用户名: 密码: 验证码:
基于时空双尺度的电动汽车换电站有序充电调度方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动汽车以其绿色环保、节能高效的特点取代传统燃油汽车已成为低碳经济发展的必然趋势。随着电动汽车的推广普及,规模化电动汽车在时间和空间上的无序随机充电行为将增加电网运行中的不确定影响因素,给电网的经济调度和运行控制带来新的挑战。因此,有必要根据电动汽车充电的功率需求和能量需求特性,研究电动汽车有序充电调度方法,减小规模化电动汽车充电对电网的影响,同时提高充电设施的运行效率和电动汽车用户充电的便利性。
     本文围绕电动汽车换电站有序充电调度方法,基于时间尺度、空间尺度、时空双尺度开展研究,主要工作如下:
     (1)电动汽车在时间上的无序随机充电行为可能会使电网负荷出现“峰上加峰”的现象,本文利用充电负荷在时间上的可调度性,以改善电网负荷曲线、降低换电站购电成本为目标,在满足车辆换电需求的前提下,从时间尺度出发提出了电动汽车换电站有序充电时间调度方法。方法考虑了约束条件的随机性,采用粒子群及其变异算法求解有序充电时间调度数学模型,对换电站的日充电计划进行优化。基于奥运换电站实际运行数据的仿真算例表明该方法能够使换电站在满足车辆换电能量需求的同时避开电网负荷高峰期充电,达到避峰填谷、降低换电站运行成本的目的。
     (2)电动汽车用户从自身角度出发对换电位置的选择具有随机性和盲目性,可能会增加用户换电成本且不利于电网和换电站的经济运行,本文以同时满足用户侧和充电设施侧充电负荷空间分配要求为目标,对电动汽车用户换电位置进行引导,从空间尺度出发提出了电动汽车换电站有序充电空间调度方法。采用粒子群及遗传算法对比求解有序充电空间调度数学模型。基于深圳充电站实际运行数据背景的仿真算例以及基于校园配电网百辆车示范运行项目的算例表明该方法既能够满足电动汽车用户对换电位置的要求,又能够促进电网经济运行,提高换电站充电设施利用率。
     (3)为了实现同时在时间和空间两个尺度上对电动汽车充电行为进行引导和调度,提出了电动汽车换电站有序充电时空联合调度方法。方法以换电站日计划充电电量为联接变量,将实时的有序充电空间调度作为联合调度方法优化循环的内环,将非实时的有序充电时间调度作为联合调度方法优化循环的外环。基于校园配电网百辆车示范运行项目的仿真算例验证了方法的有效性,实现了时空两个尺度的引导和调度。
Electric vehicle (EV) with its environmental protection, energy saving and high efficiency features to replace the traditional fuel vehicles has become the inevitable trend of the development of low carbon economy. With the popularization of electric vehicle, the out-of-order random charging behavior of large-scale EV users in time and space will increase the uncertain influence factors in power grid operation and bring new challenges to power grid economic dispatch and operation control. Therefore, it is necessary to research EV coordinated charging method according to the EV charging power and energy demands characteristics to reduce the large-scale EV charging effects on the grid and improve the efficiency of charging infrastructure and the charging convenience of EV users.
     The dissertation focus on EV battery swapping station coordinated charging dispatch method based on temporal dimension, spatial dimension and temporal-spatial dimensions. The main works and specific researchs are summarized as follows:
     (1) Out-of-order random charging behaviors of large-scale EV users in time will increase power grid peak load. Based on meeting charging demand of electric vehicles and the charging load's schedulability at the time, this paper proposed EV battery swapping station (BSS) coordinated charging temporal dispatch method from the time dimension to improve power grid load curve and reduce the charging cost of BSS. With the stochastic constraints particle swarm optimization algorithm and its improved algorithm are taken to solve coordinated charging temporal dispatch model and achieve BSS optimized daily charging plan. Simulation example based on operation data of Olympic Charging Station show that the method can make EV charge in load valley period and meet EV energy demand at the same time. Economy of BSS operation is improved and peak load is shifted.
