用户名: 密码: 验证码:
核/壳量子点纳米复合物的制备及其可视化荧光识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双荧光发射纳米复合材料的制备及其分析应用近年来引起了人们极大的兴趣。量子点(Quantum dots, QDs)具有独特的荧光性质,基于QDs制备的双荧光发射纳米复合材料在荧光分子成像、双荧光比率传感及可视化荧光测定领域具有独特的优势和发展潜力。本文研究了发不同荧光的QDs、不同形貌的金纳米结构的可控制备,在此基础上构建了核/壳QDs纳米复合物,探索了纳米复合物在环境和生物技术领域中的可视化荧光识别。主要内容如下:
     1.三聚磷酸钠稳定的CdS QDs的制备及荧光猝灭法测定铁。以三聚磷酸钠(STPP)为稳定剂,在碱性条件下成功合成了分散较均匀、稳定性好、发射峰位可调、半峰宽25nm左右的水溶性CdS量子点。研究了STPP和硫脲的比例、反应时间及pH等条件对CdS QDs发光特性的影响。探讨了痕量Fe2+离子对CdSQDs荧光的猝灭作用。考察了缓冲溶液、pH、共存离子等因素的影响。在最佳实验条件下,在0.02~1.2M范围内,483nm处F0/F与Fe2+呈现良好的线性关系,检测限LOD(3/)为6.7nM。用于实际矿泉水样中Fe的测定,回收率95.0%-105.0%。
     2. CdSe/CdS@SiQ2纳米复合物的制备及荧光猝灭法测定铜。首先,以STPP作为稳定剂,合成了水溶性CdSe和CdSe/CdS核/壳量子点;然后,通过正硅酸四乙酯(TEOS)水解成功制备了CdSe/CdS@SiQ2核壳/结构的纳米复合物,用荧光光谱、紫外-可见吸收光谱、XRD对其进行了表征。根据Cu~(2~+)会选择性猝灭CdSe/CdS@SiQ2纳米复合物的荧光,建立了CdSe/CdS@SiO_2纳米复合物荧光猝灭法测定水样中Cu~(2~+)的新方法。其线性范围为0.02~0.6μM,检测限为10nM。
     3.介孔ZnO/CdS/SiO_2核/壳纳米复合物的制备及可视化荧光测定Ag+。首先,以STPP为稳定剂,合成ZnO/CdS核/壳QDs,然后直接把ZnO/CdS QDs水溶液加入含有TEOS、氨水的乙醇溶液中,发展了一种新的制备具有介孔结构的核/壳型ZnO/CdS@SiO_2纳米粒子的新方法。Ag~+可以通过介孔与核内ZnO/CdSQDs作用,导致其带边发射猝灭,同时在595nm处的缺陷发光信号增强,在紫外灯的照射下发出红色荧光。根据紫外灯照射下Ag~+致使ZnO/CdS@SiO_2红色荧光增强,我们用同一种量子点的双色荧光的变化实现对Ag~+的可视化、选择性测定,测定下限为0.04μM。根据595nm处Ag~+与ZnO/CdS@SiO_2作用的荧光增强建立了高选择性和高灵敏测定Ag~+的新方法,线性范围为0.03~0.24μM,检测限(3)为3.30nM。
     4. CdTe@SiO_2/Au纳米复合物的制备及可视化多色荧光测定Hg~(2~+)。以壳聚糖为稳定剂和还原剂成功合成了表面等离子体共振吸收峰位可调的金纳米盘。在壳聚糖稳定的球状金纳米溶液中加入半胱氨酸,发现球状金纳米粒子可组装成金纳米链。然后,以溶菌酶为稳定剂和还原剂,合成了具有双荧光(蓝、红)发射的金纳米簇(Au CNs)。通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)等表征手段对晶体结构和形貌进行了解析;通过动态光散射、共振散射光谱、吸收光谱和荧光光谱确证Au纳米结构在溶液中形成,并讨论了金纳米结构的生长机理。把具有双荧光(红、蓝)发射性质的Au CNs和具有绿色荧光发射性质的CdTe@SiO_2混合,制备了在同一激发下能发射三色荧光(红、绿、蓝,RGB)的CdTe@SiO_2/Au纳米复合物。研究了Hg~(2~+)对CdTe@SiO_2/Au纳米复合物的RGB荧光的猝灭作用,发现随着Hg~(2~+)浓度的增加纳米复合物呈现由红橙、黄、绿、蓝的颜色变化。由此建立一种可视化多色荧光识别模式,裸眼测定Hg~(2~+)的含量。
Currently, the fabrication and applieations of the composite nanostructures withdual-emission fluorescence is of great interest。Combining the unique fluoreseenceproperties of Quantum dots (QDs), the QDs nanocomposites with dual-emissiondemonstrate great potentials in fluorescence molecular imaging, dual-fluorescenceratio sensor, and visual fluorescence detection. In this thesis, controllable fabricationof QDs with different fluorescence color and Au nanopartieles has been investigated,and then Core/Shell QDs nanocomposites have been faeilely fabrieated, we have alsoinvestigated the visual fluorescent recognition of such nanoeomposites in the field ofbiotechnology and the environment. The main points are as follows:
     1. The fabrication of STPP-stabilized CdS QDs and the determination of traceiron by fluorescence quenching method. The uniform dispersion of water-soluble CdSQDs stabilized by STPP was successfully synthesized in an alkaline medium. Theemission peaks of CdS QDs were tunable, and the half peak width is about25nm.The fluorescence spectral properties of CdS QDs at different pH values, thiourea,STPP and reaction time were investigated. A fluorescence quenching method for thedetermination of trace iron (Ⅱ) was developed, and the factors involving pH, buffersolution, and coexistence ion were investigated. Under the optimum conditions, thevalues of F0/F at483nm are linearly proportional to the concentration of Fe~(2~+)from0.02-1.2μM. The detection limit of the developed method was6.7nM for Fe~(2~+).Mineral water samples were analyzed with the recovery of95.0%-105.0%.
