用户名: 密码: 验证码:
重钢AFT702和CDQ203钢种经济洁净化工艺基础及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着中国钢产量的迅猛增长和宏观经济环境的变化,钢铁行业的竞争更加激烈,经济洁净钢生产技术对当今钢铁行业提高产品质量和降低生产成本具有重要意义,一直以来受到广泛关注。然而因为精炼设备功能未得到充分发挥,各精炼手段优化组合不尽合理,已成为制约现代化流程的钢铁企业建设经济洁净钢生产平台的瓶颈。本文选取重钢生产的AFT702和CDQ203为代表性钢种,经过对该钢种转炉-精炼条件下钢水洁净度进行调查及分析,因钢水中高熔点夹杂数量较多而时常出现水口结瘤的问题,极易引起浇铸中断,在轧制时还会导致钢材表面损伤,不能满足连铸-连轧紧凑式布局和热送热装要求。因此众多钢厂不得不采用钙处理对夹杂物进行改性,虽然从一定程度减轻了水口结瘤问题,但在生产中由于钙收得率非常低。因此生产成本也相应增加。对于年产上千万吨的钢铁企业而言,减少或取消钙处理能够极大地降低生产运营成本。
     本文以确定目标钢种最经济的精炼工艺制度并确保良好的洁净度为目的,不因夹杂导致水口结瘤制约连浇炉数的提高,更不能因夹杂危害钢材力学性能。所以如何合理地对钢中夹杂物进行变性处理和处理的方式是研究内容的关键所在。首先通过调查目标钢种的精炼工艺现状,明确合理的洁净度控制水平。然后对钢中典型夹杂物处于低熔点区时钢液和精炼渣成分控制进行理论计算,在此基础上,试验研究不同精炼渣以及复合包芯线处理对碳结钢和低合金钢洁净度的影响,得到了适应不同钢种的精炼渣组成和复合包芯线控制范围。最终结合重钢的生产实际进行了工业应用。研究的主要结果为:
     利用热力学软件FactSage计算发现,对于钢种AFT702,要将弱脱氧钢中MnO-SiO2-Al2O3夹杂物成分控制在熔点不超过1520℃的液相区域内,则钢液中[Al]控制在0.0010%~0.0015%,[O]含量控制在10~25ppm。要将强脱氧钢中CaO-SiO2-Al2O3夹杂物成分控制在液相区域内,则钢液中[Al]控制在0.013%以下,[O]含量控制在2ppm。当夹杂物熔点低于1520℃,可以避免浇铸过程堵水口而且热轧时能够稍许变形,因此能够大大提高钢材的塑性和韧性。对于钢种CDQ203,要将CaO-MgO-Al2O3夹杂物成分控制在MgO<10%、Al2O3:45%~60%、CaO:40%~55%液相区域内,当平衡[Al]含量为0.03%时,钢液的a[Ca]为1~10ppm,a[Mg]为0.01~0.3ppm;当平衡[Al]含量为0.06%时,钢液的a[Ca]为1~30ppm,a[Mg]为0.05~0.9ppm。为使CaO-Al2O3-CaS系夹杂物能够控制在低于1600℃液态区域内,当钢液中的a[Ca]分别为5,15,30ppm时,平衡[Al]含量应分别控制在0.0010~0.050%,0.0050~0.250%和0.010~0.50%。
     理论分析基础上,在实验室通过16炉渣系A(CaO/Al2O3:1.0~1.8,SiO2:11~20%)和6炉渣系B(CaO/SiO2:1.0~1.2,Al2O3:25~35%)与AFT702碳结钢液的高温平衡实验,研究了不同炉渣组成对钢液洁净度的影响关系。实验结果表明炉渣A比炉渣B有更强的脱氧、脱硫的作用。与炉渣A反应钢中的钙镁铝硅酸盐夹杂物总体尺寸小于与炉渣B反应钢中的钙锰铝硅酸盐夹杂物。为生成更多小于3μm的球状钙镁铝硅酸盐类夹杂,降低钢中T[O]含量,应选用炉渣A的组成为CaO/Al2O3比在1.2~1.8之间,渣中SiO2含量在11%或20%附近。
     其次,通过6炉渣系C (碱度为9,CaO/Al2O3:1.0,SiO2:5%)和6炉渣系D(碱度为6,CaO/Al2O3:1.5,SiO2:9%)与CDQ203合金钢液([Al]:0.020%~0.070%)的高温平衡实验,研究了炉渣对钢液成分和夹杂物组成的影响关系。实验结果表明两种渣的脱硫能力接近,钢中平均硫含量均为0.002%,但是炉渣D的脱氧能力略强于炉渣C。与炉渣D平衡的钢中低于5μm夹杂物数量多于炉渣C,夹杂物更细小。而且在炉渣D条件下更有利于生成钙镁铝硅酸盐夹杂物。为生成更多小于5μm的球状液态CaO-MgO-Al2O3-SiO2类夹杂,保证钢中较低T[O]含量,应选用炉渣D的组成为CaO/Al2O3比在1.5左右,渣中SiO2含量在9%附近。
     为了分析钙铝酸盐复合包芯线处理对钢液洁净度的影响,还研究了初始钙铝酸盐含量为90%、80%、70%(利用率为10%、20%)的复合包芯线与低合金钢液反应60min时钢中夹杂物的变化过程;得出当芯粉中钙铝酸盐含量为80%~90%(利用率为10%)或含量为90%(利用率为20%)时,则钢中典型夹杂物为低熔点球状CaO-MnO-SiO2-Al2O3,当钙铝酸盐含量为70%(利用率为10%)或含量为70%~80%(利用率为20%)时,则钢中更容易生成CaO-MgO-Al2O3或CaO-Al2O3,Al2O3逐渐减少。
     在上述研究基础上,在重钢一炼钢厂进行了AFT702、CDQ203的生产试验,工业试验主要对转炉出钢脱氧、渣洗和精炼渣工艺进行了优化,有效降低了钢中氧化夹杂和有害元素含量,达到了“出钢复合脱氧+渣洗→CAS/LF→CCM”工艺路线下取消钙处理实现钢水多炉连浇的目的。论文研究结果具有重要的现实意义,不仅实现了碳结钢和低合金钢的经济洁净化生产,还对其它以品种钢为主的钢铁企业具有示范作用。
With the rapid growth of steel production in China and the changes ofmacroeconomic environment, competition has become more intense in the steel industry.For today's steel industry, economic cleaning technology of steel production hasimportant significance to improve product quality and reduce production costs, and ithas been widely concern. However, refining equipment functions are not fully takeninto consideration, and that the combination of refining methods is not quite optimized,these problems have become the bottleneck restricting the modern steel enterprises tobuild the economiccleaning steel production platforms. AFT702and CDQ203producedby Chongqing steel have been selected for research subjects in this paper.Thecleanliness of these steels had been investigated and analyzed under existing converterand refining process conditions, and the results indicate that: due to large numbers ofhigh-melting-point Al2O3inclusions existed in molten