     (2) The choices of electric vehicle users for charging position from their own point of view are blind and random and may increase the users' changing cost. It is not conducive to the economic operation of power grid and BSS.In order to satisfy the user's and BSS's charging load space allocation requirements, this paper proposed EV battery swapping station coordinated charging spatial dispatch method from the spatial dimension to guide EV user's charging position. Particle swarm optimization algorithm and genetic algorithm are taken to solve coordinated charging spatial dispatch model contrastively. Simulation example based on the converted actual operation data of Shenzhen charging station and campus grid100vehicles demonstration project show that the method can meet the EV user's charging position requirements and promote the the power grid economic operation and BSS utilization rate.
     (3) In order to achieve EV charging behavior guidance and scheduling both in temporal and spatial double dimensions at the same time, BSS coordinated charging temporal-spatial dispatch method is proposed. The method joined temporal dispatch and spatial dispatch together on the BSS daily plan charging energy. Real-time coordinated charging spatial dispatch as temporal-spatial dispatch method's inner loop optimization and non real-time coordinated charging temporal dispatch as temporal-spatial dispatch method's outer loop optimization. Simulation examples based on campus grid100vehicles demonstration project demonstrate the effectiveness of the proposed method. EV charging behavior guidance and scheduling are realized from the dimensions of time and space.
引文
[1]张文亮,武斌,李武峰,来小康.我国纯电动汽车的发展方向及能源供给模式的探讨[J].电网技术,2009,33(4):1-5.
    [2]国家电网公司.Q/GDW.478-2010.电动汽车充电设施建设技术导则[S].北京.2010.
    [3]来小康.智能电网:电动汽车发展的支撑.国家电网报,2010,7:34-36.
    [4]Shao s., Pipattanasomporn M., Rahman S.. Challenges of PHEV penetration to the residential distribution network[C]. Proceedings of Power & Energy Society General Meeting,26-30 July,2009, Calgary, canada:1-8.
    [5]Rahman S., Shrestha GB. An investigation into the impact of electric vehicle load on the electric utility distribution system[J]. IEEE Transactions on Power Delivery, 1993,8(2):591-597.
    [6]Camus C., Silva C.M., Farias T.L., Esteves J. Impact of Plug-in Hybrid Electric Vehicles in the Portuguese electric utility system[C]//Proceedings of the International Conference on Power Engineering, Energy and Electrical Drives,18-20 March,2009, Lisbon, Portugal:285-290.
    [7]孙凤杰,尹国龙.电动汽车对配电网负荷率影响的探讨[J].科技创新导报,2011,13:4243.
    [8]Kempton W, Tomic J. Vehicle-to-grid power fundamentals:calculating capacity and net revenue[J]. Journal of Power Sources,2005,144(1):268-279.
    [9]Kempton W, Tomic J. Vehicle-to-grid power implementation:from stabilizing the grid to supporting large-scale renewable energy[J]. Journal of Power Sources,2005,144(1): 280-294.
    [10]胡泽春,宋永华,徐智威,罗卓伟,占恺峤,贾龙.电动汽车接入电网的影响与利用[J].中国电机工程学报,2012,32(4):1-10.
    [11]高赐威,张亮.电动汽车充电对电网影响的综述[J].电网技术,2011,35(2):127-131.
    [12]王帆,包海龙,徐凡,顾洁.电动汽车接入对配电网运行影响的研究与分析[J].华东电力,2011,39(7):1089-1092.
    [13]杜爱虎,胡泽春,宋永华,吴俊阳.考虑电动汽车充电站布局优化的配电网规划[J].电网技术,2011,35(11):3542.
    [14]Kristien Clement-Nyns, Edwin Haesen, Johan Driesen. The impact of vehicle-to-grid on the distribution grid [J]. Electric Power Systems Research,2011,81(1):185-192.
    [15]刘振亚.智能电网技术[M].北京:中国电力出版社,2010,304-305.
    [16]Kempton, W, Letendre, S.. Electric vehicles as a new power source for electric utilities[J]. Transportation Research Part D 23,1997:157-175.
    [17]Kempton, W, Toru Kubo. Electric-drive Vehicles for Peak Power in Japan [J]. Energy Policy,2000,28(1):9-18.