     2. The fabrication of the CdSe/CdS@SiQ2core/shell nanocomposites and thedetermination of trace Cu~(2~+)by fluorescence quenching method. Water-soluble CdSeand CdSe/CdS core/shell quantum dots were successfully syntheticed in presence ofSTTP as a stabilizer. CdSe/CdS@SiQ2core-shell nano composites were obtained viathe hydrolysis of Tetraethyl silicate (TEOS). The fluorescence spectra,ultraviolet-visible absorption spectroscopy (UV), TEM and XRD were used toquantify the structure and characteristions of CdSe/CdS@SiQ2nanocomplexes. Dueto Cu~(2~+)can cause fluorescent quenching of CdSe/CdS@SiQ2nanocomplexes selectively, we set up a new method for the determination of Cu2~+in water samples.The linear range from0.02to0.6μM and the detection limitation is10nM.
     3. The fabrication of the mesoporous ZnO/CdS@SiO_2Core/Shell nanostructureand visual fluorescence detection of Ag~+. A new method for the preparation ofmesoporous ZnO/CdS@SiO_2Core/Shell nanostructure has been developed. Themesoporous silica shells allow Ag~+to enter into the interior of the nanostructures tocontact with ZnO/CdS core, accordingly causes the quenching of its band edgeemission along with a simultaneous enhancement of red emission at around595nm.So, a novel visual fluorescence detection strategy for Ag~+ion is proposed based on acommon Core/Shell Quantum dots nanostructure. Under optimal conditions, theenhanced fluorescence intensity at595nm increased linearly with the concentrationof Ag~+ion ranging from0.03μM to0.24μM with a detection limit (3σ) of3.3nM.
     4. The fabrication of the CdTe@SiO_2/Au nanocomposites and visualmulti-colored fluorescent detection of Hg~(2~+). By chitosan as a stabilizer and reducingagent, the tunable surface plasmon resonance absorption peak of gold nanoplate hasbeen successfully fabricated. It was observed that the linear chains of Au nanosphereswere formed by the addition of L-Cysteine in CTS-stabilized Au nanospheressolution. After that, highly fluorescent Au clusters with dual-emission (blue and red)have been synthesized by lysozyme as stabilized and reducing agents. The structureand morphology of the three types of crystals was characterized via scanning electronmicroscopy (SEM), transmission electron microseopy (TEM) and X-ray diffraction(XRD). The formation of Au nano-structure was determined by the use of UV-vis,dynamic light scattering as well as resonance light scattering and fluorescence spectra.The growth mechanism of gold nano-structure was discussed. The CdTe@SiO_2/Aunanocomposite with three-color fluorescence (red, green and blue, RGB) under asingle excitation wavelength was synthesized when the Au CNs with dual-emission(blue and red colors) and CdTe@SiO_2with green fluorescent were mixed. Thethree-color fluorescence quenching of CdTe@SiO_2/Au nanocomposite by addingHg~(2~+)was studied. It was shown that the fluorescent color of the nanocompositechanged from red-organe, yellow and green to blue with increase of the concentrationof Hg~(2~+). Therefore, the visual mode with multi-color fluresence was established and the content of Hg~(2+)was able to evaluate by naked-eyes.
引文
[1] Jain KK, Nanotechnology in clinical laboratory diagnostics, Clin. Chim. Acta,2005,358,37-54
    [2] Azzazy HME, Mansour MMH, Kazmierczak SC, Nanodiagnostics: A New Frontier forClinical Laboratory Medicine, Clin. Chem.,2006,52(7),1238-1246
    [3]Chan WC, Quantum dot bioconjugates for ultrasensitive nonisotopic d etection. Sc ienc e1998,281(5385),20162018.
    [4] Zheng J, Nicovich PR, Dickson RM, Highly fluorescent noble-metal quantum dots. Annu. Rev.Phys. Chem.2007,58,409-431
    [5]Ealivisatos AP, Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science,1996,271,933-937
    [6] Kayanuma Y, Quantum-size effects of interacting electrons and holes in semiconductormicrocrystals with spherical shape. Phys. Rev. B.,1988,38(14):9797-9805.
