用户名: 密码: 验证码:
近50a来中国西北气候变化及其水文响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源是西北地区经济、社会和生态环境发展演化的主要影响因子,而气候变化又强烈地影响着水资源系统的变化趋势。本文以水问题为纽带来研究气候变化对西北地区水文水资源的影响,研究成果有望能为流域的综合治理规划、生产力合理布局、水资源开发与保护、防灾减灾和制定全球变化背景下区域社会经济可持续发展模式供科学依据,同时为有关部门制定有关政策和决策,提供可供选择参考的对策措施,以便更好地为国民经济建设与可持续发展服务。
     本文以西北地区近50a来常规气象资料作为输入,利用Morton CRAE模型计算了区域潜在蒸发、实际蒸散发、地表湿润指数和计算径流深,以标准化降水指数(SPI)分析不同时段的干旱频次来反映区域气候干湿变化,最后应用Mann-Kendall秩次检验法对各水文要素的变化趋势进行了分析,并对气候变化对水文要素的影响进行了较为深入的研究,得到以下结论:
     1.水文气象要素空间分布现状
     (1)西北地区降水量自东南向西北呈递减趋势,但祁连山和天山西段是西北地区内陆的两大湿岛,对内陆干旱区的水分供给具有特殊意义;(2)年均气温分布呈东西两端高,中部特别是青藏高原北缘低的特征;(3)区域潜在蒸发能力受气温和降水的控制,西北地区西北部和东南部因低温或较多的降水,蒸发能力相对较小,而塔里木盆地和内蒙古西部为蒸发能力高值区;(4)水分条件决定了西北地区实际蒸散量的大小,因此,实际蒸散发量的分布与降水量的分布格局基本一致:(5)地表湿润指数的分布呈南北高,中间塔里木盆地至甘肃西部至内蒙古西部一线为低值的特征;(6)西北地区计算径流深为南高北低分布,同时计算径流深的分布格局也反映了人类活动在不同地区的影响程度。
     2.气温和降水量变化趋势
     (1)近50a来西北地区年平均气温除陕西南部极小部分外,绝大部分地区呈显著或极显著上升趋势。(2)2月、10月极显著升温区域明显较大,而3、4月和7、8、9月增温区域较小,内蒙古河套以北区域除8月份外表现为全年各月均极显著增温态势,西北地区东南陕西南部则表现为全年不显著变化;(3)西北地区5、6、7、8月份降水量变化趋势不明显,年降水量变化趋势主要受此4个月降水量变化的影响。东南部降水量变化为不显著下降趋势,气候变化对该地区降水的影响小于西部地区。
     3.水文要素计算与变化趋势
     (1)CRAE模型经修正后可用于西北地区实际蒸散发量的估算,计算结果不仅反映区域水文特征,而且一定程度上反映了人类活动对水文循环的影响程度;(2)受气候变化影响,近50a来西北地区潜在蒸发量仅在2、4、10月呈小范围的显著增加趋势;7、8、9、10、12月份在新疆中部和甘肃河西走廊西部出现显著下降趋势,其余月份和区域无显著变化趋势反映;(3)西北地区各月实际蒸散发量没有显著增加的趋势,但显著下降和极显著下降区域分布面积较大,新疆中南部、青海中西部和内蒙古西部为剧烈下降区域,甘肃东南部和陕西南部部分地区也表现为实际蒸散发量的显著下降。对于年实际蒸散发的变化变趋势,则是年降水量和年潜在蒸发量变化趋势共同作用的结果;(4)近50a来,西北地区东部地表有变干的趋势,这一趋势与降水量的减少和潜在蒸发量的增加有关;(5)西北地区计算径流深变化主要影响区域为内蒙古河套以北地区和陕西南部地区,可能对未来这些地区引水工程的建设和运行造成影响。
     4.气候干湿变化分析
     (1)标准化降水指数(SPI)作为一种干旱重建指标,适用于西北地区,也可以作为气候变化的监测指标;(2)降水量的西增东减趋势与干旱频次的西北减少东南增加相对应,亦即气候变化在某种程度上缓解了新疆北部和青海西部的干旱发生频率,但增加了甘肃东南部和陕西中南部的干旱发生频次;(3)与气候变化相对应,全西北地区干旱频次有总体下降的趋势,尽管干旱发生的地域持续在改变。
     5.水文要素对气候变化的响应分析
     (1)西北地区东北部计算径流深对气候变化的敏感性最强,其次是青海西部和新疆天山东段,亦即气候变化最易引起这些地区计算径流深的大幅变化。(2)气温与降水共同作用并对计算径流深产生作用,以单纯的气温变化或降水变化来分析水文要素的响应是不全面的。(3)西北地区不同气候区气温和降水对水文要素的影响程度不同,在干旱内陆区、沙漠边缘和大型灌区内,气温为水文要素变化的主要影响因子;而在半干旱地区,降水成为影响水文要素的主要因子;在海拔较高的地区,气温对水文要素的影响相对较强,在相对湿润的西北地区东南部,气温对水文要素的影响不明显。降水是西北地区计算径流深的主要影响因素。(4)年平均气温和降水对同期水文要素的影响中,气温的影响小于降水的影响。降水对计算径流深的影响大于气温对计算径流深的影响,未来降水量的变化是西北地区水资源系统变化的关键因素。(5)经对洮河流域和黑河流域上游气温和降水对地表径流的敏感性分析表明,近50a来西北地区降水对径流的影响远大于气温对径流的影响,且表现为气温的升高导致地表径流的减少,而降水的变化显著地改变了地表径流。气候变化对地下水的影响主要体现在气温升高,引起地下水蒸发加强而造成水位的下降。
Water resources is the major factor acting on the development of the local economy, society and evolves of the eco-environment in Northwestern China. The variety of water resources system was always impacted intensely by climatic change. Taking the water problems as the link, this dissertation studies the impacts of climatic change on water resources system in Northwest China. The research results can be used to provide the scientific basis for the basin comprehensive planning, the productive forces rational distribution, the water resources development and protection, the disaster mitigation, and formulating the sustainable development pattern of the social economy under the global climate change background. Moreover, it may supply the choice reference to the relative departments for formulating the policy and the decision-making to serve for the national economy construction and the sustainable development.
