light. We compared the leaf traits and biomass partitioning of Vitex negundo var. heterophylla, Ziziphus jujuba var. spinosa, Grewia biloba var. parviflora, Amorpha fruticosa, and Rhus typhina. There was difference among the five shrub species from the ecophysiological aspect. The results will help to understand the mechanisms of adaptation and niche differentiation of coexisting species and the likely species variation trend with the succession and climate change in the future. It may also provide evidences for vegetation restoration and establishing the blueprints for local ecological environment and sustainable development.
     A potted experiment was carried out in the greenhouse to study the physiological and morphological adaptation of Vitex negundo var. heterophylla seedlings to different soil water content. With the aggravation of drought, net photosynthetic rate, transpiration rate, stomatal conductance and maximum quantum yield of PS2 became smaller, but the degressive degree was not consistent between photosynthetic rate and transpiration rate, stomatal closure was the dominant limitation at mild to moderate drought, while metabolic impairment became dominant at severe drought. Plant growth was inhibited under water stress, and consequently, all parts of the biomass decreased markedly with drought, but the relative growth rate was not affected under mild and moderate drought. Seedling growth was nearly stagnant, metabolism was affected, seedlings were withered and more was invested in leaf to photosynthesis at severe water stress. Water supply above 15% Field Capacity is recommended for the seedlings for vegetation restoration.
     Vitex negundo var. heterophylla seedlings were subjected to different light conditions which were carried out with woven black nylon nets. The adaption to the irradiance variation was also investigated to simulate gap formation. There was good adjustment to different light conditions:light absorbed efficiency was improved under low light while photoinhibition was avoided under high light. The lower LMA, higher chlorophyll content, lower chlorophyll a/b and lower root to shoot ratio were all the strategys to ensure the light absorbing adequately. It showed excellent heat dissipation ability in high irradiance, which was used to avoide damage to the leaf. After gap formation, the old leaves and new leaves adapted the new environment together. Fot old leaves, the physiological index recovered completely, while LMA only recovered partially. For new leaves, leaf water content became higher, LMA became lower, chlorophyll content became higher, and there were higher maximum quantum yield and lower non-photochemical quenching in low light (LL)-high light (HL) treatment, which means that the leaves were healthier. There will be heavy photoinhibition after transformation from low light to high light, so the elevation of physiological activity is the adaption at individual level. The biomass increase was not the most which was also caused by the heavy photoinhibition in LL-HL treatment. The elevation of physiological activity and the steady investment to leaves were very important to adapt new environment.
     Five typical habitats of V. negundo var. heterophylla were selected on the hill, i.e. open forest, edge of deciduous broadleaved forest, understory of deciduous broadleaved forest, gap of evergreen coniferous forest, and understory of evergreen coniferous forest. Leaf traits were analysed from different months. Temporal and spatial variation of leaf traits of the shrub were studied in the regional scale. We found that all the leaf traits, including specific leaf area (SLA), leaf nitrogen (N) and phosphorus (P) content, chlorophyll (Ch1) content, and chlorophyll fluorescence, showed both temporal and spatial variation. The seasonal variation was consistent in different habitats. Light condition was the determinative factor in spatial difference. Plants under shade developed light-capturing behavior at leaf level (lower SLA) and cellular level (higher Ch1/N ratio and lower Ch1 a/b). Soil condition related to climate was the determinative factor in temporal difference. We should pay more attention to analysis when collecting leaves from different months, in order to prevent inaccurate conclusions appearing. Ontogenetic impact to leaf traits also existed over the entire growth season, such as the smaller SLA with growth and higher Chl/N in June. The smaller SLA with age could ascribe to an overall increase in leaf density, which is also associated with accumulation of carbon-rich chemicals and the enhanced lignification of cell walls. The distinct N-allocation pattern enables higher maximum photosynthetic nitrogen-use efficiency in flcwer-leaves to compensate the N allocation to flowers.
     The combined impact of drought and shade on Vitex negundo var. heterophylla and Ziziphus jujuba var. spinosa, in terms of morphological plasticity, was studied. The interaction of light and water was orthogonal in V. negundo var. heterophylla, but it remained inconclusive in Z. jujuba var. spinosa. Effects of drought and shade on biomass allocation were orthogonal, while effects on biomass production were not orthogonal in Z. jujuba var. spirosa. V. negundo var. heterophylla captured irradiance efficiently with relatively long common petiole and petiolule, while Z. jujuba var. spinosa maintained higher branches to absorb light. Under deep shade, V. negundo var. heterophylla showed larger specific leaf area (SLA), lower ratio of leaf length to width and higher leaf dry mass ratio; while Z. jujuba var. spinosa showed larger SLA and ratio of leaf length to petiole length. In both species, the branch number became smaller, mean leaf space of stem was lower, and root dry mass ratio was higher under drought, but leaf morphology showed little variance to water deficit. The short petiole and waxen leaves are the important characters to enhance drought tolerance in Z. jujuba var. spinosa. Different morphological characters and different responses to light and water endowed the two species with different ecological characteristics. V. negundo var. heterophylla appears to be more shade-tolerant, while Z. jujuba var. spinosa is more drought-tolerant. The species-specific adaptation of drought and shade may be an important mechanism driving forest community dynamics in temperate forests.
     In order to compare the ecophysiological difference among the five common shrubs in the warm temperate zone, potted seedlings of Vitex negundo var. heterophylla, Ziziphus jujuba var. spinosa, Grewia biloba var. parviflora, Amorpha fruticosa, and Rhus typhina were cultured in the greenhouse. We found that the five species showed different ecophysiological characters. From the leaf physiological aspect, Amorpha fruticosa and Rhus typhina showed a photosynthetic superiority and strong ability to adapt variable irradiance, which is benefit to use the sunfleck. Vitex negundo var. heterophylla and Ziziphus jujuba var. spinosa had conservative resource use strategy; it is the advantage to use irradiance at noon for the former species. The gas exchange ability was higher in Grewia biloba var. parviflora, but the leaves showed somewhat shade-grown character. According to fluorescence analysis, the maximal electron transport rate is the lowest and the recovery of effective quantum yield is the slowest. There is always corresponding relation between leaf structural traits and leaf physiological trais. Grewia biloba var. parviflora showed the lowest LMA and chlorophyll a/b, which verified the shade grown character. Amorpha fruticosa showed the highest supporting structure ratio, corresponding to the moveable leaves. The higher photosynthetic ability and well drought tolerance are the important reasons that the two alien species could settle down. There is no risk of Amorpha fruticosa to the native ecosystem while Rhus typhina showed the strong invasive ability. We should pay more attention when we introduce the alien species to the native ecosystem. Vitex negundo var. heterophylla is the widely distributed shrub species in the warm temperate zone because of the well diffusivity, conservative resource use strategy, and good recovery ability after disturbance.
