用户名: 密码: 验证码:
水性聚氨酯阴极电泳涂料的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯(PU)涂料是一种高档涂料。溶剂型聚氨酯的毒性使人们对水性聚氨酯的开发产生浓厚兴趣。水性聚氨酯涂料无毒、无污染、不易燃烧、易储存、使用方便、具有溶剂型聚氨酯的综合性能,在聚氨酯研究领域已成为重要研究方向。我国对水性聚氨酯涂料的研究相对落后,仍以实验室研究为多,而且产品综合性能偏低,具体表现在固含量偏低、耐水性差、耐热性不佳、漆膜硬度不高。为解决这些问题,本文以甲苯二异氰酸酯(TDI)或异佛尔酮二异氰酸酯(IPDI)和聚己内酯二元醇(PCLD)为主要原料,以N-甲基二乙醇胺(MDEA)为亲水性扩链剂,分别制备了TDI型水性聚氨酯阴极电泳涂料(T-CEWPU)和IPDI型水性聚氨酯阴极电泳涂料(I-CEWPU),探索水性聚氨酯阴极电泳涂料的合成工艺,着重考察预聚体中NCO/OH摩尔比、亲水性扩链剂的用量及小分子扩链剂种类等因素对于水性聚氨酯阴极电泳涂料性能及电泳漆膜的表面性能、耐水性能与硬度等方面的影响。本研究最显著创新是采用改进的工艺流程制备了固含量为60%的水性聚氨酯阴极电泳涂料,而且该涂料在电泳过程中形成的漆膜经固化剂处理后的铅笔硬度可达5H。经过系统的研究,得出如下研究结果。
     实验结果表明,随着预聚体中NCO/OH摩尔比的增大,T-CEWPU乳液粒径呈先减小后增大的趋势,漆膜铅笔硬度逐渐增大,预聚体中NCO/OH摩尔比为3.0时制备的T-CEWPU阴极电泳涂料综合性能最好。而对于I-CEWPU阴极电泳涂料,随着预聚体中NCO/OH摩尔比的增大,其乳液粒径及漆膜附着力均呈先增大后降低的趋势,漆膜铅笔硬度逐渐增大,预聚体中NCO/OH摩尔比为2.2时,制备的I-CEWPU阴极电泳涂料的综合性能最好。
     亲水性扩链剂MDEA的用量增加时,T-CEWPU乳液粘度逐渐增大,漆膜的铅笔硬度变低,耐水性变差,I-CEWPU乳液的粒径逐渐变小,漆膜的铅笔硬度先增大再减小。研究发现,提高MDEA中和度,I-CEWPU阴极电泳涂料乳液的平均粒径下降,铅笔硬度增加,中和度对I-CEWPU阴极电泳涂料漆膜附着力影响不显著。
     由1,4-丁二醇和一缩二乙二醇作为小分子扩链剂制备的T-CEWPU阴极电泳涂料电泳漆膜表面平滑,附着力在1级至2级之间,其中由1,4-丁二醇制备的T-CEWPU阴极电泳涂料的漆膜具有更高的铅笔硬度,在以1,4-丁二醇、乙二醇、一缩二乙二醇等分别为扩链剂制备的I-CEWPU阴极电泳涂料中,以一缩二乙二醇为扩链剂制备的电泳涂料湿膜表面形貌最平滑。
     采用改进的工艺流程制备了固含量为60%的I-CEWPU-2阴极电泳涂料。流平剂的加入降低了I-CEWPU-2阴极电泳涂料湿膜的排水性,有助于高温流平。固化剂SA30用量较低时,它对I-CEWPU-2阴极电泳涂料湿膜外观影响不大,当固化剂用量超过1wt%后,固化剂用量的增加导致漆膜附着力下降,甚至产生橘皮状外观并产生大量气泡。固化剂SA30能提高I-CEWPU-2阴极电泳涂料漆膜的耐热性。固化剂YA75降低了I-CEWPU-2阴极电泳涂料漆膜的热稳定性。
Polyurethane (PU) coating is one of the high-grade coatings. It is interested in the developing of waterborne polyurethane because ofthe toxicity of solvent-based polyurethane. Waterborne polyurethane coating has become a hot topic in the PU research field due to its nontoxic, nonpollution, nonflammable, easy to store, easy to use, and good properties as solvent-based polyurethane. The research of waterborne polyurethane is relatively backward in China, and mostly remains in laboratory studies.Its performance is poor, such as low solid content, poor water-resistance, poor heat-resistance, low hardness of film. In order to overcome the shortcomings, TDI-based cathodic electrophoretic coating of waterborne polyurethane (T-CEWPU) and IPDI-based cathodic electrophoretic coating of waterborne polyurethane (I-CEWPU) were prepared with TDI or IPDI and PCLD as mainly raw material, MDEA as hydrophilic chain extender in this thesis. The synthesis of cathodic electrophoretic coating of waterborne polyurethane was studied. The effects of molar ratio of NCO/OH, MDEA content and chain-extending agent on the properties of coating and its film were also investigated. In this thesis, the most significant innovation is that cathodic electrophoretic coating of waterborne polyurethane with 60% solid content is prepared, and its pencil hardness of the film is up to 5H by dealing with a curing agent during the electrophoresis process. The results are as follows.
