用户名: 密码: 验证码:
新疆东天山康古尔塔格地区古弧—盆系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆东天山康古尔塔格的大地构造背景、成矿地质背景一直是地质学者们长期探索、而又一直存在争议的地质问题。其争议的根本问题在于东天山康古尔塔格地区蛇绿岩的不确定性。又因该区特殊的大地构造位置,上述问题的研究不仅有助于解决本区的成矿地质背景,也有助于正确理解中亚造山带东天山地段的构造演化。
     本文通过对康古尔塔格南及西南的一套为:变质橄榄岩—堆晶橄榄岩—辉长岩—斜长花岗岩—辉绿岩—玄武岩的岩石组合研究后,确认该套岩石组合为蛇绿岩。该套岩石组合中蛇纹岩化方辉橄榄岩、蛇纹石化辉石岩、蚀变辉长岩与特罗多斯蛇绿岩中同类型岩石类似,岩石总体低钾。变质橄榄岩MgO/(MgO+TFeO)为0.83—0.87,TiO_2(Wt%)为0.02%,与SSZ型蛇绿岩的变质橄榄岩一致。玄武岩及辉绿岩的地球化学显示其具MORB特征,Nb显负异常,环境判别显示该蛇绿岩可能形成于离洋内弧较近的SSZ型弧后盐地。放射虫硅质岩的Al_2O_3/(Al_2O_3+Fe_2O_3)值平均为0.047,MnO/TiO_2比值平均为0.93,Ce具负异常,Ce/Ce~*=0.548,La_n/Ce_n=1.661,表明放射虫硅质岩的形成环境与洋中脊有密切关系。辉长岩的SHRIMP锆石U—Pb定年(494±10(2σ)Ma)表明其形成于晚寒武世—早奥陶世。辉长岩、玄武岩斜长花岗岩及角斑岩的~(143)Nd/~(144)Nd比值在0.512842~0.513328之间,ε_(Nd)(t)值为+5.7~+10.5,表明康古尔塔格蛇绿岩来自亏损上地幔,在演化过程中没有受到陆壳物质的明显混染。同时康古尔塔格蛇绿岩与准噶尔地体有类似的Nd同位素组成的源区。(~(87)Sr/~(86)Sr)_i值变化于0.703475~0.704923,与现代典型大洋中脊新鲜玄武岩的~(87)Sr/~(86)Sr值变化范围一致,仅最大值大一点,被认为是海水蚀变的结果。上述资料总体表明康古尔塔格地区的从变质橄榄岩至玄武岩的岩石组合确为蛇绿岩,属古生代北天山洋在该区的古洋壳残片。
     通过对康古尔塔格断裂以北的早古生代晚期至晚古生代中期花岗岩的研究表明,该时期的花岗岩均为钠质钙碱性系列岩石;微量元素研究表明它们均形成于活动陆缘的岛弧环境;它们均具有低的~(87)Sr/~(86)Sr同位素比值(Isr=0.7033~0.7040)和高的ε_(Nd)(t)值(+9.4~+7.2),与美国西部和俯冲有关的火山岩(安山岩)一致,与加里福尼亚地区Sierra Nevada和Peninsular Ranges白垩纪石英闪长岩也相同,高ε_(Nd)(t)
Tectonically, the Kangguertage is a very important area to understand its metallogenic background and the tectonic evolution of eastern Tianshan section in Central Asia Oregon. However, there are lots of disputes and controversy on the tectonic setting and metallogenic background of the Kangguertage in eastern Tianshan, because of the uncertainty of Kangguertage Ophiolite. Through the research for rock assembly including metamorphic peridotite, cumulate peridotite, gabbro, plagiogranite, diabase, basalt, form south and southwest Kangguertage, we confirm that this rock sequence is a typical ophiolite suit. Harzburgite serpentinized (metaperidolite), serpentinized pyroxenite, altered grabbro in Kangguertage ophiolite are similar to the corresponding rocks in Troodos ophiolite, all low in K. MgO/ (MgO+TFeO) ratios of metamorphic peridotite ranges in 0.83—0.87, and TiO_2 (Wt%) is 0.02%, which is consistent with metamorphic peridotite in SSZ-type ophiolite. Geochemistry of basalt and diabase demonstrates they are of MORB characteristic, with Nb negative anomaly, and the environment discriminations suggest that the ophiolite may form in a SSZ-type back-arc basin serves behind a intra-oceanic arc. The radiolarian silicalite, have Al_2O_3/(Al_2O_3+Fe_2O_3) average ratios at 0.047, MnO/TiO_2 value 0.93, Ce negative anomaly and Ce/Ce~* equal to 0.548 and La_n/Ce_n ratio 1.661, indicating that the tectonic environment of radiolarian