    [7] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T, Quantum dots versusorganic dyes as fluorescent labels, Nat. Methods,2008,5,763-75
    [8] Qu L, Peng ZA, Peng XG, Alternative routes toward high quality CdSe nanocrystals. NanoLett.,2001,1(6),333-337
    [9] Li LS, Pradhan N, Wang Y, Peng XG, High quality ZnSe and ZnS nanocrystals formed byactivating zinc carboxylate precursors. Nano Lett.,2004,4(11),2261-2264
    [10] Wang C, Ma Q, Dou WC, Kanwal S, Wang GN, Yuan PF, Su XG, Synthesis of aqueous CdTequantum dots embedded silica nanoparticles and their applications as fluorescence probes. Talanta,2009,77(4),1358-1364
    [11] Michalet X, Pinaud FF, Bentolila L A, Tsay JM, Doose S, Li JJ, Sundaresan G, WuAM,Gambhir SS, Weiss S, Quantum dots for live cells, in vivo imaging, and diagnostics, Science,2005,307(5709),538-544
    [12] Gao M, Rogach AL, Kornowski A, Kirstein S, Eychmuller A, Mohwald H, Weller H,Strongly photoluminescent CdTe nanocrystals by proper surface modification. J. Phys. Chem. B.,1998,102(43),8360-836
    [13] Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, EychmüllerA,Weller H, Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes.J. Phys.Chem. B.,2002,106(29),7177-7185
    [14] Zheng Y, Yang Z, Ying JY, Aqueous Synthesis of Glutathione-Capped ZnSe andZn1–xCdxSe Alloyed Quantum Dots, Adv. Mater.,2007,19(11),1475-1479
    [15] Balakrishnan S, Bonder MJ, Hadjipanayis GC. Particle size effect on phase and magneticproperties of polymer-coated magnetic nanoparticles. J. Magn.Magn. Mater.,2009,321(2),117-122.
    [16] Caruso F. Nanoengineering of particle surfaces. Adv. Mater.,2001,13(1),11-22
    [17] Phadtare S, Kumar A, Vinod VP, Dash C, Palaskar DV, Rao M, Shukla PG, Sivaram S,Sastry M, Direct assembly of gold nanoparticle “shells” on polyurethane microsphere “cores” andtheir application as enzyme immobilization templates, Chem. Mater.,2003,15(10),1944-1949.
    [18] Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN, Magnetic iron oxidenanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, andbiological applications[J]. Chem. Rev.,2008,108(6):2064.
    [19] Sounderya N, Zhang Y, Recent Pat. Biomed. Eng.2008,1,34
    [20] Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles forbiomedical applications, Biomaterials,2005,26(18),3995-4021.
    [21] Yan E, Ding Y, Chen C, Li R, Hu Y, Jiang X, Polymer/silica hybrid hollow nanosphereswith pH-sensitive drug release in physiological and intracellular environments[J].Chem.Commun.,2009(19):2718-2720.
    [22] Michalet X, Pinaud F F, Bentolila L A, Tasy J M, Doose S, Li J J, Sundaresan G, Wu A M,Gambhir SS, Weiss S, Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science,2005,307(5709):538-544.
    [23] De M, Ghosh P S, Rotello V M. Applications of nanoparticles in biology, Adv. Mater.,2008,20(22):4225-4241.
    [24] Peng XG, Schlamp MC, Kadavanich AV, Alivisatos AP, Epitaxial growth of highlyluminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J.Am. Chem. Soc.,1997,119(30),7019-7029
    [25] Hines MA, Guyot-Sionnest P, Synthesis and characterization of strongly luminescingZnS-capped CdSe nanocrystals. J. Phys. Chem.,1996,100(2),468-471
    [26] Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF,Bawendi MG,(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size seriesof highly luminescent nanocrystallites. J. Phys. Chem. B.,1997,101(46),9463-9475.