     This dissertation, taking the climatic change in Northwest China in recent 50 year and the hydrological factors, monthly or annual temperature (T), precipitation (P), actual areal evapotranspiration (ETa), potential evapotranspiration (ETp), Surface Wetness Index (SWI), and net precipitation/runoff depth (NP) as an object, has conducted more thorough research to the impacts of climatic change to the hydrological components with the methods of Mann-Kendall, Standardized Precipitatin Index (SPI) and Morton CRAE. The main results show as follow:
     1. The patterns of hydro-meteorological factors status quo: (1) The trend of mean annual P is descending from the southeast to the northwest of Northwest China. There are two "wet island" in Qilian Mountain and weast Tianshan Mountain in the northwestern interior region. They has the special significance to the supplies of the moisture content in the interior arid region; (2) The mean annual T of the southeasten of Northwest China and west part of Tarim Basin is high, and middle part, especially north edge of the Qinghai-Tibet Plain, is low; (3) The ETp is dominated by the temperature and precipitation. Because of the low temperature or rich rainfall, the ETp is relatively small in the northwest and southeast area of Northwest China. On the other hand, there is high ETp in the Tarim Basin and the west part of Inner Mongolia; (4) Decided by the moisture content condition, the ETa has the consistent distributed pattern with that of the precipitation in Northwest China; (5) The distribution of SWI presents the pattern which that of the north and south part is high, southwesten, northeast and middle part (Tarim basin, west part of Gansu, and western Inner Mongolian) low; (6) The NP is distributed with the pattern of high value in the south part and low in the north part of Northwest China. The pattern of the distribution of NP has also reflected the human activity in the different location.
     2. The trend of temperature and precipitation: (1) The area of presenting upward trend of T is bigger than other months in Northwest China in February and October, but in March, April and July through September, it is small. The increasing trend of T is significant in the north part of Hetao district in Inner Mongolian in all of months except August. On the other hand, the trend of T is not significant in south part of Shan'xi Province; (2) The trend of P is not significant in May through August in Northwest China, which dominated the trend of the annual precipitation. The trend of P is downward but not significant in the southeast part of Northwest China, and climate change has a limited affection to this region than west part.
     3. Calculation of hydrological factors and trend analysis: (1) It was show that the modified CRAE can be used for estimating the ETa in the Northwest China. The results of CRAE not only reflect the characteristic of the regional hydrology, and to some extent reflect the impact of human activities on the local hydrological circulation; (2) Affected by climate change, ETp is increasing in a small area only in February and April. The trend of ETp is downward significantly in July through October and December in centre part of Xinjiang and the west part of Hexi Corridor. There is no significant trend in other months and regions in Northwest China.; (3) For every month's ETa, there are no significant upward trend in Northwest Chnia, but there are some extremely significant decreasing area, which include the centre and south part of Xinjiang, the centre and west of Qinghai, and west of Inner Mongolian. There also have significant downward trend in some region, such as southeast of Gansu and southwest of Shanxi. The trend of ETa is resulted from the annual P and ETp; (4) Related to the change of the local P and ETp, there is a dryer trend in eastrn part of Northwest China in the recent 50 years; (5) The region affected by the change of NP include the north of Hetao in Inner Mongolian and the south area of Shanxi, where this situation will have the influence to the future diversion works' construction and its operation.
     4. Analysis of wetness and dryness of the climate: (1) As a reconstruction method of drought indicators, Standardized Precipitation Index (SPI) is applicable as indicators of climate change monitoring in Northwest China; (2) The change of drought frequency is corresponding to the trend of precipitation. That is, to some extent, climate change mitigate the frequency of drought in the northern part of Xinjiang and western Qinghai, but increase the drought frequency in the central and southern region of Shaanxi and southeasten part of Gansu; (3) Relative to the climate change, Frequency of drought has a general downward trend in the whole region of Northwest China, despite the location is continuing to change.