silicalite relate closely to MOR. The SHRIMP Zircon dating of gabbro (494±10 (2σ) Ma) suggest it is of Late-Cambrian to Early-Ordovician age. The ~(143)Nd/~(144)Nd ratios of gabbro, basalt, plagiogranite and keratophyre range in 0.512842~0.513328, ε_(Nd)(t) are +5.7~+10.5, which indicate that Kangguertage ophiolite derived from a depleted mantle, did not suffered_from obvious crustal contamination and possess similar Nd isotopic composition with Jungger terrane. (~(87)Sr/~(86)Sr)_i ratio ranges in
    0.703475-0.704923, which is comparable with form fresh basalts the modern oceanic ridge. Information and data mentioned above indicate that Kangguertage ophiolite is ancient oceanic crust relics of Paleozoic Northern Tianshan Ocean. Research on the Early-Paleozoic to Late-Paleozoic granites in the north of Kangguertage faults shows that the granites are all sodium rocks for calc-alkaline series;Trace elements study indicates that they formed in island arc environment at active continental margin;the granites demonstrate low 87Sr/86Sr isotopic ratios (Isr=0.7033~0.7040) and high eNd(t) values (+9.4~+7.2) , which are consistent with the subduction-related volcanic rocks(andesites) in western U.S, and Sierra Nevada and Peninsular Ranges Cretaceous quartz diorites in California, suggesting that the forming of granites is related to the melting of subducted oceanic crust. All these characteristics indicate that research area experienced the process, from rifting-ocean basin open, oceanic crust subduction, ocean basin to closure, a whole trench-arc-basin system in Paleozoic. The Kangguertage deep fault is the ocean basin closure belt, which may be the suture zone of Tarim block and Kazakstan-Jungger block exposed in Kangguertage area. The definition of trench-arc-basin system and suture zone in the research area provide a substantial evidence for this area's metallogenic tectonic background.
引文
1、白云来.1993.新疆黄山地区蛇绿岩块的地质、地球化学特征及构造意义.新疆地质,11(1):34-42.
    2、曹高社.1997.康古尔塔格蛇绿岩特征及新疆古生代蛇绿岩热侵位雏议.新疆地质,15(3):269-275.
    3、陈富文,李华芹,陈毓川,王登红,王金良,刘德权,唐延同、唐延龄,周汝洪.2005.东天山土屋—延东斑岩铜矿田成岩时代精确测定及其地质意义.地质学报,79(2):256-260.
    4、陈哲夫,成守德,梁云海等.1997.新疆开合构造与成矿.新疆科技卫生出版社,3-10.
    5、陈哲夫等.1999.中亚大型金属矿床特征与成矿环境.新疆科技卫生出版社,1—265
    6、邓刚,吴华,卢全敏.2004.东天山白山斑岩型钼矿床的地质特征及找矿标志.地质通报,23(11):1132~1138.
    7、方国庆.1994.东天山古生代板块构造特点及其演化模式.甘肃地质学报,3(1):34-40.
    8、冯益民,朱宝清,杨军录,张开春.2002.东天山大地构造及演化—1:50万东天山大地构造图简要说明.新疆地质,20(4):309-314.
    9、顾连兴,诸建林,郭继春,廖静绢,严正富,杨浩,王金珠.1994.造山带环境中的东疆型镁铁—超镁铁杂岩.岩石学报,10(4):339—356.
    10、郭召杰,王超.1993.新疆东准噶尔塔克札勒—麦钦乌拉古缝合线的确定.矿物岩石,13(1):96—102.
    11、郝梓国,王希斌,鲍佩声等.1989.新疆西准噶尔地区两类蛇绿岩的地质特征及 其成因研究.岩石矿物学杂志.8:299-310.