     In conclusion, the ecophysiological characters from leaf scale to whole plant scale and well adaption mechanism to light and water enable Vitex negundo var. heterophylla becoming the widely distributed shrub species in the warm temperate zone. The temporal and spatial variation of leaf traits are also the adaption to different environment. The different responses to water and light are the reason of niche differentiation between Vitex negundo var. heterophylla and Ziziphus jujuba var. spinosa. Vitex negundo var. heterophylla, Ziziphus jujuba var. spinosa, Amorpha fruticosa, Rhus typhina, and Grewia biloba var. parviflora show different ecophysiological characters, which is very important to species selection for vegetation restoration and succession of shrub layer.
引文
1. Abrams MD, Kubiske ME, Mostoller SA. Relating wet and dry year ecophysiology to leaf structure in temperate tree species. Ecology,1994,75: 123-133.
    2. Aranda I, Castro L, Pardos M, Gil L, Pardos JA. Effects of the interaction between drought and shade on water relations, gas exchange and morphological traits in cork oak (Quercus suber L.) seedlings. Forest Ecology and Management, 2005,210:117-129.
    3. Aranda I, Robson TM, Rodriguez-Calcerrada J, Valladares F. Limited capacity to cope with excessive light in the open and with seasonal drought in the shade in Mediterranean Ilex aquifolium populations. Trees,2008,22:375-384.
    4. Aspelmeier S, Leuschner C. Genotypic variation in drought response of silver birch (Betula pendula Roth):leaf and root morphology and carbon partitioning. Trees,2006,20:42-52.
    5. Bacelar EA, Correia CM, Moutinho-Pereira JM, Goncalves BC, Lopes JI, Torres-Pereira JMG.Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiology,2004,24: 233-239.
    6. Ball JT, Woodrow IE, Berry JA. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In:Biggens J ed. Progress in Photosynthesis Research. Martinus Nijhoff Publishers, Dordrecht,1987,221-224.
    7. Bargali K, Tewari A. Growth and water relation parameters in drought-stressed Coriaria nepalensis seedlings. Journal of Arid Environments,2004,58: 505-512.
    8. Bazzaz FA. The physiological ecology of plant. Annual Review of Ecology and Systematics,1979,10:351-371.
    9. Bellingham PJ, Kohyama T, Aiba S. The effects of a typhoon on Japanese warm temperate rainforests. Ecological Research,1996,11:229-247.
    10. Bharathan G, Sinha NR. The regulation of compound leaf development. Plant Physiology,2001,127:1533-1538.
    11. Bigras FJ. Photosynthetic response of white spruce families to drought stress. New Forests,2005,29:135-148.
    12. Bradshaw AD, Chadwick MJ, Jowett D, Snaydon RW. Experimental investigations into the mineral nutrition of several grass species. Ⅳ. nitrogen level. Journal of Ecology,1964,52(3):665-676.
    13. Brugnoli E, Scartazza A, De Tullio MC, Monteverdi MC, Lauteri M, Augusti A. Zeaxanthin and non-photochemical quenching in sun and shade leaves of C3 and C4 plants. Physiologia Plantarum,1998,140:727-734.
    14. Canadell JG, Steffen WL, White PS. IGBP/GCTE terrestrial transects:dynamics of terrestrial ecosystems under environmental change. Journal of Vegetation Science,2002,13:298-300.
    15. Cao KF. Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in Bornean heath forest. Canadian Journal of Botany, 2000,78:1245-1253.
    16. Castro-Diez P, Navarro J. Water relations of seedlings of three Quercus species: variations across and within species grown in contrasting light and water regimes. Tree Physiology,2007,27:1011-1018.
    17. Castro-Diez P, Puyravaud JP, Cornelissen JHC. Leaf structure and anatomy as related to leaf mass per area variatioin in seedlings of a wide rangge of woody plant species and types. Oecologia,2000,124:476-486.
    18. Champagne C, Sinha N. Compound leaves:equal to the sum of their parts? Development,2004,131(18):4401-4412.
    19. Charles T, Garten JR. Correlations between concentrations of elements in plants. Nature,1976,261:686-688.
    20. Chazdon RL. Sunflecks and their importance to forest understory plants. Advances in Ecological Research,1988,18:1-63.
    21. Chiatante D, Iorio AD, Sciandra S, Scippa GS, Mazzoleni S. Effect of drought and fire on root development in Quercus pubescens Willd. and Fraxinus ornus L. seedlings. Environmental and Experimental Botany,2006,56:190-197.
    22. Climent JM, Aranda I, Alonso J, Pardos JA, Gil L. Developmental constraints limit the response of Canary Island pine seedlings to combined shade and drought. Forest Ecology and Management,2006,231:164-168.
    23. Cordell S, Goldstein G, Meinzer FC, Vitousek PM. Regulation of leaf life-span and nutrient-use efficiency of Metrosidero polymorpha trees at two extremes of a long chronosequence in Hawaii. Oecologia,2001,127:198-206.
    24. Cornelissen JHC, Perez-Harguindeguy N, Diaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B. Leaf Structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytologist,1999,143:191-200.
    25. Crick JC, Grime JP. Morphological plasticity and mineral nutrient capture in two herbaceous species of contrasted ecology. New Phytologist,1987,107: 403-414.
    26. Crown TR.Reproductive mode and mechanisms for self-replacement of northern red oak (Quercus rubra)-a review. Forest Science,1988,34:19-40.
    27. Cunasekera D, Berkowitz GA. Use of transgenic plants with Rubisco antisense DNA to evaluate the rate limitation of photosynthesis under water'stress. Plant Physiology,1993,103:629-635.
    28. Dai XB, Chen.LZ, Huang JH. The restoration of the destroyed forest vegetation in Yunmeng Mountain, Beijing. Vegetatio,1990,87:145-150.
    29. Demmig-Adams B, Adams Ⅲ WW. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:599-626.
    30. Dias PC, Araujo WL, Moraes GA, Barros RS, DaMatta FM. Morphological and physiological responses of two coffee progenies to soil water availability. Journal of Plant Physiology,2007,164:1639-1647.
    31. Duan B, Lu Y, Yin C, Junttila O, Li C. Physiological responses to drought and shade in two contrasting Picea asperata populations. Physiologia Plantarum, 2005,124:476-484.
    32. Evans GC. The quantitative analysis of plant growth. Blackwell,1972.
    33. Evans JR, Poorter H. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell and Environment,2001,24:755-767.
    34. Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination in photosynthesis. Annual Review of Plant Physiology and Molecular Biology, 1989,40:503-537.