     5. Analysis of the responses of hydrological elements to climate change: (1) The NP in northeast part of Northwest China is more vulnerable to climate change than that in west part of Qinghai and the eastern section of the Tianshan Mountains in Xinjiang, and this situation caused the NP increase in these region in future. The NP is not as vulnerable as that in other district of Northwest China; (2) Mean monthly T and P have a synergetic effect to the contemporaneous NP, so it is not comprehensive to analyze the response of temperature or precipitation to water resources system; (3) In different climatic zones, the extent of impact of mean monthly temperature and precipitation to the hydrological factors is different. T is a main impact factor to hydrological factors in the arid inland regions, desert margins and large irrigation district, and precipitation plays an important role in the semi-arid areas. P becomes to a relatively strong factors to hydrological factors in the higher elevation areas. Temperature's impact to hydrological factors is not obvious in the relatively moist regions in the southeast part of Northwest China. For the NP, Precipitation is the main factor in Northwest China. (4) The impact of mean annual T is weaker than tnat of P on hydrological factors. The NP is affected by P more than T. The trend of precipitation is a main factor to the impact on water resources system in the future. (5) After analysis of sensentivity of runoff in the Taohe River Basin and upstream of Heihe River, the result show that the T has small effect on surface runoff than P. The increase of T results in decrease of runoff and P affects the runoff singnificantly. The effect of climate change on groundwater table is due to the increase of evaporation after T increasing.
引文
[1]Abramowitz M and Stegun I.(Eds),1965.Handbook of Mathematical Functions with Formulas,Graphs,and Mathematical Table.Dover Publications,Inc.:New York;1046.
    [2]Allen RG,Luis SP,Dirk R and Martin S.1998.Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56,FAO,Rome.
    [3]Alley.1985.Water balance models in one month ahead stream flow forecasting.Water Resources Research 21(4):597-606.
    [4]Arnell NW.1998.Climate change and water resources in Britain.Climatic Change 39(1):83-110.
    [5]Arnfeld AJ.1975.Anote on the diurnal,latitudinal and seasonal variation of the surface reflection coefficient.Journal of Applied Meteorology 14:1603-1608.
    [6]Askew AJ.1987.Climate change and water resources.In:Solomom S,Beran M,Hogg W.(Eds),The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources.Oxfordshire:IAHS Press,V0l.168,421-430.
    [7]Blyth EM,Harding RJ and Essery R.1999.A coupled dual source GCM SVAT.Hydrology and Earth System Sciences 3(1):71-84.
    [8]Bobb AG,Singh VP,Jeffries DS,et al.1997.Application of a water-shed runoff model to north-east pond river,Newfoundland,to study water balance and hydrological characteristics owing to at-mospheric change.Hydrological Processes 11(12):1573-1593.
    [9]Boorman DB and Sefton CEM.1997.Recognizing the uncertainty in the quantification of the effects of climate change on hydrological response.Climatic Change 35:415-434.
    [10]Bouchet RJ.1963.Evapotranspiration reele et potentielle,signification climatique.In Symposium on Surface Waters.IAHS Publication No.62.IAHS Press:Wallingford;134-142.
    [11]Brooks FA.1960.An introduction to physical microclimatology.University of California,Davis,Calf.USA.
    [12]Brutsaert W and Stricker H.1979.An advection-aridity approach to estimate actual regional evapotranspiration.Water Resources Research 15(2):443-449.
    [13]Brutsaert W.1982.Evaporation into the atmosphere.Theory,History,and Application.D.Reidel Publishing Company,Dordrecht,Holland.
    [14]Burlando P and Rosso R.1991.Extreme storm rainfall and climate change.Atmospheric Research 27:169-189.
    [15]Burlando P,Grossi G,Montanari A and Rosso R.1997.POPSICLE——production of precipitation scenarios for impact assessment of climate change in Europe.EC Framework Ⅲ Project RTD EV5V-CT94-0510,Contractor's Final Report of CIRITA Politecnico di Milano,Milan,Italy.
    [16]Burn DH.1994.Hydrologic effects of climatic change in the west-central Canada.Journal of Hydrology 160:53-70.
    [17]Cohen SJ.1986.Impacts of CO_2-induced climatic change on water resources in the Great Lakes Basin.Climatic Change 8:135-153.
    [18]Davies JA and Allen CD.1973.Equilibrium,potential and actual evaporation from cropped surfaces in southern Ontario.Journal of Applied Meteorology 12:649-657.
    [19]Dickinson RE.1989.A regional climate model for the western United States.Climate Change 15(1):383-422.
    [20]Dickinson RE.1995.Land-atmosphere interaction,U.S.national report to International Union of Geodesy and Geophysics1991-1994.Reviews of Geophysics (Supplement):917-922.
    [21]Ding YH and Geng QZ.1998.Atmosphere,ocean,human activity and global warming.Meteorology Monthly 24(3):12-17.
    [22]Dvorak V,Hladny J and Kasparek L.1997.Climate change hydrology and water resources impact and adaptation for selected river basins in the Czech Republic.Climatic Change 36:3-106.
    [23]Edwards DC and Mckee TB.1997.Characteristics of 20~(th) Century Drought in the United States at Multiple Scale.Atmospheric Science Paper No.634,May,1-30.