    [18]Denholm, P., Short, W.. An Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles[R]. Technical Report NREL/TP-620-40293, July 2006.
    [19]Kempton W, Tomic J, Letendre S, et al. Vehicle-to-grid:battery, hybrid, and fuel cell vehicles as resources for distributed electric power in California[R]. Davis:Institute of Transportation Studies (University of California, Davis),2001.
    [20]Ian Hiskens, Duncan Callaway. Achieving controllability of Plug-in Electric Vehicles[C]. IEEE Vehicle Power and Propulsion Conference,2009.
    [21]Sikai Huang, Infield, D. The potential of domestic electric vehicles to contribute to Power System Operation through vehicle to grid technology [C]. Universities Power Engineering Conference (UPEC),2009, Page(s):1-5.
    [22]Lukas A. Wehinger, Matthias D. Galus, Goran Andersson. Agent-based simulator for the German electricity wholesale market including wind power generation and wide scale PHEV adoption[C].2010 7th International Conference on the European Energy Market (EEM), Zurich, Switzerland,2010:1-6.
    [23]Sandels, C, U, Franke, N, Ingvar, et al. Vehicle to Grid- Monte Carlo simulations for optimal Aggregator strategies[C]. International Conference on Power System Technology, Stockholm, Sweden,2010:1-8.
    [24]Hutson C, Venayagamoorthy G K, Corzine K A. Intelligent scheduling of hybrid and electric vehicle storage capacity in a parking lot for profit maximization in grid power transactions[C]. Energy 2030 Conference, Atlanta, GA, US:IEEE,2008:1-8.
    [25]Caramanis M C, Foster J M. Management of electric vehicle charging to mitigate renewable generation intermittency and distribution network congestion[C]. Proceedings of 48th IEEE Conference on Decision and Control, Shanghai, China,2009:4717-4722.
    [26]Capion K. Optimized charging of electric drive vehicles in a market environment[D]. Technical university of Denmark:Ris National Laboratory for Sustainable Energy.2009.
    [27]Niklas Rotering, Marija Ilic Optimal Charge Control of Plug-In Hybrid Electric Vehicles in Deregulated Electricity Markets[J].IEEE Trans on Power Systems,2011,26 (3):1021-1029.
    [28]王丹,龙亮,葛琪,刘皓明.基于低谷填入法的插电式混合动力汽车集中充电策略[J].电力需求侧管理,2010,12(6):8-11.
    [29]王晓寅,刘俊勇,唐勇,等.基于logit模型的电动汽车充放电研究[J].华东电力,2011,39(2):198-201.
    [30]邹文,吴福保,刘志宏.实时电价下插电式混合动力汽车智能集中充电策略[J].电力系统自动化,2011,35(14):62-67.
    [31]葛少云,黄缪,刘洪.电动汽车有序充电的峰谷电价时段优化[J].电力系统保护与控制,2012,40(10):1-5.
    [32]黄镠.电动汽车有序充电研究[D].天津:天津大学,2011.
    [33]徐颢霖,林涛,徐遐龄,张裕田.基于DSM引导电动车有序充放电模式分析[J],华中电力,2011,24(6):40-46.
    [34]徐智威,胡泽春,宋永华,等.充电站内电动汽车有序充电策略[J].电力系统自动化,2012,36(11):38-43.
    [35]赵俊华,文福拴,薛禹胜,等.计及电动汽车和风电出力不确定性的随机经济调度[J].电力系统自动化,2010,34(20):22-29.
    [36]Saber A Y, Venayagamoorthy G K. Intelligent unit commitment with vehicle-to-grid:a cost-emission optimization[J]. Journal of Power Sources,2010,195 (3):898-911.
    [37]Saber A Y, Venayagamoorthy G K. Unit commitment with vehicle-to-grid using particle swarm optimization[C]//Proceedings of IEEE Power Tech. Bucharest, Romania:IEEE Power & Energy Society,2009:1-8.
    [38]Saber A Y, Venayagamoorthy G K. Optimization of vehicle-to-grid scheduling in constrained parking lots[C]//Proceedings of IEEE Power Engineering Society General Meeting. Calgary, AB, Canada:IEEE Power & Energy Society,2009:1-8.