     The experimental results showed that the emulsion particle size of T-CEWPU decreased at first then increased with the increasing NCO/OH molar ratio in prepolymer. Its pencil hardness of the film also increased. When the NCO/OH mole ratio of prepolymer is 3.0, the T-CEWPU with best overall properties was prepared. For I-CEWPU cathodic electrophoretic coating, both the particle size and film adhesion increased at fist then decreased, the pencil hardness of the film increased. When the NCO/OH mole ratio of prepolymer is 2.2, the I-CEWPU with best overall properties was prepared.
     The viscosity of T-CEWPU emulsion increased with the increasing content of hydrophilic chain extender MDEA, the pencil hardness and water resistance of film decreased, whereas the particle size of I-CEWPU emulsion decreased, and its pencil hardness increased at first then decreased. It showed that the average particle size of I-CEWPU emulsion decreased, the pencil hardness increased and the film adhesion unchanged with the increasing neutralization degree of MDEA.
     The T-CEWPU cathodic electrophoretic coating prepared by 1,4-butanediol or diethylene glycol as chain-extending agent have smooth surface of film, and the film adhesion is between level 1and level 2, but the film prepared by 1,4-butanediol has higher pencil hardness. In the I-CEWPU cathodic electrophoretic coatings prepared by 1,4-butanediol, ethylene glycol or diethylene glycol, the coating prepared by diethylene glycol has the smoothest morphology of wet film.
     The I-CEWPU-2 cathodic electrophoretic coating with 60% solid content was prepared by improved process. The drainage of wet film of I-CEWPU-2 cathodic electrophoretic coating was decreased with the adding of flow agent, which contribute to high-temperature flow. The wet film surface of I-CEWPU-2 cathodic electrophoretic coating has no obviously change when the amount of curing agent SA30 is low. However, when the amount of curing agent SA30 is over 1wt%, film adhesion decreased with the increasing amount of curing agent, appearance of film as an orange peel even with a lot of bubble-like was formed. Curing agent SA30 is also to improve the heat-resistance of I-CEWPU-2 cathodic electrophoretic coating. Curing agent YA75 reduced the thermal stability of I-CEWPU-2 cathodic electrophoretic coating.