    [24]Entekhabi D,Asrar GR,Betts AK,Beven KJ,Bras LR,Duffy CJ,Dunne T,Koster RD,Lettenmaier DP,McLaughlin DB,Shuttleworth WJ,van Genuchten MT,Wei MY and Wood EF.1999.An agenda for land surface hydrology research and a call for the second international hydrologic decade.Bulletin of American Meteorological Society 80:2043-2058.
    [25]Felix NK.1997.Global drought watch from space.Bulletin of American Meteorological Society 78:621-636.
    [26]Gates WL.1985.The use of general circulation models in the analysis of the ecosystem impacts of climatic change.Climate Change 7(1):267-284.
    [27]Gleick PH.1987.Global climatic changes and regional hydrology:impacts and responses.In:Solomon S.I.,Beran M.,Hogg W.(Eds),The Influence of Climate Change and Climate Variability on the Hydrologic Regimes and Water Resources,IAHS Publication,Vol.168.IAHS:Wallingford;389-402.
    [28]Gleick PH.1989.Climate change,hydrology and water resources.Reviews of Geophysics 27(3):329-344.
    [29]Gleik PH.1986.Methods for evaluating the regional hydrologic impacts of global climatic change.Journal of Hydrology 88:97-116.
    [30]Gleik PH.1987a.The development and testing of a water balance model for climate impacts assessment:modeling the Sacramento basin.Water Resource Research 23(6):1049-1061.
    [31]Gleik PH.1987b.Regional hydrologic consequences of increases in atmospheric CO_2 and other trace gases.Climatic Change 10:137-161.
    [32]Granger RJ and Gray DM.1989.Evaporation from natural nonsaturated surfaces.Journal of Hydrology 111:21-29.
    [33]Granger RJ.1989a.An examination of the concept of potential evaporation.Journal of Hydrology 111:9-19.
    [34]Granger RJ.1989b.A complementary relationship approach for evaporation from nonsaturated surfaces.Journal of Hydrology 111:31-38.
    [35]Gray DM.1970.(Ed.-in-chief),Handbook on the principles of hydrology secretariat.Canadian National Committee for the International Hydrological Decade(IHD),Canada.
    [36]Guo SL.2002.A macro-scale and semi-distributed monthly water bal-ance model to predict climate change impacts in China.Journal of Hydrology 268:1-15.
    [37]Guttman NB.1998.Comparing the Palmer drought index and the standardized precipitation index.Journal of the American Water Resources Association 34(1):113-121.
    [38]Guttman NB.1999.Accepting the standardized precipitation index: a calculation algorithm.Journal of the American Water Resources Association 35(2):311-322.
    [39]Hao ZC,Su FG and Xie ZH.2002.Macroscale hydrological modeling over the Huaihe River basin.Acta Meteorologica Sinica 16(3):363-373.
    [40]Hayes MJ,Svoboda MD,Wilhite DA and Vanyarkho OV.1999.Monitoring the 1996 drought using the standardized precipitation index.Bulletin of the American Meteorological Society 80:429-438.
    [41]Heinrich H.1988.Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130000 years.Quaternary Research 29:142-152.
    [42]Hirsch R,Helsel D,Cohn T and Gilroy E.1993.Statistical analysis of hydrologic data.In: Maidment,D.R.(Eds.),Handbook of Hydrology.McGraw-Hill,New York,pp.17.1-17.55.
    [43]Hisdal H,Stahl K,Tallaksen LM,et al.2001.Have streamflow droughts in Europe become more severe or frequent? InternationalJournal of Climatology 21:317-333.
    [44]Hobbins MT,Ramirez JA and Brown TC.1999.The complementary relationship in regional evapotranspiration: the CRAE model and the advection-aridity approach.In Proceedings of the Nineteenth Annual AGU Hydrology Days; 199-212.
    [45]Hobbins MT,Ramirez JA and Brown TC.2001b.The complementary relationship in estimation of regional evapotranspiration: an enhanced advection-aridity model.Water Resources Research 37(5):1389-1403.
    [46]Hobbins MT,Ramirez JA and Brown TC.2004: Trends in pan evaporation and actual evapotranspiration across the conterminous US: Paradoxical or complementary? Geophysical Research Letters 31(13),Article no: L13503.
    [47]Hobbins MT, Ramirez JA, Brown TC and Claessens LHJM.2001a.The complementary relationship in estimation of regional evapotranspiration: the complementary relationship areal evapotranspiration and advection-aridity models.Water Resources Research 37(5): 1367-1387.
    [48]Houghton JT,Ding Y,Griggs DJ,et al.2001.Climate Change 2001—The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).London: Cambridge University Press,944.
    [49]Huo ZL,Feng SY,Kang SZ,et al.2008.Effect of climate changes and water-related human activities on annual stream flows of the Shiyang river basin in arid north-west China.Hydrological Processes 22:3155-3167.
    [50]Husak GJ,Michaelsen J and Funk C.2007.Use of gamma distribution to represent monthly rainfall in Africa for drought monitoring applications.International Journal of Climatology 27:935-944.