    [27] Fox MA, Dulay MT, Heterogeneous photocatalysis. Chem. Rev.,1993,93(1),341-357
    [28]Kamalov VF, Little R, Logunov SL, Elsayed MA, Picosecond electronic relaxation inCdS/HgS/CdS quantum dot quantum well semiconductor nanoparticles. J. Phys. Chem.,1996,100(16),6381-6384
    [29]Han MY, Huang W, Chew CH, Gan LM, Zhang XJ, Ji W, Large nonlinear absorption incoated Ag2S/CdS nanoparticles by inverse microemulsion. J. Phys. Chem. B.,1998,102(11),1884-1887
    [30] Zhong XH, Xie RG, Zhang Y, Basche T′and Knoll W, Chem. Mater.,2005,17,4038–4042
    [31] Vossmeyer T, Katsikas L, Giersig M, Popovie IG, Diesner K, Chemseddine A, EychmüllerA,Weller H, CdS Nanoclusters: synthesis, characterization, size dependent oscillator strength,temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys.Chem.,1994,98(31),7665-7673
    [32] Xu S, Ziegler J, Nann T, Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystalsJ. Mater. Chem.2008,18,2653–2656
    [33] Brovelli S, Schaller R D, Crooker S A, et al. Nano-engineered electron-hole exchangeinteraction controls exciton dynamics in core-shell semiconductor nanocrystals[J]. Nat. Commun.2011,2,280
    [34]Pal BN, Ghosh Y, Brovelli S, Laocharoensuk R, Klimov VI, Jennifer. Hollingsworth A, andHtoon H, Giant’ CdSe/CdS Core/Shell Nanocrystal Quantum Dots As EfficientElectroluminescent Materials: Strong Influence of Shell Thickness on Light-Emitting DiodePerformance, Nano Lett.,2012,12(1),331–336
    [35]Ye M, Zhang Q, Hu Y, et al. Magnetically recoverable core–shell nanocomposites withenhanced photocatalytic activity, Chem. Eur. J.,2010,16(21),6243-6250.
    [36]马晓波,聂伟,王策,张万金,姬相玲,CdSe/CdS/SiO2复合纳米球的制备及发光性能,高等学校化学学报,2010,31(5),874-880
    [37]尤晓刚,贺蓉,高峰,邵君,潘碧峰,崔大祥,核/壳型CdTe@SiO2荧光纳米复合粒子的制备与表征,化学学报,2007,65(6),561-565
    [38] Gai S, Yang P P, Hao JG, Wang WX, Niu N, He F, Wang D, Lin J, Fabrication of luminescentand mesoporous core-shell structured nanocomposites and their application as drug carrier,Microporous and Mesoporous Materials,2010,131,128–135.
    [39] Petryayeva E, Krull UJ, Localized surface plasmon resonance: Nanostructures, bioassays andbiosensing-A review, Anal. Chim. Acta,2011,706,8–24.
    [40] Higgins DA, Novel Optical Probes for Advanced Chemical Imaging, Anal. Chem.2011,83,8048-8049.
    [41]何鑫,张梅,冯晋阳,宋明霞,赵修建,金属银增强荧光的最新研究进展,稀有金属材料与工程,2011,40(3),459-563
    [42] Chu LQ, Forch R, Knoll W, Surface-plasmon-enhanced fluorescence spectroscopy for DNAdetection using fluorescently labeled PNA as “DNA indicator”, Angew. Chem., Int. Ed.,2007,46,4944-4947
    [43] Chowdhury MH, Ray K, Gray S.K, Pond J, Lakowicz JR, Aluminum nanoparticles assubstrates for metal-enhanced fluorescencein the ultraviolet for the label-free detection ofbiomolecules, Anal. Chem,2009,81,1397-1403
    [44] Ye BC, Yin BC, Highly sensitive detection of mercury (II) ions by fluorescence polarizationenhanced by gold nanoparticles, Angew. Chem., Int. Ed.2008,47,8386–8389
    [45] Zhang H, Li YJ, Ivanov IA, Qu YQ, Huang Y, Duan XF, Plasmonic modulation of theupconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles ornanoshells. Angew. Chem., Int. Ed.2010,49:2865–2868.
    [46] Pompa PP, Martiradonna L, Torre AD, Sala FD, Manna L, Vittorio MD, Calabi F, CingolaniB, Rinaldi R, Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control, Nat.Nanotechnol.2006,1,126-130
    [47] Munechika K, Chen Y, Tillack A F, Kulkarni AP, Plante I J-L, Munro AM and Ginger DS,Spectral Control of Plasmonic Emission Enhancement from Quantum Dots near Single SilverNanoprisms, Nano Lett.2010,10,2598-2603
    [48] Zeng QH, Zhang YL, Liu XM, Tu LP, Wang Y, Kong XG and H Zhang, Au/SiO2core/shellnanoparticles enhancing fluorescence resonance energy transfer efciency in solution, Chem.Commun.,2010,46,6479-6481
    [49] Yang BJ, LuN, Qi DP, Ma RP, Wu Q, Hao JY, Liu XM, Mu Y, Reboud V, Kehagias N,Torres CMS, Boey FYC, Chen XD, Chi LF,Tuning the Intensity of Metal-Enhanced Fluorescenceby Engineering Silver Nanoparticle Arrays, Small,2010,6,1038–1043
    [50] Jin YD and Gao XH, Plasmonic fluorescent quantum dots, Nat. Nanotechnol.20094(9):571–576
    [51] Pandey S, Baker S N, Pandey S, et al. Optically responsive switchable ionic liquid forinternally-referenced fluorescence monitoring and visual determination of carbon dioxide, Chem.Commun.,2012,48(56),7043-7045
    [52] Jacobi Z E, Li L, Liu J, Visual detection of lead (II) using a label-free DNA-based sensor andits immobilization within a monolithic hydrogel. Analyst,2012,137(3),704-709
    [53] Helwa Y, Dave N, Froidevaux R, et al. Aptamer-Functionalized Hydrogel Microparticles forFast Visual Detection of Mercury (II) and Adenosine, ACS Appl. Mater.&Interfaces,2012,4(4):2228-2233
    [54]Zhao X J, Wang H J, Liang L J, et al. Switching on fluorescence for selective visualrecognition of naringenin and morin with a metal-organic coordination polymer of Zn (bix)[bix=1,4-bis (imidazol-1-ylmethyl) benzene], Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy,2013,103(15),68-72.