steel, which frequently clog thenozzle during casting and easily interrupt production, such inclusions could cause thesteel surface damage in cold-rolling; thus, the steel cannot meet the hot-chargingrequirementsand the compact layout needed for continuous casting and rolling. Manysteel mills had to adopt calcium treatment (Ca treatment) in order to transform thealumina inclusions into low-melting-point calcium aluminates,to a certain extent,calcium treatment can reduce or avoid clogging. However, because of the calcium yieldis very low during processing,its use increases the cost of production at the same time.The reduction or elimination of the calcium treatment can greatly reduce the operatingcosts of production for steel enterprises, which have an annual output of thousands oftons.
     In this paper, the aim is to work out the most economical system for the refiningprocess and ensure good cleanliness, not happen nozzle clogging or blockage caused bythe inclusions and improved the heat numbers of continuous casting without calciumtreatment, more can not hazard mechanical properties of steel. So the key researchcontent of this paper is how to achieve the spheroidisation of inclusions in steel with thebest denaturation treatment way.Firstly, according to the investigation of the refiningprocess of target steel in existing state, the reasonable control level of steel cleanlinessneed be confirmed. Then, the controlrange of steel and refining slag composition hadbeen calculated by FactSage when the inclusions located in low melting areain steel, On this basis, the effect on the cleanliness of steel grade treated with refining slag orcomposite cored wire had been researched in experimental study, so that we could getthe suitable composition range of refining slag and composite cored wire for adaptingdifferent kinds of steel. Finally, combination of actual production, the industrialapplication had been carried out in Chongqing steel. The main conclusions of this studyare as follows:
     According to the thermodynamic calculation results by FactSage software, forAFT702, to control the compositions of MnO-SiO2-Al2O3inclusions in soft killed steelinto1520℃liquid region,[Al] content in the liquid steel should be controlled to0.0010%~0.0015%,[O] content is controlled in the range of10~25ppm. To control thecompositions of CaO-SiO2-Al2O3inclusions in strong killed steel into1520℃liquidregion,[Al] content in the liquid steel should be controlled at0.013%or less,[O]content is controlled about2ppm. When the melting points of inclusions are below1520℃, it can avoid clogging during casting process and can be slightly deformed inthe hot rolling process, thereby greatly improving the ductility and toughness of steelproduct. For CDQ203, to control the compositions of CaO-MgO-Al2O3inclusions in theliquid phase region of MgO <10%, Al2O3:45%~60%, CaO:40%~55%, when thebalance [Al] content is0.03%, a[Ca]in the liquid steel is1~10ppm, a[Mg]is0.01~0.3ppm;when the balance [Al] content is0.06%, a[Ca]in the liquid steel is1~30ppm, a[Mg]is0.05~0.9ppm. For the CaO-Al2O3-CaS inclusions can be controlled in the liquid regionbelow1600℃, when a[Ca]in the liquid steel were5ppm,15ppm and30ppm separately,the balance [Al] content should be controlled in the range of0.0010~0.050%,0.0050~0.250%and0.010~0.50%.