    [51]IPCC.1995a.Climate Change 1995.In: Houghton JT,Meiro Filho LQ Callander BA,Harris N,Kattenberg A,Maskell K.(Eds),The Science of Climate Change Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change,Cambridge University Press: 572 pp.
    [52]IPCC.1995b.Climate Change 1995.In: Watson R.T.,Zinyowera M.C.,Moss R.H.(Eds),Impacts,Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses Contribution of Working Group Ⅱ to the Second Assessment Report of the Intergovernmental Panel on Climate Change,Cambridge University Press: 878 pp.
    [53]IPCC.1995c.Climate Change 1995.In: Bruce J.,Lee H.,Haites E.(Eds),Economic and Social Dimensions of Climate Change Contribution of Working Group Ⅲ to the Second Assessment Report of the Intergovernmental Panel on Climate Change,Cambridge University Press: 448 pp.
    [54]IPCC.1997.The regional impacts of climate change: an assessment of vulnerability,In: Watson R.T.,Zinyowera M.C.,Moss R.H.,Dokken D.J.(Eds),A special report of IPCC Working Group Ⅱ.
    [55]Jiang T,Zhang Q and Blender R.2005.Yangtze Delta floods and droughts of the last millennium: Abrupt changes and long term memory.Theoretical and Applied Climatology 82:131—141.
    [56]Jonathan IM,Graciana P and Kennet MM.2004.Evaluation of the impact of climate change on hydrology and water resources in Swaziland: Part Ⅱ.Physics and Chemistry of the Earth 29:1193-1202.
    [57]Kamga FM.2001.Impact of greenhouses gas induced climate change on the runoff of the Upper Benue River (Camernoon).Journal of Hydrology 252:145-156.
    [58]Kangas RS and Brown TJ.2007.Characteristics of US drought and pluvials from a high-resolution spatial dataset.International Journal of Climatology 27:1303-1325.
    [59]Katul GG and Parlange MB.1992.A Penman-Brutsaert model for wet surface evaporation.Water Resources Research 28(1):121-126.
    [60]Kendall MG and Stuart A.1961.The advanced theory of statistics 2.London: Charles Griffen,pp 483-484.
    [61]Kendall MG.1975.Rank Correlation Methods.London: Griffin.
    [62]Kim CP and Entekhabi D.1997.Examination of two methods for estimating regional evaporation using a coupled mixed layer and land surface model.Water Resources Research 33(9):2109-2116.
    [63]Koetch JJ and Byram GM.1968.A drought index for forest fire control.In: USDA Forest Service Research Paper SE-38.Asheville, NC: Southeastern Forest Experiment Station,33.
    [64]Koster RD and Suarez MJ.1994.The components of a SVAT scheme and their effects on a GCMs hydrological cycle.Advances in Water Resources 17(1—2):61-78.
    [65]Kotoka K.1986.Estimation of river basin evapotranspiration.ERCP No.8,Environmental Research Center,The University of Tsukuba,Japan.
    [66]Kovacs G.1987.Estimation of average areal evapotranspiration-proposal to modify Morton's model based on the complementary character of actual and potential evapotranspiration.Journal of Hydrology 95:227-240.
    [67]Krasovskaia I and Gottschalk L.1993.Frequency of extremes and its relation to climate fluctuations.Nordic Hydrology 24(1): 1-12.
    [68]Kundzewicz ZW and Somlyody L.1997.Climatic Change Impact on Water Resources in a Systems Perspective? Water Resources Management 11:407-435.
    [69]Lab(?)dzki L.2007.Estimation of local drought frequency in central Poland using the Standardized Precipitation Index SPI.Irrigation and Drainage 56:67-77.
    [70]LeDrew EF.1979.A diagnostic examination of a complementary relationship between actual and potential evapotranspiration.Journal of Applied Meteorology 18:495-501.
    [71]Lemeur R,Zhang L.1990.Evaluation of three evapotranspiration models in terms of their applicability for an arid region.Journal of Hydrology 114:395-411.
    [72]Lettenmaier DP,Gan TY.1990.Hydrologic sensitivities of the Sacra-mento-San Joaquin river basin,California,to global warming.Water Resources Research 26(1):69-86
    [73]Leung LR,Ghan SJ,Zhao ZC,et al.1999.Intercomparison of regional climate simulations of the 1991 summer monsoon in eastern Asia.Journal of Geophysical Research 104(D6):6425-6454.
    [74]Liu J,Kotoda K.1998.Estimation of regional evapotranspiration from arid and semi-arid surfaces.Journal of the American Water Resources Association 34(1):27-40.
    [75]Liu SM,Sun R,Sun ZP and Li XW.et al.2006.Evaluation of three complementary relationship approaches for evapotranspiration over the Yellow River basin.Hydrological Processes 20:2347-2361.
    [76]Ma ZG and Fu CB.2003.Interannual characteristics of the surface hydrological variables over the arid and semi-arid areas of northern china.Globe and Planetary Change 37:189-200.
    [77]Ma ZG and Fu CB.2006.Some evidence of drying trend over northern china from 1951 to 2004.Chinese science Bulletin 51(23):2913-2926.
    [78]Ma ZG,Fu CB,and Dan L.2005.Decadal variations of arid and semi-arid boundary in China.Chinese Journal of geophysics 48(3):574-581.