    [55] Tao Y, Lin Y, Ren J, et al. A Dual Fluorometric and Colorimetric Sensor for DopamineBased on BSA-stabilized Au nanoclusters, Biosensors and Bioelectronics,2013,42(15),41-46
    [56] Jiang G, Susha AS, Lutich A A, Stefani FD, Feldmann J, Rogach AL, Cascaded FRET inconjugated polymer/quantum dot/dye-labeled DNA complexes for DNA hybridization detection.ACS Nano,2009,3,41274131.
    [57] Medintz I L, Clapp A R, Melinger JS, Deschamps J R, Mattoussi H, A reagentless biosensingassembly based on quantum dot-donor Fo rster resonance energy transfer, Adv. Mater.2005,17(20),24502455.
    [58] Goldman ER, Medintz IL, Whitley JL, Hayhurst A, Clapp AR, Uyed HTA, Deschamps J R,Lassman ME, Mattoussi H, A hybrid quantum dot-antibody fragment fluorescenceresonanceenergy transfer-based TNT sensor. J. Am. Chem. Soc.,2005,127,67446751.
    [59]Oh E, Hong M-Y, Lee D, Nam S-H, Yoon HC, Kim HS, Inhibition assay of biomoleculesbased on fluorescence resonance energy transfer (FRET) between quantum dots and goldnano-particles. J. Am. Chem. Soc.,2005,127,32703271
    [60]Dyadyusha L, Yin H, Jaiswal S, Brown T, Baumberg JJ,Booy FP, MelvinT, Quenching ofCdSe quantum dot emission, a new approach for biosensing, Chem. Commun.2005,25,32013203
    [61] Wang X, Guo X, Ultrasensitive Pb2+detection based on fluorescence resonance energytransfer (FRET) between quantum dots and gold nanoparticles. Analyst,2009,34(7),13481354.
    [62] Yuan C, Zhang K, Zhang Z, and and Wang S, Highly Selective and Sensitive Detection ofMercuric Ion Based on a Visual Fluorescence Method, Anal. Chem..,2012,84(22),9792-9801
    [63]Zhang K, Zhou H, Mei Q, et al. Instant visual detection of trinitrotoluene particulates onvarious surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid, J. Am. Chem.Soc.2011,133,8424–8427
    [64] Zheng J, Nicovich PR, Dickson RM, Highly fluorescent noble-metal quantum dots, Annu.Rev. Phys. Chem.2007,58,409-431
    [65] Schaeflfer N, Tan B, Dickinson C, Rosseinsky MJ, Laromaine A, McComb D W,Stevens MM, Wang Y, Petit L, Barentin C, Spiller DG, Cooper AI, Levy R,Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilizedgold clusters in the1.1-1.7nm size range, Chem. Commun.,2008,34,3986-3988
    [66] Lee WI, Bae YJ, Bard AJ, Strong blue photoluminescence and ECL fromOH-terminated PAMAM dendrimers in the absence of gold nanoparticles. J. Am. Chem. Soc.2004,126,8358-8359
    [67] Pu KY, Luo Z, Li K, Xie J, Liu B, Energy transfer betweenconjugated-oligoelectrolyte-substituted poss and gold nanocluster for multicolor intracellulardetection of mercury ion. J. Phys. Chem,C2011,115,13069-13075.