     On the basis of theoretical analysis, to get the relationship between the cleanlinessof liquid steel and slag compositions in this research, twenty two temperatureequilibrium experiments have been carried out on the molten steel of AFT702and thedifferent slag systems in the laboratory, in which include16heats experiments with slagA (CaO/Al2O3:1.0~1.8, SiO2:11~20%mass) and6heats experiments with slag B(CaO/SiO2:1.0~1.2, Al2O3:25~35%mass). Experimental results show that: comparedwith slag B, the slag A has stronger deoxidation and desulfurization capacity. The sizesof CaO-MgO-SiO2-Al2O3inclusions in the steel reaction with slag A are overall smallerthan the same inclusions in the steel reaction with slag B. To generate more less than3μm spherical CaO-MgO-SiO2-Al2O3inclusions and lower T[O] content in steel, itshould be selected in the composition of slag A: CaO/Al2O3ratio is between1.2to1.8, SiO2content of the slag is around11%or20%.
     Secondly, twelve temperature equilibrium experiments have been carried out onthe molten steel of CDQ203([Al]:0.020%~0.070%) and the different slag systems inthe laboratory, in which include6heats experiments with slag C (CaO/SiO2:9,CaO/Al2O3:1.0, SiO2:5%) and6heats experiments with slag D (CaO/SiO2:6,CaO/Al2O3:1.5,SiO2:9%), so that we can study the interacting relationship betweentop slag and the compositions of liquid steel or inclusions. Experimental results showthat the desulfurization capacity of this two slag is very close, and the average sulfurcontent of the steel is all0.002%, but the deoxidation capacity of slag D is slightlystronger than the slag C. The quantity of lower than5μm inclusions in steel balancewith the slag D is more than slag C, inclusions appear more tiny. Under the slag Dconditions, it is also more conducive to generate CaO-MgO-Al2O3-SiO2systeminclusions. To generate more smaller than5μm spherical liquid CaO-MgO-Al2O3-SiO2inclusions and ensure lower T[O] content in steel, the better components should beselected as the composition of slag D: CaO/Al2O3ratio is about1.5, SiO2content in slagis nearby9%.
     To analyze the effect of cleanliness of liquid steel with calcium aluminatecomposite cored wire treatment, experiments have also been conducted to make it outthe evolution process of inclusions in steel after60min reaction. Initial content ofcalcium aluminate (90%,80%,70%) in the composite core wire reacted with low alloysteel were changed (the powder yield is assumed to10%and20%).It can be concluded:when the content of calcium aluminate in the core powder is80%to90%(the yield is10%) or the content is90%(the yield is20%), inclusions in the steel is the typicallylow-melting spherical CaO-MnO-SiO2-Al2O3, when the calcium aluminate contentreaches to70%(the yield is10%) or the content reaches to70%to80%(the yield is20%), CaO-MgO-Al2O3or CaO-Al2O3is more easily generated in the steel, Al2O3isgradually reduced.
     In summary, Chongqing steel were selected for production test of steel AFT702and CDQ203. In this study, the tapping deoxidization system, slag washing and refiningslag system are optimized primarily so that the number of oxide inclusions and harmfulelements are reduced to a very low level, and the multi-furnace continuous casting ofmolten steel can be achieved without calcium treatment under the “basic oxygenfurnace (BOF)→composite deoxidization and slag washing→composition adjustmentby sealed argon bubbling (CAS)/ladle furnace (LF)→continuous casting (CC)” process.There is an important practical significance to solving this problem: not onlycan it improve the cleanliness of carbon steel and low alloy steel, resulting in economicbenefits, but it also has a demonstrated beneficial effect on other production enterprisesof high-grade steel.
引文
[1]《钢铁材料手册》总编辑委员会编著.钢铁材料手册(第1卷).碳素结构钢[M].北京:中国标准出版社,2003.
    [2]《钢铁材料手册》总编辑委员会编著.钢铁材料手册(第3卷).优质碳素结构钢[M].北京:中国标准出版社,2003.
    [3]贾沛泰,海一峰,宋崧主编.国内外常用金属材料手册[M].南京:江苏科学技术出版社,2001.
    [4]彭其春,李源源,杨成威,等.生产Q235B和SPHC钢洁净度的研究[J].炼钢,2007,23(3):45-49.