    [79]Manabe S and Stouffer RJ.1980.Sensitivity of a global climate model to an increasing the CO2 concentration in the atmosphere.Journal of Atmospheric Science 37:99-118.
    [80]Manabe S and Wetherald RT.1987.Large scale changes of soil wetness induced by an increase in atmospheric carbon dioxide.Journal of Atmospheric Science 44:1211-1235.
    [81]Mann HB.1945.Nonparametric tests against trend.Econometrica 13:245-259.
    [82]Mansell MG 1997.The effects of climate change on rainfall trends and flood risk in the west of Scotland.Nordic Hydrology 28:37-50.
    [83]Mawdsley JA and Ali MF.1985.Estimating nonpotential evapotranspiration by means of the equilibrium evaporation concept.Water Resources Research 21:383-391.
    [84]McCabe GJ,Wolock DM,Hey LE,Ayers MA.1990.Effects of climate change on the Thornthwaite Moisture Index.JAWRA Journal of the American Water Resources Association 26(4):633-643.
    [85]McKee TB,Doesken NJ and Kleist J.1993.The Relationship of Drought Frequency and Duration to Time Scales.Proceedings of the Eighth Conference on Applied Climatology.American Meteorological Society: Boston; 179-184.
    [86]Meatus LO,Rosenzweig C and Goldberg R.1997.Mean and variance change in climate scenarios:methods,agricultural applications,and measures of uncertainty.Climatic Change 35:367-396.
    [87]Michiaki S.2001.Complementary relationship with a convective boundary.Water Resources Research 37(2):353-365.
    [88]Mimikou M and Kouvopoulos YS.1991.Regional climate change impacts:1.Impacts on water resources.Hydrological Sciences Journal 36:247-258.
    [89]Mimikou MA,Baltas E,Varanou E,et al.2000.Regional impacts of climate change on water resources quantity and quality indicators.Journal of Hydrology 234:95-109.
    [90]Morton FI.1965.Potential evaporation and river basin evaporation.Journal of Hydraulics 91:67-97.
    [91]Morton FI.1975.Estimating evaporation and transpiration from climatological observations.Journal of Applied Meteorology 14(4):488-497.
    [92]Morton FI.1983.Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology.Journal of Hydrology 66:1-76.
    [93]Najjar RG.1999.The water balance of the Susquehanna River Basin and its response to climate change.Journal of Hydrology 219:7-19.
    [94]Nash LL and Gleick PH.1991.Sensitivity of streamflow in the Colorado Basin to climate change.Journal of Hydrology 125(1):221-241.
    [95]Nemec J and Schaake JC.1982.Sensitivity of water resource system to climate variations.Hydrological Sciences Journal 27:327-343.
    [96]Niklas SC,Andrew WW,Nathalie V,et al.2004.The effects of climate change on the hydrology and water resources of the Colorado River basin.Climatic Change 62:337-363
    [97]Ozdogan M and Salvucci GD.2004.Irrigation-induced changes in potential evapotranspiration in southeastern Turkey:Test and application of Bouchet's complementary hypothesis.Water Resources Research 40,W04301,doi:10.1029/2003WR002822.
    [98]Palmer WC.1965.Meteorological drought U.S..Weather Bureau Research Paper,45-58.
    [99]Panagoulia K.1992.Impacts of GISS-modeled climate changes on catchment hydrology.Hydrological Sciences Journal 37(2):141-163.
    [100]Parlange MB and Katul GG.1992.An advection-aridity evaporation model.Water Resources Research 28(1): 127-132.
    [101]Parlange MB and.Katul GG.1992.Estimation of the diurnal variation of potential evaporation from a wet bare soil surface.Journal of Hydrology 132:71-89.
    [102]Paulo AA and Pereira LS.2006.Drought concepts and characterization.Comparing drought indices applied at local and regional scales.Water International 31(1):37-49.
    [103]Penman HL.1948.Natural evaporation from open water,bare soil and grass.Proc.Roy.Soc,London,Ser.A,193:120-146.
    [104]Pereira LS,Cordery I and Iacovides I.2002.Coping with water scarcity.UNESCO IHP VI,Technical Documents in Hydrology No.58,UNESCO: Paris; 269 pp.
    [105]Perry JS.1993.Understanding our own planet: An overview of major international scientific activities.ICSU Secretariat.
    [106]Priestly CHB and Taylor RJ.1972.On the assessment of surface heat flux and evaporation using large-scale parameters.Monthly Weather.Review 100:81-92.
    [107]Quails RJ and Gultekin H.1997: Influence of components of the advection-aridity approach on evapotranspiration estimation.Journal of Hydrology 199:3-12.
    [108]Richard R and Heim JR.2002.A review of twentieth-century drought index used in the United States.Bulletin of American Meteorological Society 83:1149-1165.
    [109]Rosenberg NJ,Epstein DJ,Wang D,et al.1999.Plausible impacts of global warming on the hydrology of the Ogallala aquifer region.Climatic Change 42(4): 667-692.