    [68] Tian D, QianZ, Xia Y, Zhu C, Gold Nanocluster-based fluorescent probes for near-infraredand tum-on sensing of glutathione in living cells. Langmuir2012,25,3945-3951
    [69] Xu XY, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A., Electrophoreticanalysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem.Soc.,2004,126,12736-12737
    [70] Baker SN, Baker GA, Luminescent carbon nanodots: Emergent nanolights.Angew. Chem., Int. Ed. Engl.,2010,49(38),67266744
    [71]Li HT, Kang ZH, Liu Y, Lee ST, Carbon nanodots: synthesis, properties andapplications, J. Mater. Chem.,2012,22,24230–24253
    [72]Esteves da Silva JCG, Gon alves HMR, Analytical and bioanalytical applicationsof carbon dots, Trends Anal. Chem.,2011,30(8),13271336
    [73]Wei W, XuC, Ren J, Xu B, Qu X, Sensing metal ions with ion selectivity of acrown ether and fluorescence resonance energy transfer between carbon dots andgrapheme, Chem. Commun.,2012,48(9),1284286
    [74]Yu C, Li X, Zeng F, Zheng F, Wu S, Carbon-dot-based ratiometric fluorescentsensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem.Commun.2013,49(4),403405
    [75]Chen CY, Cheng CT, et al, Potassium ion recognition by15-crown-5functionalizedCdSe/ZnS quantum dots in H2O [J], Chem. Commun.,2006,263–265
    [76]Cai ZX, Yang H, Zhang Y, et al, Preparation, characterization and evaluation of water-solublel-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(II) in aqueoussolution, Anal. Chim. Acta,2006,559:234~239
    [77]Chen JL, Zhu CQ, Functionalized cadmium sulfide quantum dots as fluorescence probe forsilver ion determination,.Anal. Chim. Acta,2005,546:147~153
    [78]Gattás-Asfura MK, Leblanc RM, Peptide-coated CdS quantum dots for the optical detectionof copper(II) and silver(I), chem. commun.,2003,3:2684~2685
    [79] Costa-Fernández JM, Pereiro R, Sanz-Medel A. The use of luminescent quantum dots foroptical sensing[J], Trends Anal. Chem.,2006,25:207~218
    [80] Zhao D, Chan WH, He Z, Qiu T, Quantum Dot Ruthenium Complex Dyads: Recognition ofDouble-Strand DNA through Dual-Color Fluorescence Detection [J], Anal. Chem.,2009,81:3537~3543
    [81] Chen WB, Wang X, Tu XJ, Pei DJ, Zhao Y, Guo XQ. Water-soluble off-on spin-labeledquantum-dots conjugate Small,2008,4(6):759~764
    [82]温福宇,杨金辉,宗旭等,太阳能光催化制氢研究进展,化学进展,2009,21(11),2285~2302
    [83]Rogach AL, Franzl T, Klar TA, Feldmann J, Gaponik N, Lesnyak V, Shavel A, Eychmu1ller A,Rakovich YP, Donegan JF,, Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals:State-of-the-Art [J], J. Phys. Chem. C2007,111:14628-14637
    [84]刘辉,李文友,尹洪宗,CdS纳米粒子制备的影响因素及CdS纳米粒子-酚藏花红体系的光谱特性[J],化学学报,2005,63:301~306
    [85]刘迪,程伟青,严拯宇,硫化镉纳米粒子的合成及荧光猝灭法测定Cu2+的初步研究分析化学,2007,35:825~829
    [86]Chen Y, Rosenzweig Z. Luminescent CdS Quantum Dots as Selective Ion Probes[J], Anal.Chem.,2002,74:5132~5138
    [87]王齐,刘忠芳,刘绍璞,硫化镉纳米微粒作探针共振瑞利散射测定某些蒽环类抗癌药物,高等学校化学学报,2007,28:837~842
    [88] Waggoner DJ, Bartnikas TB, Gitlin JD, The role of copper in neurodegenerative disease,Neurobiol. Dis.,1999,6,221–230.
    [89] Feng L, Zhang Y, Wen L, Shen Z, Guan Y, Colorimetric determination of copper(II) ionsby filtration on sol-gel membrane doped with diphenylcarbazide, Talanta,2011,84,913–917
    [90] Mei L, Xiang Y, Li N, Tong A, A new fluorescent probe of rhodamine B derivative for thedetection of copper ion, Talanta,2007,72,1717–1722
    [91] Chan YH, Chen J, Liu Q, Wark SE, Son DH, Batteas JD, Ultrasensitive copper(II) detectionusing plasmonenhanced and photobrightened luminescence of CdSe quantum dots, Anal. Chem.2010,82,3671–3678
    [92]Dou Y, Yang X.M, Liu ZD, Zhu SS, Homocysteine-functionalized silver nanoparticles forselective sensing of Cu2+ions and Lidocaine hydrochloride, Colloids and Surfaces A:Physicochem. Eng. Aspects,2013,423,20–26
    [93]Soylak M, Unsal YE, Kizil N, Aydin A, Utilization of membrane filtration forpreconcentration and determination of Cu(II) and Pb(II) in food, water and geological samples byatomic absorption spectrometry, Food and Chemical Toxicology,2010,48,517–521
    [94] Raposo Jr JL, de Oliveira AP, Jones BT, Neto JAG, Internal standardization combined withdilute-and-shoot preparation of distilled alcoholic beverages for Cu determination byhigh-resolution continuum source flame atomic absorption spectrometry, Talanta,2012,92,53–57