    [5]许志鸿,杨宝,李启军,等.Q235钢中氮含量的控制[J].河北冶金.2009,(4):26-27.
    [6]殷瑞钰.洁净钢平台集成技术—现代炼钢技术进步的重要方向[J].钢铁,2009,44(7):1-2.
    [7]《钢铁材料手册》总编辑委员会编著.钢铁材料手册(第2卷).低合金高强度钢[M].北京:中国标准出版社,2001.
    [8]王国栋,刘相华,朱伏先等.新一代钢铁材料的研究开发现状和发展趋势[J].鞍钢技术,2005,4:1-8.
    [9] Weng Yu-Qing.Achievement of “NG Steel” Program on China[A].The Proceedings ofSecond International Conference on Advanced Structural Steels[C],Shanghai,2004.
    [10]徐匡迪.关于洁净钢的若干基本问题[J].金属学报,2009,45(3):257-269.
    [11]小泽幸正.超低硫によゐ材质向上につぃて[J].铁と钢,1977,63:713.
    [12]曲英.炼钢学原理[M].北京:冶金工业出版社,1980.
    [13]王新华主编.钢铁冶金(炼钢学)[M].北京:高等教育出版社,2007.
    [14]崔中圻主编.金属学与热处理[M].机械工业出版社,1997.
    [15]潘秀兰.钢洁净度的评定和控制(一)[J].鞍钢技术,2004,(1):57-61.
    [16]张爱民,袁松涛.纯净钢的开发与生产[J].安徽工业大学学报,2003,20(4):166-169.
    [17]潘秀兰,郭艳玲,王艳红.国内外纯净钢生产技术的新进展[J].鞍钢技术,2003,(5):1-5.
    [18]陈名浩,沈汝美.洁净钢氧化夹杂分析方法评述[J].钢铁,2000,3(4):69-73.
    [19]蒋国昌.纯净钢及二次精炼[M].上海:上海科学技术出版社,1996.
    [20]徐文派主编.转炉炼钢学[M].北京:冶金工业出版社,1988.
    [21]李晶著.LF精炼技术[M].北京:冶金工业出版社,2009.
    [22]张代东主编.机械工程材料应用基础[M].北京:机械工业出版社,2004.
    [23]陈波涛.连铸坯表面夹杂来源及控制分析[J].湘钢科技,2003,(4):12-14.
    [24]马中庭,王福明,魏利娟.钢液连铸工艺水口阻塞的定量描述[J].中国稀土学报,2002:443-447.
    [25]卢盛意.连铸坯质量(第二版)[M].北京:冶金工业出版社.2000.
    [26] Richard J.Fruehan.The Making,Shaping and Treating of Steel[A].11th Edition Steelmakingand Refining Volume[C].Pittsburgh:The AISE Steel Foundation,1998:1-767.
    [27] R.story, J.piccone, Richard J.Fruehan et al. Inclusion Analysis to Predict CastingBehavior[J].Iron and Steel Technology.Sep2004:163-169.
    [28] R.A.Knights, D.E.Humphreys, A.Perkins. Billet caster operation at BSCScunthorpe[J].Ironmaking and Steelmaking,1986,(1):32.
    [29]李代锺.钢中的非金属夹杂物[M].北京:科学出版社,1983.
    [30] Jing-Yuan LI,Wei-Yi ZHANG.Effect of TiN Inclusion on Fracture Toughnessin UltrahighStrength Steel[J].ISIJ International,1989,Vol.29(No.2):158-164.
    [31] J.Lankford.Effect of oxide inclusions on fatigue failure.International Metals Reviews[J],1977,22(9):221.
    [32]孙茂才.金属力学性能[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [33]曾光廷,李静缓,罗学厚.非金属夹杂物与钢的韧性研究[J].材料科学与工程,2000,18(2):87.
    [34]李为谬编译.钢中非金属夹杂物[M].北京:冶金工业出版社,1988.
    [35]赵克文.高品质特殊钢中非金属夹杂物的控制与利用研究[D].北京:北京科技大学,2010.
    [36]李海波.汽车用弹簧钢和齿轮钢中的夹杂物控制研究[D].北京:北京科技大学,2007.
    [37] Y.Sahai,R.I.L.Guthrie.Effective Viscosity Model for Gas Stirred Ladles[J].Met.Trans B.,1982,13B(3):125-127.
    [38]薛正良,李正邦,张家雯.LF钢包精炼过程中的脱氧[J],武汉科技大学学报(自然科学报),2001,24(2):111-114.
    [39] Laihua WANG,Hae-Geon LEE,Peter HAYES.Prediction of the Optimum Bubble Size forInclusion Removal from molten Steel by Flotation[J].ISIJ International,1996,36(1):7-16.
    [40] Laihua WANG,Hae-Geon LEE,Peter HAYES.A New Approach to Molten Steel RefiningUsing Fine Gas Bubbles[J].ISIJ International,1996,36(1):17-24.