    12、胡蔼琴,王中刚,涂光炽等.1997,新疆北部地质演化及成岩成矿规律.科学出版社.106-145.
    13、胡霭琴,韦刚健.2003.关于准噶尔盆地基底时代问题的讨论—据同位素年代学研究结果.新疆地质,21(4):398~406
    14、胡霭琴,张国新等.新疆地壳演化主要地质事件年代学和地球化学.地质出版社(出版中).
    15、姬金生,陶洪祥,曾章仁等.1993.东天山康古尔塔格金矿带地质与找矿.北京:地质出版社.1-4,124-151.
    16、姬金生,杨兴科,李华芹.1994.东天山石炭纪火山岩中古锆石年龄的地质意义.矿物岩石地球化学通报,3总51:166-167
    17、李华芹.常海亮.1999.东天山觉罗塔格成对金矿带及其形成的构造背景.长春科技大学学报,29(3):232~237.
    18、李华芹,陈富文,路远发,杨红梅,郭敬,梅玉萍.2004.东天山三岔口铜矿区矿化岩体SHRIMP U-Pb年代学及锶同位素地球化学特征研究.地球学报,25(2):191~195.
    19、李华芹,陈富文,蔡红等.1999.新疆东部马庄山金矿成矿作用同位素年代学研究.地质科学,34(2):251-256.
    20、李锦轶,王克卓,李文铅,等.2002.东天山早古生代以来大地构造与矿产勘查.新疆地质,20(4):295-301.
    21、李锦轶.1995.新疆东准噶尔蛇绿岩的基本特征和侵位历史.岩石学报,11增刊:73—84.
    22、李文明,任秉琛,杨兴科,李有柱,陈强.2002.东天山中酸性侵入岩浆作用及其 地球动力学意义.西北地质,35:41~64
    23、李文铅,董富荣,周汝洪.2000.新疆鄯善康古尔塔格蛇绿杂岩的发现及其特征.新疆地质,18(2):121-128.
    24、李武显,李献华.2003.蛇绿岩中的花岗质岩石成因类型与构造意义.地球科学进展,18(3),392-397.
    25、李献华,刘颖,涂湘林,胡光黔,曾文.2002.硅酸盐岩石化学组成的ICP—AES和ICP—MS准确测定:酸溶与碱熔分解样品方法的对比.地球化学,31(3):289-294.
    26、梁月明,黄旭钊,徐昆,等.2001.新疆康古尔塔格断裂带地球物理场及深部地质特怔.中国区域地质,20(4):398-403.
    27、梁云海,李文铅,李卫东,李亚萍.1999.新疆蛇绿岩就位机制.新疆地质,17(4):344-349.
    28、刘德权,唐延龄,周汝洪.1999.天山古生代造山带的演化与成矿.见陈毓川主编《当代矿产资源勘查评价的理论与方法》.北京,地震出版社,549-560.
    29、刘德权,陈毓川,王登红等.2003.新疆哈密土屋.延东超大型铜钼矿田成矿有关问题讨论.矿床地质,22(4):234-244.
    30、刘德权,唐延龄,周汝洪.1992.新疆北部古生代地壳演化及成矿系列.矿床地质,11(4):307-314.
    31、刘德权,唐延龄,周汝洪.1996.中国新疆矿床成矿系列.北京:地质出版社,127-144.
    32、刘颖,刘海臣,李献华.1996.用ICP-MS准确测定岩石样品中的40余种微量元素.地球化学,25(6):552-558.
    33、马瑞士,叶尚夫,王赐银等.1990.东天山造山带构造格架和演化.新疆地质科学,(2):21—36.
    34、马瑞士,叶尚夫,王赐银等.1993.东天山构造格架及地壳演化.南京:南京大学出版社.1-202.
    35、马瑞士,舒良树,孙家齐.1997.东天山构造演化与成矿.北京:地质出版社,188-192.
    36、毛景文,杨建民,屈文俊,杜安道,王志良,韩春明.2002.新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义.矿床地质,21(4):323~330.
    37、倪志耀,卫管一.1995.新疆东部基性超基性岩的地质地球化学特征.矿物岩石,15(1):8—17.