    [95]Afkhami A, Soltani-Felehgari F, Madrakian Tayyebeh, Ghaedi H, Rezaeivala M, Fabricationand application of a new modified electrochemical sensor using nano-silica and a newlysynthesized Schiff base for simultaneous determination of Cd2+, Cu2+and Hg2+ions in waterand some food stuff samples, Anal. Chim. Acta,2013,http://dx.doi.org/10.1016/j.aca.2013.02.031
    [96] Koneswaran MN, Arayanaswamy RL, Cysteine-capped ZnS quantum dots basedfluorescence sensor for Cu2+, Sensors and Actuators B,2009,139(1),104-109
    [97] Ju LM, Zhao HM, Quna X, et al, Signal amplification viacation exchang ereaction: anexample in the ratiometric fluorescence probe for ultrasensitive and selective sensing of Cu(Ⅱ),Chem Commun,2010,46,1144-1146
    [98]刘舒曼,徐征,Wageh H,徐叙,CdSe/CdS核/壳型纳米晶的光谱特性,光谱学与光谱分析,2002,22(6),908~911
    [99] Sun XY, Liu B, Wang ZF, Liu H, Dual fluorescence self-assembled multilayers bearing afluorescent internal standard for interfacial sensing, Luminescence,2011,26,239–243
    [100] Hu PP, Chen LQ, Liu C, Zhen SJ, Xiao SJ, Peng L, Li YF and Huang CZ, Ultra-sensitivedetection of prion protein with a long range resonance energy transfer strategy, Chem. Commun.,2010,46,8285–8287
    [101] Reiss P, Protière M, Li L,Core/Shell Semiconductor Nanocrystals,small2009,5,(2),154–168
    [102] Chin PTK, Buckle T, de Miguel AA, Meskers SCJ, Janssen RAJ, vanLeeuwen FWB,Dual-emissive quantum dots for multispectral intraoperative fluorescence imaging, Biomaterials,2010,31,6823–6832
    [103] Sun XY, Liu B, Xu YB, Dual-emission quantum dots nanocomposites bearing an internalstandard and visual detection for Hg2+, Analyst,2012,137,1125–1129
    [104] Yang P, Zhao Y, Lu Y, Xu QZ, Xu XW, Dong L, Yu SH, Phenol Formaldehyde ResinNanoparticles Loaded with CdTe Quantum Dots: A Fluorescence Resonance Energy TransferProbe for Optical Visual Detection of Copper(II) Ions, ACS Nano,2011,5,2147–2154
    [105] Song YY, Cao XB, Guo Y, Chen P, Shen GZ, Fabrication of mesoporous CdTe/ZnO@SiO2core/shell nanostructures tunable dual emission and ultrasensitive fluorescence response to metalions, Chem. Mater.2009,21,68-77
    [106] Zhang K, Zhou HB, Mei QS, Wang SH, Guan GJ, Liu RY, Zhang J, Zhang P, J. Am. Chem.Soc.,2011,133,8424–8427.
    [107] Baker DR, Kamat PV, Tuning the emission of CdSe quantum dots by controlled trapenhancement, Langmuir,2010,26(13),11272-11276
    [108] Fu YS, Du XW, Kulinich SA, Qiu JS, Qin WJ, Li R, SunJ, Liu J, J. Am. Chem. Soc.2007,129,16029-16033
    [109] Kouklin N, Cu-Doped ZnO nanowires for Efficient and Multispectral PhotodetectionApplications, Adv.Mater.,2008,9999,1-5
    [110]张桥保,冯增芳,韩楠楠,林玲玲,周剑章,林仲华,CdS量子点敏化ZnO纳米棒阵列电极的制备和光电化学性能,物理化学学报,2010,26(X),0001-0009
    [111] Aldeek F, Balan L, Medjahdi G, Roques-Carmes T, Malval JP, Mustin C, Ghanbaja J, andSchneider R, Enhanced Optical Properties of Core/Shell/Shell CdTe/CdS/ZnO Quantum DotsPrepared in Aqueous Solution, J. Phys. Chem. C2009,113,19458–19467
    [112] Ratte HT, Environ. Toxicol. Chem.,1999,18,89–108
    [113] Zhang JF, Zhou Y, Yoon J, Kim JS, Chem. Soc. Rev.,2011,40,3416–3429
    [114] Chen JL, Zhu CQ, Functionalized Cadmium sulfide quantum dots as fluorescence probe forsilverion determination, Anal. Chim. Acta,2005,546,147-153
    [115] Lin YH, Tseng WL, Chem. Commun.,2009,43,6619–6621
    [116] Xia YS, Cao C, Zhu CQ, Two distinct photoluminescence responses of CdTe quantum dotsto Ag (I),2008,128,166–173
    [117]Wang J, Liang JG, Sheng ZH, Han HY, A novel strategy for selective detection of Ag+basedon the red-shift of emission wavelength of quantum dots, Microchim. Acta.2009,167:281–287
    [118] Liang JG, Ai XP, He ZK, Pang DW, Analyst,2004,129,619–622
    [119] Kumar A, Jain AK, J., Photochem. Photobiol. A: Chem.,2003,156,207–218.
    [120] Zhou XD, Xiao XH, Xu JX, Cai GX, Ren F, Jiang CZ, EuroPhys. Lett.,2011,93,57009
    [121]Zhang L, Huang CZ, Li YF, Li, Q, Morphology Control and Structural Characterization ofAu Crystals: From Twinned Tabular Crystals and Single-Crystalline Nanoplates to MultitwinnedDecahedra. Cryst. Growth Des.2009,9,3211-3217
    [122] Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P, Gold Nanorods: Synthesis,Characterization and Applications, Coord. Chem. Rev.2005,249,1870-1901
    [123] Wang Y, Li YF, Wang J, Sang Y, Huang CZ, End-to-end assembly of gold nanorods bymeans of oligonucleotide-mercury(II) molecular recognition, Chem. Commun.,2010,46,1332–1334.