    [39]Saber A Y, Venayagamoorthy G K. Efficient utilization of renewable energy sources by gridable vehicles in cyber-physical energy systems[J]. IEEE Systems Journal,2010,4(3): 285-294.
    [40]于大洋,宋曙光,张波,韩学山.区域电网电动汽车充电与风电协同调度的分析[J].电力系统自动化,2011,35(14):24-29.
    [41]赵俊华,文福拴,杨爱民,辛建波.电动汽车对电力系统的影响及其调度与控制问题[J].电力系统自动化,2011,35(14):2-10.
    [42]刘晓飞,张千帆,崔淑梅.电动汽车V2G技术综述[J].电工技术学报,2012,27(2):121-127.
    [43]陆凌蓉,文福拴,薛禹胜,辛建波.计及可入网电动汽车的电力系统机组最优组合[J].电力系统自动化,2011,35(21):16-20.
    [44]蔡秋娜,文福拴,薛禹胜,辛建波.基于SCUC的可入网混合电动汽车优化调度方法[J].电力系统自动化,2012,36(1):38-46.
    [45]于大洋,黄海丽,雷鸣,等.电动汽车充电与风电协同调度的碳减排效益分析[J].电力系统自动化,2012,36(10):14-18.
    [46]Dayang Yu, Jun Liang, Xueshan Han, et al. Profiling the regional wind power fluctuation in China[J]. Energy Policy,2011,39(1):299-306.
    [47]张舒,胡泽春,宋永华,等.考虑电动汽车换电站与电网互动的机组组合问题研究[J].中国电机工程学报,2012,32(10):49-55.
    [48]苗轶群,江全元,曹一家.基于微电网的电动汽车换电站运营策略[J].电力系统自动化,2012,36(15):33-38.
    [49]苗轶群,江全元,曹一家.考虑电动汽车及换电站的微网随机调度研究[J].电力自动化设备,2012,32(9):18-24.
    [50]曹一家,苗轶群,江全元.含电动汽车换电站的微电网孤岛运行优化[J].电力自动化设备,2012,32(5):1-6.
    [51]李正烁,孙宏斌,郭庆来,王尧.计及碳排放的输电网侧“风-车协调”研究[J].中国电机工程学报,2012,32(10):41-48.
    [52]Li Zhengshuo, Sun Hongbin, Guo Qinglai, et al. Study on wind-EV complementation in transmission grid side[C]//IEEE Power and Energy Society General Meeting. Detroit, Michigan:IEEE PES,2011:1-6.
    [53]王贵斌,赵俊华,文福拴,等.配电系统中电动汽车与可再生能源的随机协同调度[J].电力系统自动化,2012,36(19):22-29.
    [54]Vlachogiannis J G. Probabilistic constrained load flow considering integration of wind power generation and electric vehicles[J]. IEEE Transactions on Power Systems,2009, 24(4):1808-1817.
    [55]Ghanbarzadeh T, GoleijaniS, Moghaddam M P. Reliability constrained unit commitment with electric vehicle to grid using hybrid particle swarm optimization and ant colony optimization[C]//IEEE Power & Energy Society General Meeting,Detroit, USA:IEEE, 2011:1-7.
    [56]Galus M D, Fauci R L,Andersson G. Investigating PHEV wind balancing capabilities using heuristics and model predictive control[C]//IEEE Power and Energy Society General Meeting. Minneapolis, MN:IEEE PES,2010:1-8.
    [57]Larsen E, Chandrashekhara D K, Ostergard J. Electric vehicles for improved operation of power systems with high wind power penetration[C]//IEEE Energy 2030 Conference. Atlanta, GA:IEEE,2008:1-6.
    [58]Lopes J A P, Almeida P M R, Soares F J. Using vehicle-to-grid to maximize the integration of intermittent renewable energy resources in islanded electric grids[C]//International Conference on Clean Electrical Power. Capri:ICCEP,2009:1-6.