    38、聂凤军等,2004.中蒙边境及邻区斑岩型铜矿床地质特征及成因.矿床地质,23(2):176~189.
    39、秦克章,方同辉,王书来,朱宝清,冯益民,于海峰,修群业.2002.东天山板块构造分区、演化与成矿地质背景研究.新疆地质,20(4):302~308.
    40、芮宗瑶,刘玉林,王龙生,王义天.2002.东天山斑岩型铜矿带及其大地构造格局.地质学报,76(1):83-93.
    41、舒良树,马瑞士,郭令智.1997.天山东段推覆构造研究.地质科学,32(3):337-350.
    42、宋彪,李锦轶,李文铅,王克卓,王瑜.2002a.吐哈盆地南缘克孜尔卡拉萨依和大南湖花岗质岩基锆石SHRIMP定年及其地质意义.新疆地质,20(4);342-345.
    43、宋彪,张玉海,万渝生,简平.2002b.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,48(增刊):26~30.
    44、汤耀庆,肖序常,赵民等.1993.新疆北部大地构造研究的新进展.新疆地质科学,第四辑.北京,地质出版社,1-12.
    45、涂光炽.1993.关于火山岩型矿床若干问题的探讨.北京:地质出版社.6-12.
    46、涂光炽.1999.初议中亚成矿域.地质科学,34(4):397~404.
    47、王碧香,李兆鼐,赵光赞,王富宝,张水哲,费文恒.1989.新疆北天山东段花岗岩类地球化学.地质学报,63(3):236-245.
    48、王超,马瑞士,叶尚夫等.1992.东天山板块构造研究.现代地质学研究文集(上).南京大学出版社,30-38.
    49、王福同,冯京,胡建卫等.2000,新疆土屋铜矿床地质特征及发现意义.王福同.第四届天山地质矿产资源学术讨论会论文集.乌鲁木齐:新疆人民出版社,224-229.
    50、王希斌,鲍佩声,陈克樵.1987a.西藏的蛇绿岩.中国区域地质,(3):248-256.
    51、王希斌,鲍佩声,邓万明等.1987b.西藏蛇绿岩.北京:地质出版社,1-336.
    52、王希斌,鲍佩声,肖序常.1987c.雅鲁藏布江蛇绿岩(中法合作地质考察成果).北京:测绘出版社.1-118.
    53、王作勋,邬继易,吕喜朝等.1990.天山多旋回构造演化及成矿.北京:科学出版社,1-218.
    54、吴承烈,徐外生,刘崇民.1998,中国主要类型铜矿勘查地球化学模型.北京地质出版社,1-188.
    55、吴利仁.1963.论中国基性岩、超基性岩的成矿专属性,地质科学,第一期.
    56、吴绍祖.1993.新疆石炭—二叠纪植物地理区的形成与演变.新疆地质.11(1):13-21.
    57、肖序常,汤耀庆,冯益民等.1992.新疆北部及其邻区大地构造.北京:地质出版社.
    58、谢才富,李华芹,常海亮.1999.东天山觉罗塔格成对金矿带及其形成的构造背景.长春科技大学学报.29(3):232~237.
    59、熊光楚,邓振球,谢德顺.1996.新疆主要大中型金、铜等矿床的发展简史与找矿策略.北京:地质出版社,51-83.
    60、徐新忠,王有学,蒋亚明,等.1992.新—甘地震测深剖面的地壳速度结构及大地构造单元划分.新疆地质.10(2):147-154.
    61、徐兴旺,马天林,孙立情.等.1998.新疆东天山觉罗塔格韧性挤压带基本特征及动力学意义.地质科学,33(2):147-157.
    62、张传林.1993.新疆康古尔地区花岗岩地质、地球化学特征及地质意义.新疆地质.11(1):56~62.
    63、张魁武,沈步明,李达周,张旗.1988.阿拉斯加型超镁铁质岩的岩石化学特征.地质论评.34(4):377-382.
    64、张连昌,秦克章,英基丰,夏斌,舒建生.2004.东天山土屋.延东斑岩铜矿带埃达克岩及其与成矿作用的关系.岩石学报.20(2):259~268.