引文
[1]徐培林,张淑琴.聚氨酯材料手册[M].北京:化学工业出版社, 2002
    [2]李少雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社, 2002
    [3]耿耀宗.现代水性涂料(工艺·配方·应用)[M].北京:中国石化出版社, 2003
    [4] Cooper S.L., Properties of linear elastomeric polyurethanes. Appl. Polym Sci., 1996, 10(12): 1840-1850
    [5] Noble K.L.. Waterborne polyurethanes[J]. Progress in Organic Coationgs, 1997, 32: 131-136
    [6]文志红,陈延娜,邬素华.水性聚氨酯胶粘剂[J].中国胶粘剂, 2004, 13(4):55-58
    [7] Noble K.L. Waterborne polyurethanes[J]. Progress in Organic Coationgs, 1997, 32(1-4): 131-136
    [8] Heikens D., Meijers A., Reth P.H.. The difference in mechanical different diamines[J]. Polymer, 1968, 9 (1): 15-10
    [9] Wenzel W., Dieterich D., Bayer A.G.. Anmelder, Verfah ren zur Herstellung von Polyurethane. Germany Patent. 2543091, 1977,03,31
    [10] Lienert H.J., Schuster H., Schafer Ketal, et al (inventors). Bayer Company, Assignee, Stabilized Aqueous Solution of a Bisulphite Blocked Polyisocyanate. US Patent. 3,984,365. 1976, 10, 05
    [11] Minoura Y.. Crosslinking and mechanical property of liquid rubber I curative effect of aliphatic diols[J]. Journal of Applied Science, 1978, 22 (7): 1817-1840
    [12] Suskind S.P., Polyurethane latex[J]. Journal of Applied Polymer Sciense, 1965, (7): 2451-2455
    [13]刘益军,蔡伟,单组分交联型水性聚氨酯[J].涂料工业, 1998, (8): 38-40
    [14] Dieterich D., Aqueous emulsion dispersion and solutions polyurethanes synthesis and properties[J]. Progress in organic coatings, 1981, (9): 281-300
    [15] Schipper K, Verbiest R., Geurink P A. Aqueous Coating Composition Comp rising a Mixture of Polyurethane Dispersions[J]. US P6579932, 2003
    [16] Vijayendran B.R., Derby R., Gruber B.A.. Aqueous polyurethane winy polymer dispersions for coating applications[P]. US5173526, 1992
    [17] Kim B.S., Park S.H., Kim B.K.. Nanosilica-reinforced UV-cured polyurethane dispersion[J]. Colloid and Polymer Science, 2006, 284(9): 1067-1072
    [18] Kim T.G., Lee J.U., Song H.J.. One-liquid type aqueous polyurethane adhesive composition[P]. KR2002003640-A, 2002
    [19] Huybrechts J., Bruylants P., Vaes A., et al. Surfactant-fre emulsions for waterborne two-component polyurethane coatings[J]. Progress in Organic Coatings, 2000, (38): 67-70
    [20] David A., Ley, Denise E., et al. Polyurethane coatings[J]. Progress in Organic Coatings, 1999, (35): 109-116
    [21] Wang we-sheng, Zeng Jun, Ruan de-li. Anew crosslinker for water borne polyurethane finishes[J]. Journal of the Society of Leather Technologies and Chemist. 2000, (84): 45-47
    [22] Nachtkam P. K., Pedain J., Grammel J., et al. Anmelder Verfahren ur Herstellung von wassrigen Polyurethan-Dis-persnen und-losungen[P]. German Patent, 28,11,148. 1979, 09, 20
    [23] Urban M.W.. Interfacial studies of crosslinked urethanes, Structure property relationships in polyester waterborne polyurethanes[J]. Journal of Coating Technology, 1999, 71 (888): 75-78
    [24]方治齐.聚氨酯脲阴离子水分散液[J].化工新型材料, 1996, (10): 28-30
    [25]张庆思,刘磊力,崔月芝,等.反应型单组分聚氨酯水分散体的制备及性能[J].石油化工, 2000, (29): 263-265
    [26]孙大庆.高含量水性脂肪族聚氨酯皮革涂饰剂的合成[J].皮革化工, 1999, (2): 12-14
    [27] Jang J Y, Jhon Y K, Chang L W. Effect of Process Variables on Molecular Weight And Mechanical Properties of Water Based polyurethane dispersion[J]. Colloids and Surfaces A , 2002, 196 (2) : 135-143
    [28]黄先威,肖鑫,刘方,等.环氧树脂改性水性聚氨酯的研究[J].聚氨酯工业, 2005, 20(2): 20-23
    [29]许戈文.水性环氧改性聚氨酯涂料的研制[J].涂料工业, 1998, (11) : 30-32
    [30] Chen H., Fan Q.L., Chen D.Z., et al. Synthesis and Proper Ties of Polyurethane Modified with an Aminoethylaminopropyl-Substituted Polydimethylsiloxane II Waterborne Polyurethanes[J]. Journal of Applied Polymer Science, 2001, 79(2): 295-301.