    [41] P. E. Anagbo,J. K. Brimacombe.Plume Characteristics and Liquid Circulation in Injectionthrough a Porous Plug[J].Metallurgical Transaction B,1990,21B(8):637-648.
    [42]郑淑国,朱苗勇.钢包内喷嘴与透气砖吹氩去夹杂水模型研究[J].金属学报,2006,42(11):1143-1148.
    [43]张鉴主编.炉外精炼的理论与实践[M].北京:冶金工业出版社,1993.
    [44]长林烈.FetO-(CaO+MgO)-(SiO2+P2O5)系りん酸塩スラグと溶鉄問の酸素分配平衡[J].铁と钢,1988,74(8):1585-1592.
    [45]川上公成.取鍋精錬における清浄鋼製造と最適操業[J].铁と钢,1983,69(2):A33-A36.
    [46] E.T. Turkdogan.Nucleation,drowth,and flotation of oxide inclusions in the liquidsteel[J].JISI,1966,9:914-919.
    [47] H. R.Gaye.The Making,Shaping and Treating of Steel[A].Chapter3of Casting Volume[C].Pittsburgh:The AISE Steel Foundation,2003.
    [48]钟顺思,王昌生主编.轴承钢[M].北京:冶金工业出版社,2002.
    [49] Lifeng Zhang.Clean Steel and Inclusions[A].13th National Steelmaking Conference[C],Kunming,Yunan,P.R.China,Dec.8,2004:138-181.
    [50] Hideaki Suito,Hajime Inoue and Ryo Inoue.Aluminum-Oxygen Equilibrium betweenCaO-Al2O3Melts and Liquid Iron[J].ISIJ International,1991,31(12):1381-1388.
    [51] P.Rocabois, J.Lehmann, C.Gatellier et al.Non metallic inclusions entrapment by slags:alaboratory investigation[A].proceedings of the sixth international conference on cleansteel[C],Balatonfured,Hungary,10-12,June,2002:58-67.
    [52] Filippos PATSIOGIANNIS,Uday B. PAL and Robert S. BOGAN.Laboratory Scale RefiningStudies on Low Carbon Aluminum Killed Steels Using Synthetic Fluxes[J].ISIJInternational,1994,2:140-149.
    [53] Sang-Bog Ahn,Lee Kae-Young,Hyeon-Soo Choi et al.The Effect of Slag Condition on SteelCleanliness in Ultra Low Carbon Steel[A].Proceedings of the Sixth International Conferenceon Clean Steel[C]:77-86.
    [54] Weol D.CHO and Peter FAN.Diffusional Dissolution of Alumina in Various SteelmakingSlags[J].ISIJ International,2004,44(2):229-234.
    [55]汤曙光.ASEA—SKF精炼过程全氧影响因素的探究[J].炼钢,2001,17(5):36-39.
    [56]乐可襄.CaO-SiO2-MgO-Al2O3精炼渣的脱硫性能[J].特殊钢,1998,(3):15-17.
    [57] Haida et al.Development of lime-based powder reagent for injection desulfurization of hotmetal in torpedo car[J].Kawasaki Steel Technical Report,1982,(5):28-36.
    [58]周世祥,华建民.铝渣灰脱硫剂对提高LF炉脱硫效果的影响等[J].北京科技大学学报,1997,(4):338-341.
    [59]成国光,赵沛.钢液深脱硫精炼工艺的研究[J].钢铁,2001,(3):21-25.
    [60]汤曙光.LF/VD精炼炉中Ba合金对洁净度的影响[J].钢铁研究,2001,(3):19-21.
    [61] Kusubiro MUKAI.Application of barium-bearing alloys in steelmaking[J].ISIJ International,1999,39(7):625-636.
    [62]蒋国昌.纯净钢及二次精炼[M].上海:上海科技出版社,1996.
    [63]牛四通,杨德华.LF埋弧渣技术的开发及其应用[J].钢铁,1997,32(3):21-24.
    [64]王展宏.钢包炉(LF)精炼渣的作用及特性分析[J].钢铁研究,1996,(3):11-16.
    [65]刘浏.超低硫钢生产工艺技术[J].特殊钢,2000,21(5):29.
    [66] E.T.Turkdogan.Slags and fluxes for ferrous ladle metallurgy[J].Ironmaking and steelmaking,1985,12(2):64-78.
    [67] H. Ohta,H. Suito.Activities in MnO-SiO2-Al2O3slags and deoxidation equilibria of Mn andSi[J].Metallurgical and Materials Transactions B,1996,27B(4):263-270.
    [68] H. Ohta,H. Suito.Activities in CaO-MgO-Al2O3slags and deoxidation equilibria of Al, Mgand Ca[J].ISIJ International,1996,36(8):983-990.