    65、张良臣,1995,中国新疆板块构造与动力学特征.新疆第三届天山地质矿产学术讨论会论文选集.乌鲁木齐,新疆人民出版社,1-13.
    66、张良臣,刘德权,唐延龄等,1990,新疆的宝藏.新疆人民出版社,香港文化教育出版社.1-328.
    67、张旗,张魁武,李达周.1992.横断山区镁铁—超镁铁岩.北京:科学出版社:1—216.
    68、张旗,张魁武,李达周.1988.云南新平县双沟蛇绿岩的初步研究.岩石学报,(4):37~48.
    69、张旗,周德进,李秀云等.1995.云南双沟蛇绿岩的特征和成因.岩石学报.11(增刊):190~202.
    70、张旗.1990a.蛇绿岩的分类.地质科学.(1):54-61.
    71、钟孙霖,1990.台湾西部碱性玄武岩中伟晶与包体之地球化学研究兼论晚新生代中国东南沿海板块玄武岩玄武岩的岩石成因.博士论文.
    72、周国庆,赵建新,李献华.2000.内蒙古月牙山蛇绿岩特征及形成的构造背景:地球化学和Sr-Nd同位素制约.地球化学.29(2):108~119.
    73、周济元等.1996,东天山古大陆及其边缘银、铼钼、金和铜矿地质[M].北京:地质出版社,1-190.
    74、周新民,杨杰东.1989.安徽歙县伏川蛇绿岩套的Sm—Nd等时线年龄及其地质意义 科学通报,34(16):1243—1245.
    75、朱宝清,王来生,王连晓.1987b.西准噶尔西南地区古生代蛇绿岩.中国地质科学院西安地质矿产研究所所刊,(17):3—64.
    76、朱文斌,马瑞士,王赐银.1996.论新疆东部黄山—镜儿泉杂岩带的构造属性.地质科学.31(1):22~32.
    77、朱云海,潘元明,张克信,王国灿,陈能松,侯光久.2000.蛇绿岩就位机制研究.地质科技情报.19(1):16~18.
    78、 Adachi M, Yamamoto K, Sugisaki R. 1986. Hydrothermal chert and associated siliceous rocks from the Northern Pacific: Their Geological significance as indication of ocean ridge activity. Sedimentary Geology, 47(1-2), 125-148.
    79、 Akiho Miyashiro. 1973. The Troodos ophiolitic complex was probably formed in an island arc. Earth Planet. Sci. Lett. Vol: 19: 218~224.
    80、 Arculus R J, Powwll R, Source component mixing in the region of arc magma generation. J Geophys Res. 1986, 91: 5913-5926.
    81、 Black L P, Kamo S L, Allen C M, et al. 2003a. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology. 200(1-2): 155~170.
    82 Black L P, Kamo S L, Williams I S, et al. 2003b. The application of SHRIMP to Phanerozoic geochronology;a critical appraisal of four zircon standards. Chemical Geology. 200(1-2): 171-188.
    83 Boudier F, Nicolas A.1986.Harzburgite and lherzolite subtypes in ophiolitic and oceanic environment. Earth Planet. Sci. Lett. 76:84-92.
    84 Boynton W.V., 1984, Geochemistry of the rare earth elements: meteorite studies.In: Henderson P.(ed.), Rare earth element geochemistry. Elservier, pp. 63-114
    85 Brown G.C., Thorpe R.S and Webb P.C. 1984. The geochemical characteristics of granitoids in comtrasting arcs and comments on magma sources. Journal of Geological Society. London, Vol, 141: 413-426.
    86 Chappell B.W and White A.J.R. 1974. Twocontrasting granite types. Pacific Geol, 8: 173-174.
    87 Church W R, Riccio L. 1977. Fractionation trend of the Bay of Islands ophiolite of Newfoundland: polycyclic cumulate sequences in ophiolites and their classification. Can. Earth Sci. 14: 1156-1165.
    88 Claesson S, Pallister J S and Tasumoto M. 1984. Samarium-neodyrnium data on two late Proterozoic ophiolites of Saudi Arebia and implications for crustal and mantle evolution. Contrib Mineral Petrol. 85:244-252.
    89 Claesson S, Vetrin V, Bayanova T, et al. 2000. U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia;a record of geological evolution from the Archaean to the Palaeozoic. Lithos. 51(1): 95-108.