    [31]李海燕,张晓,杨德瑞.有机硅丙烯酸酯改性聚氨酯共聚乳液的研究[J].化工进展, 2003, 22(11):1196-1199
    [32]李再峰,梁自禄.阴极聚氨酯电泳涂料的漆膜性能研究[J].弹性体, 2004-02-25, 14 (1) :14~16
    [33] Alexandre M., Dubois P.. Polymer-layered silicate nanocomposites: preparation, properties and used of a new class of materials[J]. Materials Science and Engineering, 2000, 28(1-2): 1-63
    [34]侯孟华,刘伟区,黎艳等.水性聚氨酯/硅烷蒙脱土纳米复合材料的制备与性能[J].石油化工, 2005, 34(7): 677-680
    [35] Kuan H.C., Chuang W.P.. Hydrogen bonding, mechanical properties, and surface morphology of clay/waterborne polyurethane nanocomposites[J]. Journal of Polymer Science: Part B: Polymer Physics, 2005, 43(1):1-12
    [36] Kim B.K, Seo J.W., Jeong H.M.. Morphology and properties of water-borne polyurethane/clay nanocomposites[J]. European Polymer Journal, 2003, 39(1): 85-91
    [37] Jeong H.M., Lee S.H.. Properties of waterborne polyurethane/PMMA/clay hybrid materials[J]. Journal of Macromolecular Science, Part B-Physics, 2003, B42(6): 1153-1167
    [38] Lee H.T., Lin L.H. Waterborne polyurethane/clay nanocomposites: novel effects of the clay and its interlayer ions on the morphology and physical and electrical properties[J]. Macromolecules, 2006, 39(18): 6133-6141
    [39] Lee H.T., Hwang J.J., Liu H.J. Effects of ionic interactions between clay and waterborne polyurethanes on the structure and physical properties of their nanocomposite dispersions[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2006, 44(19): 5801-5807
    [40] Zhang Y.C., Wang J.W., Zhao Y.H., et al. Mechanical properties and morphology of the clay/waterborne polyurethane nanocomposite[J]. Journal Wuhan University of Technology, Materials Science Edition, 2006, 21(4): 24-27
    [41] Jeong H.M., Jang K.H., Cho K.. Properties of waterborne polyurethanes based on polycarbonate diol reinforced with organophilic clay[J]. Journal of Macromolecular Science-Physics, 2003, 42B(6): 1249-1263
    [42]刘芳,冯东,贾德民.γ-环氧丙氧基丙基三甲氧基硅烷改性聚氨酯乳液的制备与性能研究[J].弹性体, 2005,15(6):10-14;
    [43]邓湘华,刘芳,罗远芳等.梳状支链水性聚氨酯的制备与性能研究[J].聚氨酯工业, 2007, 22(4): 8-11;
    [44]陈勇军,罗远芳,邓湘华,等.梳状聚氨酯/聚丙烯酸异冰片酯共聚乳液的制备与性能[J].华南理工大学学报(自然科学版), 2009, 37(12): 23-27;
    [45]刘芳,倪茂君,陈勇军,等.梳状支链水性聚氨酯的结构与性能[J].高分子材料科学与工程, 2008, 24(10): 142-145;
    [46]王春明,王玉实.电泳涂装(Ⅰ)[J].电镀与环保, 2001, 21(2): 34-37
    [47]居滋善.涂料工艺(第四分册)[M].北京:化学工业出版社, 1994, 43-45.