    [59]Mitra P, Venayagamoorthy G K. Intelligent coordinated control of a wind farm and distributed smartparks[C]//IEEE Industry Applications Society Annual Meeting (IAS). Houston, TX:IEEE IAS,2010:1-8.
    [60]Somayeh Sojoudi, Steven H. Low. Optimal Charging of Plug-in Hybrid Electric Vehicles in Smart Grids [C]//Proceedings of The 2011 IEEE Power & Energy Society General Meeting. Michigan, USA:IEEE,2011:1-6.
    [61]中国电力科学研究院.电动汽车有序充电控制方法及系统:中国,CN102055217A[P].2011-05-11.
    [62]胡海彬.电动汽车充电站功率控制策略研究[D].成都:电子科技大学,2011.
    [63]邱威.考虑间歇性能源接入和运行安全的多目标有功优化调度[D].北京:华北电力大学,2012.
    [64]李惠玲,白晓民.电动汽车充电对配电网的影响及对策[J].电力系统自动化,2011,35(17):38-43.
    [65]Sortomme E, Hindi M M, James MacPherson S D, et al. Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses[J]. IEEE Trans on Smart Grid,2011,2(1):198-205.
    [66]韩海英,和敬涵,王小君,等.基于改进粒子群算法的电动车参与负荷平抑策略研究[J].电网技术,2011,35(10):165-169.
    [67]Mukesh Singh, Indrani Kar, Praveen Kumar. Influence of EV on grid power quality and optimizing the charging schedule to mitigate voltage imbalance and reduce power loss[C] //14th International Power Electronics and Motion Control Conference,2010.
    [68]Kristien Clement-Nyns, Edwin Haesen, Johan Driesen. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid [J].IEEE Trans on Power Systems, 2010,25(1):371-380.
    [69]Sara Deilami, Amir S. Masoum, Paul S. Moses, Mohammad A. S. Masoum. Real-Time Coordination of Plug-In Electric Vehicle Charging in Smart Grids to Minimize Power Losses and Improve Voltage Profile [J].IEEE Trans on Smart Grid,2011,2 (3):456-466.
    [70]Su W, Chow M Y. Performance evaluation of a PHEV parking station using particle swarm optimization[C]. Proceedings of 2011 IEEE Power and Energy Society General Meeting, 2011:1-6.
    [71]Su W, Chow M Y. Performance evaluation of an EDA-based large-scale plug-in hybrid electric vehicle charging algorithm[J]. IEEE Transactions on Smart Grid,2012,3(1): 308-315.
    [72]黄润,周鑫,严正,顾洁.计及电动汽车不确定性的有序充电调度策略[J].现代电力,2012,29(3):57-63.
    [73]张丽,王媚,杜成刚,等.一种V2G充放电控制策略算法应用[J].华东电力,2010,38(11):1675-1677.
    [74]罗卓伟,胡泽春,宋永华,等.大规模电动汽车充放电优化控制及容量效益分析[J].电力系统自动化,2012,36(10):19-26.
    [75]姚伟锋,赵俊华,文福拴,等.基于双层优化的电动汽车充放电调度策略[J].电力系统自动化,2012,36(11):30-37.
    [76]Clement Kristien, Haesen Edwin, Driesen Johan. Coordinated charging of multiple plug-in hybrid electric vehicles in residential distribution grids[C]. Proceedings of 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, WA,United states,2009:1-7.
    [77]Acha Salvador, Green Tim C., Shah Nilay. Effects of optimised plug-in hybrid vehicle charging strategies on electric distribution network losses[C]. Proceedings of 2010 IEEE PES Transmission and Distribution Conference and Exposition, New Orleans, LA, USA, 2010:1-6.
    [78]Gao Shuang, K. T. Chau, Diyun Wu and C. C. Chan. Modeling and coordinated control for integrating electric vehicles into the power grid[C]. Proceedings of 2011 International Conference on Electrical Machines and Systems, Beijing, China,2011:1-6.
    [79]A.S. Masoum, S. Deilami, P.S.Moses, M.A.S. Masoum, A. Abu-Siada. Smart load management of plug-in electric vehicles in distribution and residential networks with charging stations for peak shaving and loss minimisation considering voltage regulation[J]. IET Generation, Transmission and Distribution,2011,5(8):877-888.