    [110]Salas J.1993.Analysis and modeling of hydrologic time series.In: Maidment,D.R.(Eds.),Handbook of Hydrology.McGraw-Hill,New York,pp.19.1-19.72.
    [111]Schwarz HE.1977.Climate change and water supply: how sensitive is the Northeast? In: Reveile RR,Waggonr PE (eds).Climate change and water supply.Washington DC: National Academy of Sciences.
    [112]Seidel K,Ehrler C and Martinec J.1998.Effects of climate change on water resources and runoff in an Alpine basin.Hydrological Processes 12:1659-1669.
    [113]Serra C,Burgueno A,Martinez MD,et al.2006.Trends in dry spells across Catalonia (NE Spain) during the second half of the 20th century.Theoretical and Applied Climatology 85:165-183.
    [114]Silva VPR.2005.On climate variability in Northeast of Brazil.Journal of Arid Environments 58 (4):575-596. 冰川冻土,2001,23(3):276-282.
    [172]李春晖,杨志峰.气候变化对黄河流域水资源系统影响研究进展[J].地学前缘(中国地质大学,北京),2002,9(1):34.
    [173]李庆祥,刘小宁,李小泉.近半世纪华北干旱化趋势研究[J].自然灾害学报,2002,11(3):50-56.
    [174]李桃英.互补相关陆面蒸散发模型在陕西关中平原[J].水文,2001,21(1):40-41.
    [175]李耀辉,张书余.我国沙尘暴特征及其与干旱关系的研究进展[J].地球科学进展,2007,22(11):1169-1176.
    [176]李泽椿,李庆祥.中国西北地区近30年降水变化趋势分析[A].见:刘东生主编.西北地区自然环境演变及其发展趋势[C].北京:科学出版社,2004,349-355.
    [177]刘昌明,郑红星.黄河流域水循环要素变化趋势分析[J].自然资源学报,2003,18(2):129-135.
    [178]刘春蓁,杨建青.我国西南地区年径流变异及变化趋势研究[J].气候与环境研究,2002,7(4):415-422.
    [179]刘春蓁.气候变化对我国水文水资源的可能影响[J].水科学进展,1997,8(3):220-225.
    [180]刘绍民,孙睿,孙中平,等.基于互补相关原理的区域蒸散量估算模型比较[J].地理学报,2004,59(3):331-340.
    [181]刘绍民.用Priestley-Taylor模式计算棉田实际蒸散量的研究[J].应用气象学报,1998,9(1):88-93.
    [182]龙虎,毛利强,车振学,等.气候变化对黄河水资源的影响[J].水资源与水工程学报,2006,17(4):74-77.
    [183]马腾,王焰新,郝振纯.神头泉流量衰减原因分析及趋势预测[J].中国岩溶,2001,20(4):261-267.
    [184]马耀明.非均匀陆面上区域蒸(散)发研究概况[J].高原气象,1997,16(4):446-452.
    [185]马柱国.黄河径流量的历史演变规律及成因[J].地球物理学报,2005,48(6):1270-1275
    [186]马柱国.我国北方干湿演变规律及其与区域增暖的可能联系[J].地球物理学报,2005,48(5):1011-1018.
    [187]满苏尔·沙比提,楚新正.近40年来塔里木河流域气候及径流变化特征研究[J].地域研究与开发,2007,26(4):97-101.
    [188]秦大河.中国西部环境演变评估综合报告[M].北京:科学出版社,2002.
    [189]任国玉,郭军,徐铭志,等.近50年中国地面气候变化基本特征[J].气象学报,2005,63(6):942-956.
    [190]沈卫明,姚德良.阿克苏地区陆面蒸发的数值研究[J].地理学报,1993,48(5):457-467.
    [191]盛平,洪嘉琏.上海地区陆面蒸散发估算的研究[J].上海交通大学学报(农业科学版),2004,22(1):54-58.
    [192]施雅风,沈永平,胡汝骥.西北气候由暖干向暖湿转型的信号影响和前景初步探讨[J].冰川冻土,2002,24(3):219-226.
    [193]施雅风,沈永平,李栋梁,等.中国西北气候由暖干向暖湿转型的特征和趋势探讨[J].第四纪研究,2003,23(2):152-164.
    [194]施雅风,张祥松.气候变化对西北干旱区地表水资源的影响和未来趋势[J].中国科学(B辑),1995,25(9):968-977.
    [195]施雅风.2050年前气候变暖冰川萎缩对水资源影响情景预估[J].冰川冻土,2001,23(4):333-341.
    [196]石玉波,刘克岩.互补相关蒸散发模型及其应用[J].水文,1988,2:8-13.
    [197]隋洪智,田国良,李付琴.农田蒸散双层模型及其在干旱遥感监测中的应用[J].遥感学报,1997,1(3):220-224.
    [198]孙岚,吴国雄,孙菽芬.陆面过程对气候影响的数值模拟:SSiB与IAP/LASG L9R15 AGCM耦合及其模式性能[J].气象学报,2000,58(2):179-193.
    [199]孙成权,林海,曲建升.国际全球变化研究核心计划与集成研究[M].北京:气象出版社,2003.
    [200]孙治安,施俊荣,翁笃鸣.中国太阳总辐射气候计算方法的进一步研究[J].南京气象学院学报,1992,15(2):21-29.