    90 Coleman R G 1984. The diversity of ophiolites. Geol Mijnbouw. 63: 141-150.
    91 Colemen, R.G, Ophiolites: Ancient Oceanic Lithosphere. Berlin: Springer. 1977.
    92 Compston W, Williams I S, Kirschvink J L Zhang Zichao and Ma Guogan.1992. Zircon age U-Pb ages for the Early Cambrian time-scale. Journal of Geological Society. London. Vol,149:171~184.
    93 Cullers R. L and Graf J. L., 1984. Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks-ore Petrogenesis, in Rare Earth Element Geochemistry, Edited by P. Henderson , Elsrvier Amsterdam-Oxford-New York-Tokyo, 275-308.
    94 DePaolo D J. 1981. A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholithes of the Sierra Nevada and Peninsular Ranges, California. J. Geophys. Research, 86(B11): 10470-10488.
    95 DePaolo D J. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett. 53:189-202.
    96 DePaolo D J. 1988. Age dependence of the composition of comtinental crustEvidence from neodymium isotopic variations in granitic rocks. Earth Planet. Sci. Lett. 90: 263-271.
    97 Edelman S H. 1988. Ophiolite generation and emplacement by rapid subduction hnge retract on a continental-bearing plate. Geology. 16: 311-313.
    98 Gromet L.P, Dymek R. F, Haskin L. A, et al. 1984. The "North American shale composite" : Its compilation, major and trace element characteristics. Geochim. Cosmochim Acta. 48, 2469-2482.
    99 Harris N.B.W.,Pearce J.A. and Tindle A.G. 1986. Geochemical characteristice of collision-zone magmatasm. In: Coward M.P. and Reis A.C.(eds),Collision tectonice. Spec. Publ. Grol. Soc. Lond. 19:67-81.
    100 Hu Aiqin, Jahn Bor-ming, Zhang Guoxin, Chen Yibing, Zhang Qianfeng. 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang: Nd Isotopic Evidence. Part I: Isotopic Characterization of Basement Rocks. Tectonophysics. 15-51.
    101 Ishiwatari A. 1985. Igneous petrogenesis of the Yakuno ophiolite (Japan) in the context of the diversity of ophiolites. Contr. Mineral. Petrol. 89: 155-167.
    102 Ishiwatari A. 1992. Circum- Pacific ophiolite: Time-space distribution and petrologic diversity. 29th Inter Geol Cong. Abstract. 1. Kyoto. Japan. 132.
    103 Jacobaen S B, and Wasserburg G J. 1979. Nd and Sr isotopic study of Bay of Islands Ophiolite Complex and the evolution of the source of midocean ridge basalts. J. Geophys. Res. 84: 7429-7445.
    104 Jenner G A, Dunning G R, Malpae J, et al. 1991. Bay of Islands and Little Port complexes, revisited: Age, geochemical and isotopic evidence confirm suprasubduction-zone orgin. Can J Earth Sci. 28: 1635-1652.
    105 K. Bostrom, T. Kraemer and S. Gartner Bostrom K.,1973. Provenance and accumulation rates of opaline silica, Al, Fe, Ti, Mn, Cu, Ni, and Co in pacific pelagic sediments. Chemical Geology. 11 (1-2), 123-148.
    106, L. Dosso, X. Boespflug, M. Romeur, L. Turpin, J. Y. Calvez, H. Bougault and J. L. Joron. 1988. Isotopic and trace element data on Vack-Arc basalts from the South West Pacific Basins and the Sunda Arc. Chemical Geology. Vol70:47.
    107, Lagabrielle Y, Cannat M. 1990. Alpine Jurrasic ophiolites resemble the modern central Atlantic basement. Geology. 18: 319-323.
    108, Li X H, Zhou J X, McCulloch M T, et al. 1997. Geochemical and Sm-Nd isotopic study of Neoproterozoic ophiolites from southeastern China: Petrogenesis and tectonic implications. Precamb Ges. 81:129-144.