    [69] S. W. Cho,H. Suito.Assessment of Calcium-Oxygen equilibrium in liquid iron[J].ISIJInternational,1994,34(3):265-269.
    [70] Hideaki. Suito,Ryo. Inoue.Thermodynamics on control of inclusions composition in ultraclean steels[J].ISIJ International,1996,36(5):528-536.
    [71] S. W. Cho,H. Suito.Assessment of Aluminum-Oxygen equilibrium in liquid iron andactivities in CaO-Al2O3-SiO2slags[J].ISIJ International,1994,34(2):177-185.
    [72] Georgy.V.Pervushin,H. Suito.Effect of primary deoxidation products of Al2O3,ZrO2,Ce2O3and MgO on TiN precipitation in Fe-10mass%Ni alloy[J].ISIJ International,2001,41(7):748-756.
    [73] T.Kimura,H.Suito.Calcium deoxidation equilibrium in liquid iron[J].Metallurgical andMaterials Transactions B,1994,25B:33-42.
    [74] H.Ohta, H.Suito. Deoxidation equilibria of calcium and Magnesium in liquidiron[J].Metallurgical and Materials Transactions B,1997,28B:1131-1139.
    [75] Kwang Ro lee,H.Suito.Reoxidation of Aluminum in liquid iron with CaO-Al2O3-FetO(≤3mass%) slags[J].ISIJ International,1995,35(5):480-487.
    [76] C.Bertrand,J.Molinero,S.Landa,et al.Metallurgy of plastic inclusions to improve fatiguelife of engineering steels[J].Ironmaking and Steelmaking,2003,30(2):165-169.
    [77]张信昭.喷粉冶金基本原理[M].北京:冶金工业出版社,1988.
    [78] I. D. Simpson,Z. Tritsiniotis and L. G. Moore.Steel cleanness requirements for X65to X80ERW linepipe steels[A].Proceedings of the sixth international conference on clean steel[C],Balatonfured,Hungary,10-12June,2002:379-394.
    [79] Lauri Holappa,Marko H m l inen,et al..Thermodynamic examination on inclusionmodification and precipitation from calcium treatment to solidified steel[A].Proceedings ofthe sixth international conference on clean steel[C],Balatonfured,Hungary,10-12June,2002:116-125.
    [80]李明光,李秉强,马春生.新型复合钙包芯线的开发与生产应用[J].炼钢,2010,26(6):28-31.
    [81]马长慧.硅钙铁包芯线芯层组合物:中国专利,200810010332.2[P].2008-08-06.
    [82]智建国,司永涛,李春龙,等.包钢CSP工艺生产Q235B钢的洁净度控制[J].钢铁,2004,39(增刊):436-438.
    [83]关凤纯,韩传基,蔡开科,等.转炉-钢包吹氩-连铸工艺生产板坯洁净度的研究[C].北京:2001年中国钢铁年会,2001:592-595.
    [84]李良,何生平,张国兴.降低Q235板坯夹杂物实践[J].钢铁钒钛,2010,31(3):84-87.
    [85]杨宪礼,张爱民,张英才.Q235B钢中的塑性夹杂物行为研究[J].钢铁,2002,37(增刊):305-307.
    [86]石绍清,尹振江,卢帝维,等.水平连铸管坯钢中的非金属夹杂物[J].北京科技大学学报,2007,29(z1):93-95.
    [87]朱爱玲,黄一新.A32、A36高强度船板研制与开发[J].南钢科技,2001,(2):24-26.
    [88]孔祥艳,李胜袛,张明如.AH36船板钢拉伸试样断口分层缺陷的分析[J].安徽冶金,2012,(3):10-13.
    [89]龚红根.新钢A32/A36船板的试制[J].轧钢,2005,22(5):70-71.
    [90]张宁,郭晓波,赵成林,等.AH32船板内部裂纹成因分析[J].炼钢,2013,29(1):61-64.
    [91]徐海平,张玉柱,张志杰.高强度船板钢A36的化学成分设计和控制轧制工艺分析[J].河北冶金,2006,156(6):42-43.
    [92]陈传磊,张立标,杨晓清,等.船板钢表面小纵裂纹成因分析及控制[J].山东冶金,2010,32(5):30-31.
    [93]刘阳春,徐彬,武军宽,等.首钢船板钢热轧板卷的生产和使用[J].钢铁研究学报,2011,23(增1):58-66.
    [94]吴华杰,元鹏飞,岳峰.BOF-LF-RH-CC生产DH36船板钢洁净度[J].北京科技大学学报,2011,33(增1):131-136.
    [95]高海亮,武会宾,岳峰,等.E36高强度船板钢的开发[J].河南冶金,2008,16(5):12-13.
    [96]何矿年,李桦,刘年富,等.E级船用结构钢板的开发[J].材料研究与应用,2010,4(4):564-566.