    35. Farquhar GD, O'Leary MH, Berry JA. On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology,1982,9:121-137.
    36. Farquhar GD, Richards RA. Isotopic composition of plant carbon correlates with water use efficiency of wheat genotypes. Australian Journal of Plant Physiology, 1984,11:539-552.
    37. Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology,1982,33:317-345.
    38. Feng YL, Li X. The combined effects of soil moisture and irradiance on growth, biomass allocation, morphology and photosynthesis in Amomum villosum. Agroforestry Systems,2007,71:89-98.
    39. Feng YL, Wang JF, Sang WG Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels. Acta Oecologica,2007,31:40-47.
    40. Feng YL, Cao KF, Zhang JL. Photosynthetic characteristics, dark respiration and leaf mass per unit area in seedlings of four tropical tree species grown under three irradiances. Photosynthetica,2004,42:431-437.
    41. Fernandez RJ, Reynolds JF. Potential growth and drought tolerance of eight desert grasses:lack of a trade-off? Oecologia,2000,123:90-98.
    42. Flexas J, Menrano H. Drought-inhibition of photosynthesis in C3 Plants: stomatal and non-stomal limitations revisited. Annals of Botany,2002,89: 183-189.
    43. Franco AC, Bustamante M, Caldas L, Goldstein G, Meinzer FC, Kozovits AR, Rundel P, Coradin VTR. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees,2005,19:326-335.
    44. Galmes J, Medrano H, Flexas J. Photosynthesis and photoinhibition in response to drought in a pubescent (var. minor) and a glabrous (var. palaui) variety of Digitalis minor. Environmental and Experimental Botany,2007,60:105-111.
    45. Gao Q, Zhao P, Zeng X, Cai X, Shen W. A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress. Plant Cell and Environment,2002,25:1373-1381.
    46. Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA,1989,990:87-92.
    47. Gindaba J, Rozanov A, Negash L. Photosynthetic gas-exchange, growth and biomass allocation of two Eucalyptus and three indigenous tree species of Ethiopia under moisture deficit. Forest Ecology and Management,2005,205: 127-138.
    48. Graves JD. A model of the seasonal pattern of carbon acquisition in two woodland herbs, Mercurialis perennis L. and Geum urbanum L. Oecologia, 1990,83:479-484.
    49. Greco SA, Cavagnaro JB. Effects of drought in biomass production and allocation in three varieties of Trichloris crinita P. (Poaceae) a forage grass from the arid Monte region of Argentina. Plant Ecology,2002,164:125-135.
    50. Guo W, Li B,Zhang X, Wang R. Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress. Journal of Arid Environments,2007,69:385-399.
    51. Guo XR, Cao KF, Xu ZF. Acclimation to irradiance in seedlings of three tropical rain forest Garcinia species after simulated gap formation. Photosynthetica, 2006,44(2):193-201.
    52. Hallik L, Niinemets U, Wright IJ. Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? New Phytologist,2009,184:251-214.
    53. Han WX, Fang JY, Guo DL, Zhang Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 2005,168:377-385.
    54. Hansen U, Schneiderheinze J, Rank B. Is the lower shade tolerance of Scots pine, relative to pedunculate oak, related to the composition of photosynthesis pigments? Photosynthetica,2002,40(3):369-374.
    55. He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist,2006,170:835-848.
    56. Hewitt N. Seed size and shade-tolerance:a comparative analysis of North American temperate trees. Oecologia,1998,114:432-440.
    57. Holmgren M, Scheffer M, Huston MA. The interplay of facilitation and competition in plant communities. Ecology,1997,78(7):1966-1975.
    58. Holmgren M. Combined effects of shade and drought on tulip poplar seedlings: trade-off in tolerance or facilitation? Oikos,2000,90:67-78.
    59. IPCC. Summary for policymakers of climate 2007:the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK:Cambridge University Press,2007.
    60. Jarvis PG. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society B:Biological Sciences,273,593-610.
    61. Johnson GN, Young AJ, Scholes JD, Horton P. The dissipation of excess excitation energy in British plant species. Plant Cell and Environment,1993,16: 673-679.
    62. Jurik TW. Temporal and spatial patterns of specific leaf weight in successional northern hardwood tree species. American Journal of Botany,1986,73(8): 1083-1092.
    63. Kamaluddin K, Grace J. Photoinhibition and light acclimation in seedlings of Bischofia javanica, a tropical forest tree from Asia. Annals of Botany,1992,69: 47-52.
    64. Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M. Chloroplast avoidance movement reduces photodamage in plants. Nature,2002, 420:829-832.
    65. Katahata S, Naramoto M, Kakubari Y, Mukai Y. Seasonal changes in photosynthesis and nitrogen allocation in leaves of different ages in evergreen understory shrub Daphniphyllum humile. Trees,2007,21:619-629.
    66. Keim DL, Kronstad WE. Drought response of winter wheat cultivars grown under field stress conditions. Crop Science,1981,21:11-15.
    67. Kelly J, Jose S, Nichols JD, Bristow M. Growth and physiological response of six Australian rainforest tree species to a light gradient Forest Ecology and Management,2009,257:287-293.
    68. Kikuzawa K, Lechowicz MJ. Toward Synthesis of Relationships among Leaf Longevity, Instantaneous Photosynthetic Rate, Lifetime Leaf Carbon Gain, and the Gross Primary Production of Forests. American Naturalist,2006,168(3): 373-383.
    69. Kitajima K, Mulkey SS, Wright SJ. Seasonal leaf phenotypes in the canopy of a tropical dry forest:photosynthetic characteristics and associated traits. Oecologia,1997,109:490-498.
    70.Kitaoka S, Koike T. "Seasonal and yearly variations in light use and nitrogen use by seedlings of four deciduous broad-leaved tree species invading larch plantations. Tree Physiology,2005,25:467-475.
    71.Kitaoka S, Koike T. Invasion of broad-leaf tree species into a larch plantation: seasonal light environment, photosynthesis and nitrogen allocation. Physiologia Plantarum,2004,121:604-611.
    72. Knoepp JD,Swank WT. Using soil temperature and moisture to predict forest soil nitrogen mineralization. Biology and Fertility of Soils,2002,36:177-182.
    73.Koerselman W, Meuleman AFM. The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology,1996,33: 1441-1450.
    74. Kohyama T, Hotta M. Significance of allometry in tropical saplings. Functional Ecology,1990,4:515-521.
    75. Kohyama T. Significance of architecture and allometry in saplings. Functional Ecology,1987,1:399-404.
    76. Krause GH, Weis E. Chlorophyll fluorescence and photosynthesis:the basics. Annual Review of Plant Physiology and Plant Molecular Biology,1991,45: 633-652.