    [80]田文奇,和敬涵,姜久春,等.电动汽车换电站有序充电调度策略研究[J].电力系统保护与控制,2012,40(21):114-119.
    [81]田文奇,和敬涵,姜久春,等.基于自适应变异粒子群算法的电动汽车换电池站充电调度多目标优化[J].电网技术,2012,36(11):25-29.
    [82]田文奇,和敬涵,姜久春,等.电动汽车充电负荷空间分配优化算法[J].电工技术学报,2013,28(3):269-276.
    [83]Soohyeong Jang, Sekyung Han, Soo Hee Han, et al. Optimal decision on contract size for V2G aggregator regarding frequency regulation[C]. International Conference on Optimization of Electrical and Electronic Equipment, Tokyo, Japan,2010:54-62.
    [84]Almeida, P.M.R., Lopes, J.A.P., Soares, F.J., et al. Automatic Generation Control Operation with Electric Vehicles[C]. Bulk Power System Dynamics and Control (iREP)-VIII (iREP),2010 iREP Symposium,2010:1-7.
    [85]Ota Y., Taniguchi H, Nakajima T, et al. Effect of autonomous distributed vehicle-to-grid (V2G) on power system frequency control[C]. International Conference on Industrial and Information Systems, Univ. of Tokyo, Tokyo, Japan,2010:481-485.
    [86]Shimizu K, Masuta T, Ota Y,et al. A new load Frequency Control in power system using Vehicle-to-Grid system considering the customer convenience of Electric Vehicles[C]. International Conference on Power System Technology, Univ. of Tokyo, Tokyo, Japan,2010:1-8.
    [87]Lopes, J.A.P., Soares, F.J., Almeida, P.M.R.. Integration of Electric Vehicles in the Electric Power System[J]. Proceedings of the IEEE,2011,99(1):168-183.
    [88]Pillai J.R., B. B.Jensen. Integration of Vehicle-to-Grid in the Western Danish Power System[J]. IEEE Transactions on Sustainable Energy,2011,1(2):12-19.
    [89]Jayakrishnan R. Pillai. Electric Vehicle Based Battery Storages for Large Scale Wind Power Integration in Denmark [D]. Denmark:Aalborg University,2010.
    [90]Sekyung Han, Soohee Han, Sezaki K.. Development of an Optimal Vehicle-to-Grid Aggregator for Frequency Regulation[J]. IEEE Transactions on Smart Grid,2010,1 (1): 65-72.
    [91]Sekyung Han, Soohee Han, Sezaki K.. Design of an optimal aggregator for vehicle-to-grid regulation service[C]. Innovative Smart Grid Technologies (ISGT),2010, Gaithersburg, MD, USA:1-8.
    [92]黄媛,刘俊勇,陈井锐,等.计及电动汽车入网的负荷频率控制[J].电力系统自动化,2012,36(9):2428.
    [93]杨黎晖,许昭,等.电动汽车在含大规模风电的丹麦电力系统中的应用[J].电力系统自动化,2011,35(14):4347.
    [94]韩海英.V2G参与电网调峰和调频控制策略研究[D].北京:北京交通大学,2011.
    [95]Yutaka Ota, Haruhito Taniguchi, Tatsuhito Nakajima, et al. An autonomous distributed Vehicle-to-Grid control of grid-connected electric vehicle[C]. Fourth International Conference on Industrial and Information Systems,2009, Sri Lanka:414-418.
    [96]Yutaka Ota, Haruhito Taniguchi, Tatsuhito Nakajima, et al. Autonomous Distributed V2G (Vehicle-to-Grid) considering Charging Request and Battery Condition[C].2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe),2010, Gothenburg, SWEDEN:1-6.
    [97]Yutaka Ota, Haruhito Taniguchi, Tatsuhito Nakajima, et al. Autonomous Distributed V2G (Vehicle-to-Grid) Satisfying Scheduled Charging[J]. IEEE TRANSACTIONS ON SMART GRID,2012,3(1):559-564.