    [201]汤奇成,曲耀光,周聿超.中国干旱区水文及水资源[M].北京:科学出版社,1992.
    [202]王建,沈永平,鲁安新,等.气候变化对中国西北地区山区融雪径流的影响[J]. 冰川冻土,2001,23(1):28-33.
    [203]王国庆,王云璋,康玲玲.黄河上中游径流对气候变化的敏感性分析[J].应用气象学报,2002,13(1):117-121.
    [204]王国庆,王云璋,尚长昆.气候变化对黄河水资源的影响[J].人民黄河,2000,22(9):40-41.
    [205]王国庆,王云璋,史忠海等.黄河流域水资源未来变化趋势分析[J].地理科学,2001,21(5):396-400.
    [206]王建平,傅抱璞.土壤-大气系统中蒸发过程的数值模拟[J].气象学报,1992,50(3):327-334.
    [207]王鹏祥,杨金虎,张强,等.近半个世纪来中国西北地面气候变化基本特征[J].地球科学进展,2007,22(6):649-656.
    [208]王守荣,黄荣辉,丁一汇,等.水文模式DHSVM与区域气候模式RegCM2/China嵌套模拟试验[J].气象学报,2002,60(4):421-427.
    [209]王守荣,郑水红,程磊。气候变化对西北水循环和水资源影响的研究[J].气候与环境研究,2003,8(1):43-51.
    [210]王延禄.我国建立,引用和验证气象干旱指标综述[J].干旱区地理,1990,13(3):80-86.
    [211]沃又谷.一种计算流域蒸散发的模型[J].水文,1988,6:35-39.
    [212]吴季松,郭孟卓.优化配置水资源,促进西北地区社会经济可持续发展[J].中国水利,2001,9:22-25.
    [213]武夏宁,胡铁松,王修贵.区域蒸散发估算测定方法综述[J].农业工程学报,2006,22(10):257-262.
    [214]夏军,谈戈.全球变化与水文科学新的进展与挑战[J].资源科学,2002,24(3):1-7.
    [215]夏军,左其亭.国际水文科学研究的新进展[J].地球科学进展,2006,21(3):256-261.
    [216]夏军.华北地区水循环与水资源安全:问题与挑战[J].地理科学进展,2002,21(6):517-526.
    [217]徐长春,陈亚宁,李卫红等.塔里木河流域近50年气候变化及其水文过程响应[J].科学通报,2006,51(增刊Ⅰ):21-30.
    [218]徐兴奎.互补相关理论在卫星遥感领域的应用研究[J].遥感学报,1999,3(1):54-59.
    [219]许吟隆,黄晓莹,张勇,等.中国21世纪气候变化情景的统计分析[J],气候变化研究进展,2005,1(1):80-83.
    [220]叶柏生,丁永建,杨大庆,等.近50 a西北地区年径流变化反映的区域气候差异[J].冰川冻土,2006,28(3):307-311.
    [221]叶柏生,赖祖铭,施雅风.气候变化对天山伊犁河上游河川径流的影响[J].冰川冻土,1996,18(1):29-36.
    [222]袁飞,谢正辉,任立良,等.气候变化对海河流域水文特性的影响[J].水利学报,2005,36(3):274-279.
    [223]袁文平,周广胜.标准化降水指标与Z指数在我国应用的对比分析[J].植物生态学报2004,28(4):523-529.
    [224]张敏,张荣霞,王新燕.聊城市地面温度与气温的相关分析[J].山东气象,2005,25(4):19-20.
    [225]张强,韩永翔,宋连春.全球气候变化及其影响因素研究进展综述[J].地球科学进展,2002,24(4):335-343.
    [226]张济世,康尔泗,姚敬忠,等.气候变化对洮河流域水资源的影响[J].中国沙漠,2003,23(3):263-267.
    [227]张建云,王国庆,等.气候变化对水文水资源影响研究[M].科学出版社,北京,2007.
    [228]张兰生,方修琦,任国玉.全球变化[M].北京:高等教育出版社,2001.1-7.
    [229]张庆阳,胡英,田静.IPCC关于气候变化影响的最新评估综述[J].环境保护,2001,5:39-41.
    [230]张庆云,陈烈庭.近30年来中国气候的干旱变化[J].大气科学,1991,15(5):72-81.
    [231]张世法.气候变化对海河流域水资源影响的研究与展望[J].海河水利,1995,(10):10-12.
    [232]张志明.大面积地表湿润程度的间接表示方法和陆面蒸发量计算[J].气象学报,1991,49(2):253-256.
    [233]张志明.利用气象资料计算陆面实际蒸发量[J].气象学报,1988,46(4):477-480.
    [234]中华人民共和国国家统计局,中华人民共和国民政部.中国灾情报告[R].北京:中国统计出版社,1995.
    [235]朱利,张万昌.基于径流模拟的汉江上游区水资源对气候变化响应的研究[J].资源科学,2005,27(2):16-22.
    [236]“自然环境演变”课题组.西北地区自然环境演变及其发展趋势[J].中国水利,2003,A刊:33-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700