    [97]陈爱娇,周平,麻衡,等.F550超高强船板钢洁净度控制技术研究与实践[J].莱钢科技,2012,160(4):27-30.
    [98]徐永林,李京社,徐莉.首钢TMCP工艺E/F级高强船板冶炼工艺[J].北京科技大学学报,2011,33(增1):108-115.
    [99]岳峰,包燕平,崔衡,等.BOF-LF/VD-CC工艺生产高级船板钢纯净度的研究[J].北京科技大学学报,2007,29(增1):1-5.
    [100]尚德礼,张洪哲,吕春风.30t转炉-钢包吹氩-连铸生产A级船板钢中的非金属夹杂[J].特殊钢,2007,28(6):51-53.
    [101]王硕明,刘庆岗,李秀清,等.CCSD36船板钢表面裂纹分析[J].钢铁钒钛,2009,30(4):45-48.
    [102]薛正良.弹簧钢氧化物夹杂物成分及形态控制技术研究[D].北京:钢铁研究总院,2001.
    [103] S.K.CHOUDHARY, A.GHOSH. Mathematical Model for Prediction of Composition ofInclusions Formed during Solidification of Liquid Steel[J]. ISIJ International,2009,49(12):1819–1827.
    [104] G.K.Sigworth,J.F.Elliott.The thermodynamics of liquid dilute iron alloys[J].Metal Science,1974,18:298~316.
    [105]陈襄武.炼钢过程的脱氧[M].北京:冶金工业出版社,1991.
    [106]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,2008.
    [107]陈斌.炉渣间的反应平衡及合结钢中非金属夹杂物的研究[D].北京:北京科技大学,2007.
    [108] Hiroki Ohta,Hideaki Suito.Activities in CaO-SiO2-Al2O3slags and deoxidation equilibria ofSi and Al[J].Metallurgical and Materials Transactions B,1996,27B(4):943-953.
    [109] T.T.Le,M.Ichikawa.Optimization of calcium treatment at Dofasco[A].Proceedings of theSecond Canada-Japan Symposium on Modern Steelmaking and Casting Techniques[C],TORONTO,ONTARID,1994,Aug.20-25:29-38.
    [110]张鉴.冶金熔体的计算热力学[M].北京:冶金工业出版社,1994.
    [111] Richard H.Rein,John Chipman.Activities in the liquid solution SiO2-CaO-MgO-Al2O3at1600℃[J].Trans. Metallurgical Society of AIME,1965,233(2):415-425.
    [112]金利玲,王海涛,许中波,等.帘线钢CaO-SiO2-Al2O3-MnO系夹杂物的成分控制[J].北京科技大学学报,2007,29(4):377-380.
    [113] Y.B.Kang, H.G.Lee.Inclusions chemistry for Mn/Si deoxidized steels:thermodynamicpredictions and experimental confirmations[J].ISIJ International,2004,44(6):1006.
    [114] Y.B.Kang,I.H.Jung,A.Sergei. Phase equilibria and thermodynamic properties of theCaO-MnO-Al2O3-SiO2system by critical evaluation.modeling and experiment[J]. ISIJInternational,2004,44(6):975.
    [115]赵烁.精炼渣对帘线钢中非金属夹杂物形态的影响[D].昆明:昆明理工大学,2009.
    [116]蔡开科.转炉-精炼-连铸过程钢中氧的控制[J].钢铁,2004,39(8):49-57.
    [117]李慧改,郑少波,王利伟,等.超细夹杂物析出研究[J].材料与冶金学报,2007,6(2):105-108.
    [118]王海涛,许中波,王福明.帘线钢凝固过程中夹杂物析出[J].北京科技大学学报,2007,29(9):884-889.
    [119]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [120] B.H.Yoon,K.H.Heo,J.S.Kim,et al.Improvement of steel cleanliness by controllingslag composition[J].Ironmaking and Steelmaking,2002,29(3):215-218.
    [121] Ruby-Meyer F, Lehmann J, Gaye H. Thermodynamic analysis of inclusion in Ti deoxidizedsteel[J]. Scandinavian Journal of Metallurgy,2000,(29):206-212.
    [122] I. H.Jung, S. A.Decterov, A. D.Pelton. A thermodynamic model for deoxidation equilibrium insteel[J]. Metallurgical and Maternal Transaction B,2004,35(6):493-507.
    [123]王德永,张同生,李小兵等.1873K时铝钛脱氧钢中非金属夹杂物的动态演变规律[C].长沙:第十五届全国钢质量与非金属夹杂物控制学术会议,2012,97-103.
    [124] S.Maeda,T.Soejima,T.Saito,et al.Shape control of inclusions in wire robs for high tensiletire by refining with synthetic slag[A]. Warrendale. Steelmaking ConferenceProceedings[C].Chicago:ISS-AIME,1989:379.