    [98]Toru Namerikawa, Taichiro Kato. Distributed Load Frequency Control of Electrical Power Networks via Iterative Gradient Methods[C].2011 50th IEEE Conference on Decision and Control and European Control Conference,2011, Orlando, FL, USA:7723-7728.
    [99]Takagi Masaaki, Yamamoto Hiromi, Yamaji Kenji. Evaluation of Expanded Allowable Capacity of Wind Power in Power Systems by Charge Control for Plug-in Hybrid Electric Vehicles[J]. IEEJ Transactions on Power and Energy,2008,128(12):1513-1521.
    [100]Masaaki Takagi, Kenji Yamaji, and Hiromi Yamamoto. Power System Stabilization by Charging Power Management of Plug-in Hybrid Electric Vehicles with LFC Signal[C]. Proc.2009 Vehicle Power and Propulsion Conference (VPPC), pp:822-826.
    [101]M. Takagi, H. Yamamoto, K. Yamaji. Analysis of expanded allowable capacity of wind power in power grid by charge control for plug-in hybrid electric vehicles[C]. Proc.28th USAEE/IAEE North American Conference, pp:1-15.
    [102]Matthias D. Galus, Stephan Koch, Goran Andersson. Provision of Load Frequency Control by PHEVs, Controllable Loads, and a Cogeneration Unit[J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2011,58(10):4568-4582.
    [103]Sara Kathryn Mullen. Plug-in Hybrid Electric Vehicles as a Source of Distributed Frequency Regulation [D]. United States:University of Minnesota,2010.
    [104]Andreas Ulbig, Matthias D. Galus, Spyros Chatzivasileiadis, et al. General Frequency Control with Aggregated Control Reserve Capacity from Time-Varying Sources:The Case of PHEVs[C].2010 IREP Symposium-Bulk Power System Dynamics and Control-Ⅷ (IREP),2010, Buzios, RJ, Brazil:1-14.
    [105]Manoj Datta, Hiroki Ishikawa, Haruo Naitoh, et al. LFC by Coordinated Virtual Inertia Mimicking and PEVs in Power Utility with MW-class Distributed PV Generation[C].2012 IEEE 13th Workshop on Control and Modeling for Power Electronics (COMPEL),2012, Kyoto:1-8.
    [106]薛飞,雷宪章,张野飚,等.电动汽车与智能电网从V2G到B2G的全新结合模式[J].电网技术,2012,36(2):29-34.
    [107]周逢权,连湛伟,王晓雷,等.电动汽车充电站运营模式探析[J].电力系统保护与控制,2010,38(21):63-71.
    [108]陈良亮,张浩,倪峰,等.电动汽车能源供给设施建设现状与发展探讨[J].电力系统自动化,2011,35(14):11-17.
    [109]张维戈,张帝,温家鹏,等.电动公交更换式充电站的优化设计[J].北京交通大学学报,2012,36(2):100-104.
    [110]Callaway D.S., Hiskens I.A.. Achieving Controllability of Electric Loads[J]. Proceedings of the IEEE,2011,99(1):184-199.
    [111]王辉,文福拴,辛建波.电动汽车充放电特性及其对配电系统的影响分析[J].华北电力大学学报,2011,38(5):17-24.
    [112]田立亭,史双龙,贾卓.电动汽车充电功率需求的统计学建模方法[J].电网技术,2010,34(11):126-130.
    [113]冯渊,贺宏胜,等.纯电动汽车充换电站规模设计仿真研究[J].上海汽车,2012,3:7-9.
    [114]魏春,韩民晓,杨霞.低碳经济对电网负荷率特性的影响分析[J].电网技术,2010,34(9):100-104.
    [115]颉飞翔.基于公交运营模式的电动汽车充电站负荷研究[D].北京:北京交通大学,2012.
    [116]纪震,廖惠连,吴青华.粒子群算法及应用[M].北京:科学出版社,2009:16-19.
    [117]吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420.
    [118]黄李,张维戈,姜久春.2008年奥运会电动车充电站电气设计方案[J].建筑电气,2007,26(8):18-21.
    [119]李晓强.基于最大负荷纯电动汽车充换电站仿真软件研究与设计[D].北京:北京交通大学,2011.