    77. Kull O, Niinemets U. Distribution of leaf photosynthesis properties in tree canopies:comparison of species with different shade tolerance. Functional Ecology,1998,12:472-479.
    78. Larcher W. Physiological plant ecology,3rd ed. Berlin Heidelberg, New York: Springer Press,1995.
    79. Laurance WF, Didham RK, Power ME. Ecological boundaries:a search for synthesis. Trends in Ecology and Evolution,2001,16:70-71.
    80. Leishman MR, Haslehurst T, Ares A, Baruch Z. Leaf trait relationships of native and invasive plants:community-and global-scale comparisons. New Phytologist, 2007,176:635-643.
    81. Li F, Bao W, Wu N, You C. Growth, biomass partitioning, and water-use efficiency of a leguminous shrub (Bauhinia faberi var. microphylla) in response to various water availabilities. New Forests,2008a,36:53-65.
    82. Li S, Yang B, Wu D. Community succession analysis of naturally colonized plants on coal gob piles in Shanxi mining areas, China. Water Air and Soil Pollution,2008b,193:211-228.
    83. Liao JX, Ge Y, Huang CC, Zhang J, Liu QX, Chang J. Effects of irradiance on photosynthetic characteristics and growth of Mosla chinensis and M. scabra. Photosynthetica,2005,43 (1):111-115.
    84. Liu F, Stutzel H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Science Horticulturae,2004,102:15-27.
    85. Lizana C, Wentworth M, Martinez JP, Villegas D, Meneses R, Murchie EH, Pastenes C, Lercari B, Vernieri P, Horton P, Pinto M. Differential adaptation of two varieties of common bean to abiotic stress I. Effects of drought on yield and photosynthesis. Journal of Experimental Botany,2006,57:685-697.
    86. Long SP, Humphries S, Falkowski PG. Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology,1994, 45:633-662.
    87. Lovelock CE, Jebb M, Osmond CB. Photoinhibition and recovery in tropical plant species:response to disturbance. Oecologia,1994,97:297-307.
    88. Lusk CH, Reich PB, Montgomery RA, Ackerly DD,Cavender-Bares J. Why are evergreen leaves so contrary about shade? Trends in Ecology and Evolution, 2008,23(6):299-303.
    89. Lusk CH, Warton DI. Global meta-analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny. New Phytologist,2007,176:764-774.
    90. Maxwell K, Johnson GN. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany,2000,51:659-668.
    91. Mediavilla S, Garcia-Ciudad A, Garcia-Criado B, Escudero A. Testing the correlations between leaf life span and leaf structural reinforcement in 13 species of European Mediterranean woody plants. Functional Ecology,2008,22: 787-793.
    92. Medrano H, Escalona JM, Bota J, Gulias J, Flexas J. Regulation of photosynthesis of C3 plants in response to progressive drought:stomatal conductance as a reference parameter. Annals of Botany,2002,89:895-905.
    93. Moles AT, Ackerly DD, Tweddle JC, Dickie JB, Smith R, Leishman MR, Mayfield MM, Pitman A, Wood JT, Westoby M. Global patterns in seed size. Global Ecology and Biogengraphy,2007,16:109-116.
    94. Moles AT, AckerlyDD, Webb CO, Tweddle JC, Dickie JB, Westoby M. A brief history of seed size. Science,2005,307:576-580.
    95. Montpied P, Granier A, Dreyer E. "Seasonal time-course of gradients of photosynthetic capacity and mesophyll conductance to CO2 across a beech (Fagus sylvatica L.) canopy. Journal of Experimental Botany,2009,60(8): 2407-2418.
    96. Muller O, Hikosaka K, Hirose T. Seasonal changes in light and temperature affect the balance between light harvesting and light utilisation components of photosynthesis in an evergreen understory shrub. Oecologia,2005,143: 501-508.
    97. Muraoka H, Tang Y, Koizumi H, Washitani I. Combined effects of light and water availability on photosynthesis and growth of Arisaema heterophyllum in the forest understory and an open site. Oecologia,1997,112:26-34.
    98. Muraoka H, Tang YH, Koizumi H, Washitani I. Effects of light and soil water availability on leaf photosynthesis and growth of Arisaema heterophyllum, a riparian forest understorey plant. Journal of Plant Research,2002,115:419-427.
    99. Naidu SL, DeLucia EH. Acclimation of shade-developed leaves on saplings exposed to late-season canopy gaps. Tree Physiology,1997a,17:367-376.
    100. Naidu SL, DeLucia EH. Growth, allocation and water relations of shade-grown Quercus rubra L. saplings exposed to a late-season canopy gap. Annals of Botany,1997b,80:335-344.
    101. Naumburg E, Ellsworth DS. Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO2 in FACE. Oecologia,2000,122: 163-174.
    102. Navas ML, Gamier E. Plasticity of whole plant and leaf traits in Rubia peregrina in response to light, nutrient and water availability. Acta Oecologica, 2002,23:375-383.
    103. Niinemets U, Kull K. Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees. Acta Oecologica,2003,24:209-219.
    104. Niinemets U, Kull O, Tenhunen JD. An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiology,1998,18:681-696.
    105. Niinemets U, Postsmuth A, Tobias M. Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species:a neglected source of leaf physiological differentiation? Functional Ecology,2007,21:28-40.
    106. Niinemets U, Valladares F. Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecological Monographs,2006, 76(4):521-547.
    107. Niinemets U. Are comound-leaves woody species inherently shade-intolerant? An analysis of species ecological requirements and foliar support costs. Plant Ecology,1998,134:1-11.
    108. Niinemets U. Energy requirement for foliage construction depends on tree size in young Picea abies trees. Trees,1997,11:420-431.
    109. Niinemets U. Global-scale climatic controls of leaf dry mass per area, density, and thickness in tress and shrubs. Ecology,2001,82(2):453-469.
    110. Nijs I, Ferris R, Blum H. Stomatal regulation in a changing climate:A field study using free air temperature increase (FATL) and free air-CO2 enrichment (FACE). Plant Cell and Environment,1997,20:1041-1050.
    111. Noda H, Muraoka H, Washitani I. Morphological and Physiological Acclimation Responses to Contrasting Light and Water Regimes in Primula sieboldii. Ecological Research,2004,19:331-340.
    112. Noguchi K, Nakajima N, Terashima I. Acclimation of leaf respiratory properties in Alocasia odor a following reciprocal transfers of plants between high- and low-light environments. Plant Cell and Environment,2001,24:831-839.
    113. Nortes PA, Gonzalez-Real MM, Egea G and Baille A.Seasonal effects of deficit irrigation on leaf photosynthetic traits of fruiting and non-fruiting shoots in almond frees. Tree Physiology,2009,29(3):375-388.