    [125] J.F.Elliott,M.Gleiser,V.Ramakrishna.Thermochemistry for SteelmakingⅡ[M].London:Sddision-Wesley Pub Co,Mass Reading,1963:22.
    [126] A.Ghosh.Secondary steelmaking:principles and applications [M].USA:CRC Press,1989:37-344.
    [127]崔立镇.通过LF精炼炉控制钢中非金属夹杂物的实践[J].河北冶金,2010,(5):30-31.
    [128]姜敏.高强度合金钢液-炉渣反应平衡及对非金属夹杂物的影响研究[D].北京:北京科技大学,2008.
    [129] Joo Hyun PARK,Hidekazu TODOROKI.Control of MgO·Al2O3Spinel Inclusions inStainless Steels[J]. ISIJ International,2010,Vol.50(10):149-152.
    [130]张彩军,高爱民,蔡开科.管线钢夹杂物变性的理论与实验研究[J].过程工程学报,2008,8(S1):171-175.
    [131] D.JANKE,Z.T.MA,P.VALENTIN,et al.Improvement of castability and quality ofcontinuously[J].ISIJ International,2000,40(1):31-39.
    [132]韩志军,林平,刘浏,等.20CrMnTiH1齿轮钢钙处理热力学[J].钢铁,2007,42(9):32-36.
    [133] HOLAPPA L.Thermodynamics examination of inclusion modification and precipitation fromcalcium treatment to solidified steel [J].Ironmaking and Steelmaking,2003,30(2):111-115.
    [134]李尚兵,王谦,何生平.镁合金对16MnR钢液的脱氧作用[J].中国有色金属学报,2007,17(4):657-662.
    [135] W. G.SEO,W. H.HAN,J. S.KIM,et al.Deoxidation equilibria among Mg,Al and O in liquidiron in the presence of MgO·Al2O3spinel[J]. ISIJ International,2003,43(2):201-208.
    [136] J.YANG,T.YAMASAKI,M.KUWABARA.Behavior of inclusions in deoxidation processof molten steel with In situ produced Mg vapor[J].ISIJ International,2007,47(5):699-708.
    [137]王博,姜周华,姜茂发.镁铝合金处理GCr15轴承钢夹杂物的变质[J].中国有色金属学报,2006,16(10):1736-1742.
    [138] J. C.TAKAMURA,S.MIZOGUCHI.Roles of oxides in steels performance[A].Proceedingsof the Sixth International Iron and Steel Congress[C].Nagoya:ISIJ,1990:591-596.
    [139] DE BAR BADILIO J J.Reactivity of magnesium and calcium in liquid steel[A].Inclusions insteel[C].USA:American Society for Metals,1975:70-99.
    [140]刘利国,侯庆玉,郭军亮.钙处理工艺在邯钢连铸中的应用[J].河北冶金,2008,(3):2729.
    [141] B.Coletti,S.Vantilt,B.Blanpain,Sridhar S. Observation of calcium aluminate inclusions atinterfaces between Ca treated,Al-killed steels and slags[J]. Metallurgical and MaterialsTransactions B,2003,34(5):533-538.
    [142] E.Fuhr,G.Cicutti. Relationship between nozzle deposits and inclusion composition in thecontinuous casting of steels[J]. Iron and Steelmaker,2003,32(12):53-64.
    [143]袁方明,王新华,杨学富等.钙含量对钢水流动性的影响[J].钢铁钒钛,2006,27(1):28-32.
    [144]尹华盛.钙处理对钢水浇铸性能的影响[J].天津冶金,2007,1:25-26.
    [145] C.E.Cicutti,J.Madias. Control of micro-inclusions in calcium treated aluminim killed steels[J].Ironmaking and Steelmaking,1997,5:155-159.
    [146]刘钢,张旺胜,李斌.钙处理工艺对夹杂物变性理论分析与实践[J].江西冶金,2009,29(3):4-5.
    [147] Carlo Mapelli. Walter Nicodemi. Control of inclusion in a resulphurised steel[J]. SteelResearch,2000,5:161-168.
    [148] Dieter Janke. Improvement of castability and quality of continuously cast steel[J]. ISIJInternational,2000,1:31-39.
    [149]王谦,何生平.低碳含铝钢LF炉精炼工艺及精炼渣的优化[J].北京科技大学学报,2007,29(增刊1):15-17.
    [150] I.HIROYASU,H.MITSUTAKA,B.Y.SHIRO.Thermodynamics on the formation of spinelnonmetallic inclusion in liquid steel[J].Metallurgical and Materials Transactions B,1997,28(B):953-956.
    [151] Yogeshwar Sahai著,朱苗勇译.洁净钢生产的中间包技术[M].北京:冶金工业出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700