    [124]王健,吴昊,黄承志,碘对金纳米棒的融合作用及其在四环素类抗菌素分析测定中的应用,中国科学B辑:化学,2008,38,929~937
    [125]郭斌,单雯雯,罗江山,唐永建,程建平,紫外光辐照法制备金纳米盘及其反应机理,化学学报Acta Chim. Sinica,2008,66,1435~1440
    [126] Li C, Cai W, Cao B, Sun F, Li Y, Kan C, Zhang L, Adv. Funct. Mater.2006,16,83.
    [127] Chen C, Hsu C, Kuo P, Langmuir2007,23,6801
    [128] Wang LY, Wu XZ, Li XN, Wang L, Pei MS and Tao XT, Facile synthesis of concave goldnanoplates in hexagonal liquid crystal made of SDS/water system, Chem. Commun.,2010,46,8422-8423]
    [129] Huang HZ, Yang XR, Synthesis of Chitosan-Stabilized Gold Nanoparticles in theAbsence/Presence of Tripolyphosphate, Biomacromolecules2004,5,2340-2346
    [130] Guo R, Zhang LY, Zhu ZS, and Jiang XQ, Direct Facile Approach to the Fabrication ofChitosan-Gold Hybrid Nanospheres, Langmuir2008,24,3459-3464
    [131] Wang Y, Li YF, and Huang CZ, A One-Pot Green Method for One-Dimensional Assemblyof Gold Nanoparticles with a Novol Chitosan-Ninhydrin Bioconjugate at PhysiologicalTemperature, J.Phys. Chem.C,2009,113,4315-4320
    [132] Ding Y, Gu G, Xia XH and Huo Q, Cysteine-grafted chitosan-mediated gold nanoparticleassembly: from nanochains to microcubes, J. Mater. Chem.,2009,19,795-799]
    [133] Wang W and Cui H, Chitosan-luminol reduced gold nanoflowers: From one-pot synthesis tomorphology-dependent SPR and chemiluminescence sensing, J. Phys. Chem. C2008,112,10759-10766
    [134]Yang K, Wang X, Zhou Z, Xu J, Weng J, and Zhang Q, One-step synthesis andcharacterisation of chitosan-mediated micro-sized gold nanoplates through a thermal process,IETNanobiotechnol.,2007,1(6),107-111
    [135] Beeram SR, Zamborini FP, ACS Nano,2010,4(7),3633
    [136] Beeram, S.R.; Zamborini, F.P. J. Am. Chem. Soc.,2009,131(33),11689
    [137] Aslan, K.; Lakowicz, J. R.; Geddes, C. D. J. Phys. Chem. B2005,109,6247
    [138]Nishida N, Yao H, Ueda T, Sasaki A, and Kimura K, Synthesis and Chiroptical Study ofD/L-Penicillamine-Capped Silver Nanoclusters, Chem. Mater.2007,19,2831-2841
    [139] Bao Y, Zhong C, Vu DM, Temirov JP, Dyer RB, Martinez JS, Nanoparticle-free synthesisof fluorescent gold nanoclusters at physiological temperature, J. phys. chem. C,2007,111(33),12194-12198
    [140] Xie J, Zheng Y, Ying JY, Protein-directed synthesis of highly fluorescent gold nanoclusters,J. Am. Chem.Soc.,2009,131(3),888-889
    [141] Yang X, Shi M, Zhou R, Chen X, Chen H, Blending of HAuCl4and histidine in aqueoussolution: a simple approach to the Au10cluster, Nanoscale,2011,3(6),2596-2601
    [142] Xie J, Zheng Y, Ying JY, Highly selective and ultrasensitive detection of Hg2+based onfluorescence quenching of Au nanoclusters by Hg2+–Au+interactions,Chem. Commun.2010,46,961–963
    [143]Wang Y, Chen J, Irudayaraj J, Nuclear targeting dynamics of gold nanoclusters for enhancedtherapy of HER2+breast cancer, ACS nano,2011,5(12),9718-9725
    [144]张力,博士论文,西南大学,2010,34
    [145] Salzemann C, Lisiecki L, Urban J, Pileni MP, Langmuir,2004,20,11772.
    [146] Wei H, Wang ZD, Yang LM, Tian SL, Hou CJ, Lu Y, Lysozyme-stabilized gold fluorescentcluster: Synthesis and application as Hg2+sensor, Analyst,2010,135,1406-1410
    [147]徐义邦,孙向英,杨传孝,碲化镉量子点自组装膜的构建及其对溶菌酶的界面传感,分析化学,2011,39(9),1336-1340

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700