    114. Oguchi R, Hikosaka K, Hirose T. Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell and Environment,2003,26:505-512.
    115. Oguchi R, Hikosaka K, Hiura T, Hirose T. Costs and benefits of photosynthetic light acclimation by tree seedlings in response to gap formation. Oecologia, 2008,155:665-675.
    116. Oguchi R, Hikosaka K, Hiura T, Hirose T. Leaf anatomy and light acclimation in woody seedlings after gap formation in a cool-temperate deciduous forest. Oecologia,2006,149:571-582.
    117. Oosterhuis DM, Walker S, Eastham J. Soybean leaflet movements as an indicator of crop water stress. Crop Science,1985,25:1101-1106.
    118. Pandey S, Kushwaha R. Leaf anatomy and photosynthetic acclimation in Valeriana jatamansi L. grown under high and low irradiance. Photosynthetica, 2005,43(1):85-90.
    119. Pearcy RW, Yang W. The functional morphology of light capture and carbon gain in the Redwood forest understorey plant Adenocaulon bicolor Hook. Functional Ecology,1998,12:543-552.
    120. Pearcy RW. Sunflecks and photosynthesis in plant canopies. Annual Review of Plant Physiology and Plant Molecular Biology,1990,41: 421-453.
    121. Poorter H, Jong RD. A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytologist,1999,143:163-176.
    122. Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R. Causes and consequences of variation in leaf mass per area (LMA):a meta-analysis. New Phytologist,2009,182:565-588.
    123. Poorter L, Rozendaal DMA. Leaf size and leaf display of thirty-eight tropical tree species. Oecologia,2008,158:35-46.
    124. Poorter L. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist,2009,181:890-900.
    125. Price CA, Enquist BJ. Scaling mass and moiphyology in leaves:an extension of the web model. Ecology,2007,88(5):1132-1141.
    126. Prioul JL, Chartier P. Paritioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation:A critical analysis of the methods of the methods used. Annals of botany,1977,41:789-800.
    127. Puertolas J, Pardos M, Jimenez MD, Aranda I. Pardos JA. Interactive responses of Quercus suber L. seedlings to light and mild water stress:effects on morphology and gas exchange traits. Annals Forest Science,2008,65:1-10.
    128.Quero JL, Villar R, Maranon T, Zamora R. Interactions of drought and shade effects on seedlings of four Quercus species:physiological and structural leaf responses. New Phytologist,2006,170:819-834.
    129. Quick WP, Chaves MM, Wendler R, David M, Rodrigues ML, Passaharinho JA, Pereira JS, Adcock MD, Leegood RC, Stitt M. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant Cell and Environment,1992,15:25-35.
    130. Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD. Generality of leaf trait relationships:a test across six biomes. Ecology,1999,80(6):1955-1969.
    131. Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. PNAS,2004,101(30):11001-11006.
    -132. Reich PB, Walters MB. Photosynthesis-nitrogen relations in Amazonian tree species. Ⅱ. Variation in nitrogen vis-a-vis specific leaf area influences mass- and area-based expressions. Oecologia,1994,97:73-81.
    133. Robakowski P, Wyka T, Samardakiewicz'S, Kierzkowski D. Growth, photosynthesis, and needle structure of silver fir (Abies alba Mill.) seedlings under different canopies Forest Ecology and Management,2004,201:211-227.
    134. Roderick ML, Berry SL, Saunders AR, Noble IR. On the relationship between the composition, morphyology and function of leaves. Functional Ecology,1999, 13:696-710.
    135. Rodriguez-Calcerrada J, Pardos JA, Gil L, Aranda I. Ability to avoid water stress in seedlings of two oak species is lower in a dense forest understory than in a medium canopy gap. Forest Ecology and Management,2008,255:421-430.
    136. Romme WH, Martin WH. Natural disturbance by tree falls in old-growth mixed mesophytic forest:Lilley Cornett woods, Kentucky. In:Proceedings from the Fourth Central Hardwood Forest Conference.University of Kentucky, Lexington, Ky.,1982, pp 367-383.
    137. Rust S, Huttl RF. The effect of shoot architecture on hydraulic conductance in beech (Fagus sylvatica L.). Trees,1999,14:39-42.
    138. Sack L, Cowan PD, Jaikumar N, Holbrook NM. The'hydrology'of leaves: co-ordination of structure and function in temperate woody species. Plant Cell and Environment,2003,26:1343-1356.
    139. Sack L, Frole K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology,2006,87(2):483-491.
    140. Sack L, Grubb PJ. The combined impacts of deep shade and drought on the growth and biomass allocation of shade-tolerant woody seedlings. Oecologia, 2002,131:175-185.
    141. Sack L. Responses of temperate woody seedlings to shade and drought:do trade-offs limit potential niche differentiation? Oikos,2004,107:110-127.
    142. Santiago LS. Extending the leaf economics spectrum to decomposition: evidence from a tropical forest. Ecology,2007,88(5):1126-1131.
    143. Schachtman DP, Goodger JQD. Chemical root to shoot signaling under drought. Trends in Plant Science,2008,13:281-287.
    144. Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In:Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin,1994, pp 49-70.
    145. Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence with a new type of modulation fluorometer. Photosynthesis Research,1986,10:51-62.
    146. Serrano L, Penuelas J, Ogaya R, Save R. Tissue-water relations of two co-occurring evergreen Mediterranean species in response to seasonal and experimental drought conditions. Journal of Plant Research,2005,118: 263-269.
    147. Sims DA, Pearcy RW. Response of leaf anatomy and photosynthetic capacity in Alocasia-macrorrhiza Araceae to a transfer from low to high light. American Journal of Botany,1992,79:449-455.
    148. Singsaas EL, Ort DR, DeLucia EH. Diurnal regulation of photosynthesis in understory saplings. New Phytologist,2000,145:39-49.
    149. Smith M, Wu YJ, Green O. Effect of light and water-stress on photosynthesis and biomass production in Boltonia decurrens (asteraceae), a threatened species. American Journal of Botany,1993,80(8):859-864.
    150. Smith T, Huston M. A theory of the spatial and temporal dynamics of plant communities. Vegetatio,1989,83: 49-69.
    151. Takenaka A, Takanashi K, Konyama T. Optimal leaf display and biomass partitioning for efficient light capture in an understorey palm, Licuala arbuscula. Functional Ecology,2001,15:660-668.
    152. Takenaka A. Structural variation in current-year shoots of broad-leaved evergreen tree saplings under forest canopies in warm temperate Japan. Tree Physiology,1997,17:205-210.
    153. Tezara W, Marin O, Rengifo E, Martinez D, Herrera A. Photosynthesis and photoinhibition in two xerophytic shrubs during drought. Photosynthetica,2005, 43:37-45.