    [120]任玉珑,史乐峰,张谦.电动汽车充电站最优分布和规模研究[J].电力系统自动化,2011,35(14):53-57.
    [121]孙小慧,刘锴,左志.考虑时空间限制的电动汽车充电站布局模型[J].地理科学进 展,2012,31(6):686-692.
    [122]罗卓伟,胡泽春,宋永华,杨霞,占恺峤,吴俊阳.电动汽车充电负荷计算方法[J].电力系统自动化,2011,35(14):3642.
    [123]Kejun Qian, Chengke Zhou, Malcolm Allan, Yue Yuan. Load Model for Prediction of Electric Vehicle Charging Demand [C]//Proceedings of 2010 International Conference on Power System Technology. Hangzhou, P.R. China:IEEE,2010:1-6.
    [124]N.Saker, M.Petit, J-C.Vannier. Electric Vehicles Charging Scenarios Associated to Direct Load Control Programs (DLC) [C]//Proceedings of North American Power Symposium (NAPS). Boston, United States:IEEE,2011:1-7.
    [125]曾鸣,薛松,刘宏志,李凌云,董军.我国区域电动汽车运营模式及其最优并网规模规划模型[J].电网技术,2012,36(6):175-181.
    [126]林茂盛.基于复杂网络理论的中压配电网网络结构评估[D].郑州:郑州大学,2011.
    [127]李国强.北京市海淀供电公司线损分析及管理措施研究[D].北京:华北电力大学,2011.
    [128]王玉瑾.基于初始站址冗余网格动态减少的变电站规划[D].重庆:重庆大学,2011.
    [129]王金凤,杨丽徙,陈根永.电力市场环境下可中断负荷应用研究综述[J].华北水利水电学院学报,2007,28(6):42-44.
    [130]朱鹤,杨丽徙,朱延伟,等.计及地理空间信息的农网投资效益后评估方法[J].电力系统及其自动化学报,2012,24(5):31-35.
    [131]冯超,周步祥,林楠,李阳,夏榆杭Delphi和GAHP集成的综合评价方法在电动汽车充电站选址最优决策中的应用[J].电力自动化设备,2012,32(9):25-29.
    [132]熊虎,向铁元,荣欣,陈红坤.电动汽车电池更换站布局的最优规划[J].电力自动化设备,2012,32(9):1-6.
    [133]刘自发,张伟,王泽黎.基于量子粒子群优化算法的城市电动汽车充电站优化布局[J].中国电机工程学报,2012,32(22):3945.
    [134]唐现刚,刘俊勇,刘友波,等.基于计算几何方法的电动汽车充电站规划[J].电力系统自动化,2012,36(8):24-30.
    [135]刘志鹏,文福拴,薛禹胜,辛建波.电动汽车充电站的最优选址和定容[J].电力系统自动化,2012,36(3):54-59.
    [136]曹一家,谭益,黎灿兵,等.具有反向放电能力的电动汽车充电设施入网典型方案[J].电力系统自动化,2011,35(14):48-52.
    [137]张国亮,李波,王运发.多等级电动汽车充电站的选址与算法[J].山东大学学报,2011,41(6):136-142.
    [138]吴春阳,黎灿兵,杜力,曹一家.电动汽车充电设施规划方法[J].电力系统自动化,2010,34(24):36-39.
    [139]李如琦,苏浩益.基于排队论的电动汽车充电设施优化配置[J].电力系统自动化,2011,35(14):58-61.
    [140]北京市质量技术监督局.DB11/Z 728-2010电动汽车电能供给与保障技术规范:充电站[S].北京:北京市质量技术监督局,2010.
    [141]任子武,伞冶.自适应遗传算法的改进及在系统辨识中应用研究[J].系统仿真学报,2006,18(1):4143.
    [142]张铁映.城市不同交通方式能源消耗比较研究[D].北京:北京交通大学,2010.
    [143]滕乐天,何维国,杜成刚,楼晓东.电动汽车能源供给模式及其对电网运营的影响[J].华东电力,2009,37(10):1675-1677.
    [144]http://news.enorth.com.cn/system/2011/09/20/007827661.shtml

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700