    [48]周义.电泳涂装新工艺[M].北京:地质出版社, 1999,2-3.
    [49]蔡柏龄.家电涂料与涂装技术[M].北京:化学工业出版社, 2002, 201-202.
    [50]上海市化学化工学会.电泳涂装(第一版)[M].北京:机械工业出版社, 1991, 1-24.
    [51]崔冬梅,李萍,丁云黎,等.阴极电泳涂料的进展[J].精细石油化工, 1995, 1:6-10.
    [52]李小丽,许馨予,彭素梅.阴极电泳涂料的研究进展[J].广州化工, 2008, 36(3): 17-19.
    [53]宋华.汽车涂装用几种最新涂料与涂装工艺[J].汽车工艺与材料, 2009, 1:14-17
    [54]王伟平.电泳涂装应用和展望[J].电镀与环保, 2002, 22(3): 25-27.
    [55]吴守智.日本关西涂料公司新型电泳涂料[J].沈阳化工, 1990, 4: 36-40.
    [56]柯跃虎,杨卓如.阴极电泳涂料的现状及发展趋势[J].电镀与涂饰, 2003, 22(1): 48-50.
    [57]王锡春.最新汽车涂装技术[M].北京:机械工业出版社, 1997: 13-19
    [58]朱宏熹.中厚膜环氧阴极电泳涂料[J].涂料工业, 1998, (11): 52-61
    [59] Liu Xia-wen. Performance of FT 25-7225 middle thick film catholic electrophoresis coating[J]. Materials Protection, 1994, 27(4): 23-26.
    [60] Hasegawa K, Tatsumisago M, Minami T. P reparation of thick silica films by the electrophoretic sol-gel deposition using a cathonic polymer surfactant[J]. Journal of the Ceramic Society of Japan, 1997, 105(7): 569-572.
    [61]宋华,王纳新.低温固化阴极电泳涂料的应用[J].汽车工艺与材料, 1997, (10): 25-27
    [62]康志萍.新型的环保涂料——低温固化阴极电泳涂料[J].环境技术, 2000, (1): 15-18
    [63]周子鹄,涂伟萍,陈焕钦.电泳涂料的研究进展[J].化工进展, 2000, (4): 28-29
    [64]岸博之.高耐候性电泳涂料组成物[P].日本专利: J P 2-47172, 1990-02-16
    [65]王朝阳,童真,任碧野,等.丙烯酸树脂电泳涂料[J].现代化工, 2002, 31(3): 2-4
    [66]王德海,江棂.紫外光固化材料——理论与应用[M].北京:科学出版社, 2001, 1-2
    [67]王伟平.紫外光固化电泳涂装技术及应用[J].电镀与环保, 1998, 18(4): 26-30
    [68] Krylova. Painting by electro deposition on the eve of the 21st century[J]. Progress in Organic Coatings, 2001, (42): 119-131
    [69] Fieberg A., Reis O.. UV curable electro deposition systems[J]. Progress in Organic Coatings, 2002, (45): 239-247
    [70]张兴义.国内外阴极电泳涂料的概况和发展动向[J].电机电器技术, 1998, (3): 13-18
    [71]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社, 1994, 559-560.
    [72]李坚,王春明.扩链剂对阳离子聚氨酯乳液性能的影响[J].中国胶粘剂, 1996, 5(1): 5-7.
    [73]张发兴,卫晓利.亲水扩链剂对水性聚氨酯性能的影响[J].胶体与聚合物, 2008, 26(4): 21-23
    [74]徐建峰,胡惠仁,崔晖.阳离子水性聚氨酯的制备及其在表面施胶中的应用[J].纸和造纸, 2009, 28(6): 36-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700