    154. Tezara W, Martinez D, Rengifo E, Herrera A. Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray. Annals of Botany,2003,92:757-765.
    155. Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature,1999,401: 914-917.
    156. Thomas SC, Bazzaz FA. Asymptotic height as a predictor of photosynthetic characteristics in Malaysian rain forest trees. Ecology,1999,80:1607-1622.
    157. Tyree MT, Ewers FE. The hydraulic architecture of trees and other woody plants. New Phytologist,1991,119:345-360.
    158. Valladares F, Pearcy RW. Drought can be more critical in the shade than in the sun:a field study of carbon gain and photo-inhibition in a Californian shrub during a dry El Nino year. Plant Cell and Environment,2002,25:749-759.
    1'59. Valladares F, Pearcy RW. Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. Plant Cell and Environment, 1997,20:25-36.
    160. Veenendaal EM, Mantlana KB, Pammenter NW, Weber P, Huntsman-Mapila P, Lloyd J. Growth form and seasonal variation in leaf gas exchange of Colophospermum mopane savanna trees in northwest Botswana. Tree Physiology,2008,28:417-424.
    161. Villar R, Merino J. Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytologist,2001,151: 213-226.
    162. Wang GH. Leaf trait co-variation, response and effect in a chronosequence. Journal of Vegetation Science,2007,18:563-570.
    163. Westoby M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and soil,1998,199:213-227.
    164. White AJ, Critchley C. Rapid light curves:A new fluorescence method to assess the state of the photosynthetic apparatus. Photosynthesis Research,1999,59: 63-72.
    165. White J. The plant as a metapopulation. Annual Review of Ecology and Systematics,1979,10:109-145.
    166. Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Gamier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M. Assessing the generality of global leaf trait relationships. New Phytologist,2005,166:485-496.
    167. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Gamier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. The worldwide leaf economics spectrum. Nature,2004,428:821-827.
    168. Wu FZ, Bao WK, Li FL, Wu N. Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environmental and Experimental Botany,2008a,63:248-255.
    169. Wu FZ, Bao WK, Li FL, Wu N. Effects of water stress and nitrogen supply on leaf gas exchange and fluorescence parameters of Sophora davidii seedlings, Photosynthetica,2008b,46:40-48.
    170. Xu CY, Griffin KL, Schuster WSF. Leaf phenology and seasonal variation of photosynthesis of invasive Berberis thunbergii (Japanese barberry) and two co-occurring native understory shrubs in a northeastern United States deciduous forest. Oecologia,2007,154:11-21.
    171. Xu F, Guo WH, Wang RQ, Xu WH, Du N, Wang YF. Leaf movement and photosynthetic plasticity of black locust (Robinia pseudoacacia) alleviate stress under different light and water conditions. Acta Physiologiae Plantarum,2009a, 31:553-563.
    172. Xu F, Guo WH, Xu WH, Wang RQ. Habitat effects on l(?)af morphyological plasticity in Quercus Acutissima. Acta Biologica Cracoviensia Series Botanica,2008,50(2):19-26.
    173. Xu F, Guo WH, Xu WH, Wei YH, Wang RQ. Leaf morphology correlates with water and light availability:What consequences for simple and compound leaves? Progress in Natural Science,2009b,19:1789-1798.
    174. Yamashita N, Ishida A, Kushima H, Tanaka N. Acclimation to sudden increase in light favoring an invasive over native trees in subtropical islands, Japan. Oecologia,2000,125:412-419.
    175. Young DR, Smith WK. Effect of cloudcover on photosynthesis and transpiration in the subalpine understory species Arnica latifolia. Ecology,1983,64(4): 681-687.
    176. Youssefi F, Weinbaum SA, Brown PH. Regulation of nitrogen partitioning in field-grown almond trees:effects of fruit load and foliar nitrogen applications. Plant and Soil,2000,227:273-281.
    177. Zhang JT, Xi Y, Li J. The relationships between environment and plant communities in the middle part of Taihang Mountain Range, North China. Community Ecology,2006a,7(2):155-163.
    178. Zhang LL, Wen DZ. Structural and physiological responses of two invasive weeds, Mikania micrantha and Chromolaena odorata, to contrasting light and soil water conditions. Journal of Plant Research,2009,122:69-79.
    179. Zhang XQ, Liu J, Welham CVJ, Liu CC, Li DN, Chen L, Wang RQ. The effects of clonal integration on morphological plasticity and placement of daughter ramets in black locust (Robinia pseudoacacia). Flora,2006b,201:547-554.
    180. Zheng YL, Feng YL, Liu WX, Liao ZY Growth, biomass allocation, morphology, and photosynthesis of invasive Eupatorium adenophorum and its native congeners grown at four irradiances. Plant Ecology,2009,203:263-271.
    181. Zou J, Rogers WE, Siemann E. Plasticity of Sapium sebiferum seedling growth to light and water resources:Inter- and intraspecific comparisons. Basic Applied Ecology,2009,10:79-88.
    182.柏军华,王克如,初振东,陈兵,李少昆。叶面积测定方法的比较研究.石河子大学学报(自然科学版),2005,23(2):216-218.
    183.鲍士旦主编.土壤农化分析。北京:中国农业出版社,2000,12。
    184.曹军胜,刘广全.刺槐叶绿素荧光特性的研究。西北植物学报,2006,26(1):0121-0126.
    185.陈汉斌,郑亦津,李法曾.山东植物志(下册).青岛:青岛出版社,1994。
    186.陈贻竹,李晓萍,夏丽,郭俊彦。叶绿素荧光技术在植物环境胁迫研究中的应用.热带亚热带植物学报,1995,3(4):79-86。
    187.陈英华,胡俊,李裕红,薛博,严重玲。碳稳定同位素技术在植物水分胁迫研究中的应用.生态学报,2004,24(5):1027-1033.
    188.段仁燕,王孝安,吴甘霖.林窗干扰与森林群落演替。广西植物,2005,25(5):419-423.
    189.费世民,何亚平,何飞,陈秀明,蒋俊明,张旭东。关于森林林窗中几个问题的综述和展望.四川林业科技,2009,30(4):28-37。
    190.郭卫华,李波,黄永梅,张新时.不同程度的水分胁迫对中间锦鸡儿幼苗气体交换特征的影响.生态学报,2004,24(12):2716-2722。
    191.郭志华,张旭东,黄玲玲,巨关升,Chen Jiquan.落叶阔叶树种蒙古栎(Quercus mongolica)对林缘不同光环境光能和水分的利用。生态学报,2006,26(4):1047-1056.
    192.国红,雷相东,Veronique Letort,陆元昌,Philippe de Reffye.基于GreenLab的油松结构-功能模型.植物生态学报,2009,33(5):950-957,
    193.国务院新闻办公室.中国应对气候变化的政策与行动。中国政府白皮书。2008,9.
    194.韩小梅,申双和.物候模型研究进展。生态学杂志,2008,27(1):89-95。
    195.’韩志国,雷腊梅,韩博平.利用调制荧光仪在线监测叶绿素荧光。生态科学,2005,24(3):246-249.
    196.何斌,李卫红,陈永金,徐长春,袁素芬。干旱胁迫下胡杨茎流日变化分析——以塔里木河下游英苏断面为例。西北植物学报,2007,27(2):0315-0320。
    197.何维明,马风云.水分梯度对沙地柏幼苗荧光特征和气体交换的影响.植物生态学报,2000,24(5):630-634.
    198.何炎红,郭连生,田有亮.7种针阔叶树种不同光照强度下叶绿素荧光猝灭特征.林业科学,2006,42(2):27-31。
    199.黄华斌,庄峙厦,杨妙峰,张建平,齐士林,罗洁,王小如。铅在植物-环境体系中的吸收、分布和迁移规律的稳定同位素示踪法研究。环境化学,2009,28(6):889-8.92.
    200.吉喜斌,康尔泗,陈仁升,赵文智,金博文,张智慧。植物根系吸水模型研究进展.西北植物学报,2006,26(5):1079-1086。
    201.江涛.酸枣的护坡性能及种子萌发研究。北京林业大学硕士学位论文。2007。
    202.蒋高明.当前植物生理生态学研究的几个热点问题。植物生态学报,2001,25(5):514-519.
    203.蒋高明主编.植物生理生态学.北京:高等教育出版社.2004,12。
    204.康东东,韩利慧,马鹏飞,魏学智,毕润成。不同地理环境下酸枣叶的形态解剖特征.林业科学,2008,44(12):135-140。
    205.柯娴氡,古丽红,周艳玲.阔叶树叶面积测量方法的比较和评价。广东林业科技,2006,22(4):96-99。
    206.李潮海,栾丽敏,王群,李宁,赵亚丽.苗期遮光及光照转换对不同玉米杂交种光合效率的影响.作物学报,2005,31(3):381-385.
    207.李冬林,向其柏.光照条件对浙江楠幼苗生长及光合特性的影响。南京林业大学学报(自然科学版),2004,28(5):27-31。
    208.李明财,朱教君,孙一荣。植物对气候变化生理生态响应的不确定性分析。西北植物学报,2009,29(1):0207-0214.
    209.李庆康,马克平.植物群落演替过程中植物生理生态学特性及其主要环境因子的变化.植物生态学报,2002,26(增刊):9-19。
    210.李文华,赵景柱.生态学研究回顾与展望。北京:气象出版社,2004,379-380.
    211.李晓征,郝日明,任燕.遮荫处理对不同苗龄交让木的生长和光合特性的影响.广西植物,2006,26(5):499-502。
    212.李震,洪添胜,吴伟斌,张文昭,刘敏娟。植物多叶片图像目标识别和叶面积测量方法.华南农业大学学报,2007,28(3):105-109.
    213.刘关君,王大海,郭晓瑞,杨传平,姜静,冯昕.植物叶面积的快速精确测定方法.东北林业大学学报,2004,32(5):82-83。
    214.刘任涛,毕润成,闫桂琴,王露露,曹志鹏,李萍,李荣荣.山西霍山荆条群落的生态特征及其空间分布的研究。山西师范大学学报(自然科学版),2006,20(2):68-73.
    215.刘学师,任永信,任小林。酸枣叶片组织结构与抗旱性的研究。河南职业技术师范学院院报,2004,32(1):45-47。
    216.刘学师.野生酸枣抗旱性研究。西北农林科技大学硕士学位论文。2003。
    217.陆时万,徐祥生,沈敏健编著.植物学(上册)。北京:高等教育出版社,1991,4.
    218.吕一河,傅伯杰.生态学中的尺度及尺度转换方法。生态学报,2001,21(12):2096-2015.
    219.罗音.鲁中山区几个经济树种苗期抗旱特性的研究。山东农业大学硕士学位论文.1999.
    220.骆彬,贾亚敏,刘彤,魏鹏。利用普通扫描仪精确测量叶面积的技术及方法.北方园艺,2007,5:46-48。
    221.牛书丽,韩兴国,马克平,万师强.全球变暖与陆地生态系统研究中的野外增温装置.植物生态学报,2007,31(2):262-271.
    222.平晓燕,周广胜,孙敬松.植物光合产物分配及其影响因子研究进展。植物生态学报,2010,34(1):100-111。
    223.秦大河.气候变化的事实与影响及对策。中国科学基金,2003,17(1):1-3。
    224.荣艳淑,罗健.华北地区1901-2002年气候变化强度的演变。河海大学学报(自然科学版),2009,37(3):276-280。
    225.师伟,王政权,刘金梁,谷加存,郭大立。帽儿山天然次生林20个阔叶树种细根形态.植物生态学报,2008,32(6):1217-1226.
    226.史刚荣,汤盈,张铮.淮北相山恢复演替群落优势树种叶片的生态解剖.植物生态学报,2006,30(2):314-322.
    227.孙儒泳,李博,诸葛阳,尚玉昌。普通生态学。北京:高等教育出版社。1993,10.
    228.孙双峰,黄建辉,林光辉,赵威,韩兴国。稳定同位素技术在植物水分利用研究中的应用.生态学报,2005,25(9):2362-2371.
    229.孙秀琴,田树霞.荆条种子萌发生理条件的研究。林业科学研穷,1988,1(6):688-690.
    230.孙雪文,高德武,李日新。基于GIS的植物叶面积的快速精确测定方法.水土保持科技情报,2005,2:17-18。
    231.谭辉,朱教君,康宏樟,胡理乐。林窗干扰研究。生态学杂志,2007,26(4):587-594.
    232.田汉勤,万师强,马克平。全球变化生态学:全球变化与陆地生态系统。植物生态学报,2007,31(2):173-174。
    233.田家怡.山东外来入侵有害生物与综合防治技术。北京:科学出版社。2004,4.
    234.王家华,李建东.林窗研究进展。世界林业研究,2006,19(1):27-30。
    235.王仁卿,藤原一绘,尤海梅。森林植被恢复的理论和实践:用乡土树种重建当地森林——宫胁森林重建法介绍。植物生态学报,2002,26(增刊):133-139.
    236.王仁卿,郭卫华,韩雪梅。房干村生态文明建设分析。见张凯主编:山东生态省建设研究.北京:中国科学技术出版社,2004,129-136。
    237.王仁卿,周光裕.山东植被。济南:山东科技出版社,2000,5。
    238.王文英,邱建英,李晋川,刘新志,卢崇恩.发挥灌木植物在山西退耕还林中的作用.山西农业科学,2007,35(1):11-14。
    239.王晓蓓,韩烈保,刘春霞.优良水土保持灌木——野生荆条种子发芽实验研究.辽宁林业科技,2007,4:30-32。
    240.王晓蓓.优良护坡植物——荆条的种子萌发及护坡性能研究.北京林业大学硕士学位论文.2007.
    241.王政权,郭大立.根系生态学.植物生态学报,2008,32(6):1213-1216。
    242.吴玉德,张鹏.基于Mapinfo的树木叶面积测定方法。林业调查规划,2005,30(6):23-24.
    243.肖强,叶文景,朱珠,陈瑶,郑海雷。利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法。生态学杂志,2005,24(6):711-714。
    244.徐生旺.重视乡土灌木树种驯化,恢复高原原生森林植被。防护林科技,2008,84:78,79,99.
    245.许大全,张玉忠,张荣铣.植物光合作用的光抑制.植物生理学通讯,1992,28(4):237-243.
    246.闫永庆,朱虹,刘兴亮,石溪婵,祖元刚。盐胁迫对紫穗槐生长发育及生理特性的影响.东北农业大学学报,2008,39(12):31-35。
    247.杨吉华,李红云,李焕平,杨德运,李萍。4种灌木林地根系分布特征及其固持土壤效应的研究.水土保持学报,2007,21(3):48-51。
    248.杨兴洪,邹琦,王玮.遮荫棉花转入强光后光合作用的光抑制及其恢复.植物学报,2001,43(12):1255-1259。
    249.杨兴洪,邹琦,赵世杰.遮荫和全光下生长的棉花光合作用和叶绿素荧光特征.植物生态学报,2005,29(1):8-15。
    250.叶子飘,于强.植物气孔导度的机理模型。植物生态学报,2009,33(4):772-782.
    251.张川红,郑勇奇,李继磊,阎海平,王玲。北京地区火炬树的萌蘖繁殖扩散。生态学报,2005,25(5):978-985。
    252.张春霞.水土保持灌木——荆条的生物生态学特性初步研究。北京林业大学硕士学位论文.2007.
    253.张慧琴,孙保平,赵方莹.酸枣种子硬实与萌发特性研究。山西农业科学,2007,35(4):48-50.
    254.张建云,王国庆,刘九夫,贺瑞敏。国内外关于气候变化对水的影响的研究 进展.人民长江,2009,40(8):39-41。
    255.张金屯.模糊聚类在荆条灌丛(Scrub. Vitex negundo var. heterophylla)分类中的应用.植物生态学与地植物学丛刊,1985,9(4):306-314。
    256.张力君,彭运翔.酸枣种子萌发和幼苗生长特性初探。内蒙古草业,2000,4:61-63.
    257.张林,罗天祥.植物叶寿命及其相关叶性状的生态学研究进展。植物生态学报,2004,128(6):844-852.
    258.张弥,关德新,吴家兵,施婷婷,金昌杰,韩士杰。植被冠层尺度生理生态模型的研究进展.生态学杂志,2006,25(5):563-571。
    259.张明如,温国胜,颜文洪,侯平,翟明普,张瑾。太行山低山丘陵区火炬树克隆分株的生长策略.浙江林学院学报,2008,25(3):282-288。
    260.张明如,俞益武,翟明普,姚军,王学勇。火炬树克隆分株与荆条克隆分析的光合日进程差异.浙江林学院学报,2007,24(1):1-6。
    261.张明如,翟明普,贾黎明,沈应柏,王学勇。火炬树克隆植株生长和生物量特征的研究.林业科学,2004,40(3):39-45。
    262.张明如,翟明普,尹昌君,温国胜。火炬树克隆分株前后端水平侧根直径不对称性分析.林业科学,2005,41(6):65-72。
    263.张守福,王玉萍.灌木在退耕还林中的重要性。甘肃科技,2007,23(1):219,220,223.
    264.张守仁,樊大勇,Reto J. Strasser.植物生理生态学研究中的控制实验和测定一起新进展.植物生态学报,2007,31(5):982-987。
    265.张守仁.叶绿素荧光动力学参数的意义及讨论。植物学通报,1999,16(4):444-448。
    266.张淑勇,周泽福,张光灿,夏江宝.半干旱黄土丘陵区4种天然次生灌木光合生理和水分利用特征.林业科学,2008,44(12):140-146.
    267.张万濡,杨光滢,屠星南,张萍.森林植物与森林枯枝落叶层全氮、磷、钾、钠、钙、镁的测定.中华人民共和国林业行业标准。中国标准出版社,北京,2000a,296-297.
    268.张万濡,杨光滢,屠星南,张萍.森林植物与森林枯枝落叶层全硅、铁、铝、钙、镁、钾、钠、磷、硫、锰、铜、锌的测定。中华人民共和国林业行业 标准.中国标准出版社,北京,2000b,288-289。
    269.张文辉,孙海芹,赵则海,祖元刚.北京东灵山辽东栎林优势植物水分适应特性.植物生态学报,2001,25(4):438-443.
    270.张永利,张宪强,王仁卿。鲁中山区植物区系初步研究.山东林业科技,2005,34(1):1-5.
    271.张治安,张美善,蔚荣海主编。植物生理学实验指导。北京:中国农业科学技术出版社,2004,1.
    272.赵平,曾小平,彭少麟。植被恢复树种在不同实验光环境下叶片气体交换的生态适应特点.生态学杂志,2003,22(3):1-8.
    273.赵相健,王孝安.太白红杉顶芽动态及其对分枝格局的影响.应用生态学报,2005b,16(1):25-28.
    274.赵相健,王孝安.太白红杉分枝格局的可塑性研究。西北植物学报,2005a,25(1):0113-0117.
    275.郑淑霞,上官周平.8种阔叶树种叶片气体交换特征和叶绿素荧光特性比较。生态学报,2006,26(4):1080-1087.
    276.中国科学院中国植物志编辑委员会。中国植物志(第六十五卷第一分册)。北京:科学出版社,1982a,145。
    277.中国科学院中国植物志编辑委员会。中国植物志(第四十八卷第一分册)。北京:’科学出版社,1982b,135。
    278.中国科学院中国植物志编辑委员会。中国植物志(第四十一卷).北京:科学出版社,1995,135.
    279。钟章成.植物种群生态适应机理研究.北京:科学出版社。2000,10。
    280.朱教君,刘足根。森林干扰生态研究。应用生态学报,2004,15(10):1703-1710.
    281.朱宪珍,房用,孟振农.山东灌藤植物。呼和浩特:远方出版社,2004,11。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700