    109 Ludwig K R. 2002b. Isoplot/Ex Version 2.02, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication. 1a.
    110 Ludwig K R. 2002a. SQUID 1.02, a user's manual. Berkeley Geochronology Center Special Publication. No. 2
    111 McCulloch M G and Bennett V C. 1994. Progressive growth of the earth's continental crust and depleted mantle: Geochemical constraints. Geochem Cosmochim Acta. 58: 4717-4738.
    112 McCulloch M T and Cameron W E. 1983. Nd-Sr isotopic study of primitive lavas from the Troodos ophiolite, Cyprus : Evidence for a subduction-related setting, Geology. 11(12): 727-731.
    113 McCulloch M T, Gregory R T, Wasserburg G J and Taylor H P. 1980. A neodymium, strontium, and oxygen isotopic study of the Cretaceous Samail ophiolite and implications for the petrogenesis and seawater-hydrothermal alteration of oceanic crust. Earth Planet. Sci. Lett.46: 201-211.
    114 McCulloch, M.T.,and B.W.Chappell. 1982. Nd isotopic characteristics of S-and I-type granites. Earth Planet. Sci. Lett. 58, 51-64.
    115 Meschede, M., 1986, A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol. 56:207-218.
    116 Miyashiro A. 1978. Nature of alkalic volcaic rock series. 66: 91-104.
    117 Moores E M. 1982. Origin and emplacement of ophiolites. Rev. Geophys. Space Phys. 20: 735-760.
    118 Murray R W. Buchholtz Ten Brink M R, Gerlach D C .et al. 1991. Rare earth, major ,and trace elements in chert from the Franciscan Complex and Monterey Group: Assessing REE sources to fine-grained marine sediments. Geochim Cosmochim Acta. 55: 1875-1895.
    119 Murray, R. W., 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sediment Geol. 90: 213-232.
    120 Nicolas A. 1989. Structure of Ophiolite and Dynamics of Oceanic Lithosphere. [M]. [s.1.]: Kluwer Acadamic Publishers.
    121 Pearce G H., Gorman B. E. and Birkett T. C, 1975. The TiO2-K2O-P2O5 diagram: a method of discrimenatinf between oceanic and non-oceanic basalts. Earth Planet. Sci. Lett. 24: 419-426.
    122 Pearce J A, Alabadter T, Shelton AW, et al. 1981. The Oman ophiolite as a Cretaceous arc-basin complesx :Evidence and implications . Phil Trans R Soc Lond, A300: 299-317.
    123 Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Marginal Basin Geology. Geol. Soc. Lond. Spec. Publ. 16: 77-94.
    124 Pearce J R. and Cann J. R., 1971. Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y. Earth Planet. Sci. Lett. 12, 339-349.
    125 Pearce J. R. and Cann J. R., 1973. Tectonic stting of basic volcanic rocks determined using trace element analysis. Earth Planet. Sci. Lett. 19, 290-300.
    126 Pearce J.A., Harris N.B.W and Gindle A.G 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J.Petrol,25:956~983.
    127 Pearce, J. A., Lippard S. J.,Roberts S., 1984, Characteristics and tectonic significance of suprasubduction zone ophiolites[A]..In:Kokelaar B P, Howells M F. Marginal Basin Geology [C]. Oxford : Blackwell, Geol. Soc. Spec. Publ., 16,77-94.
    128 Pearce, J.A. and Peate, D.W., 1995, Tectonic implications of the composition of volcanic arc magmas: Annual Review of Earh Planetary Sciences, vol.23, 251-285.
    129 Pearce, J.A., 1982, Trace element characteristics of lavas from destructive plate boundaries, in Thorpe, R. S., E D., Andesites: J.Wiley and Sons, Chichester, p.525-547.
    130 Pearce, J.A., 1996. A User's Guide to Basalt Discrimination Diagrams, in Wyman, D. A., ed., Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration: Geological of Canada, Short Course Notes, Winniped, Manitoba, 12, 79-113.
    131 Pidgeon R T, Nemchin A A, Hitchen G J. 1998. Internal structures of zircons from Archaean granites from the Darling Range batholith: Implications for zircon stability and the interpretation of zircon U-Pb ages. Contributions to Mineralogy and Petrology, 132(3): 288-299
    132 Robertson A. Jones G 1992.Tethyan versus circum-Pacific ophiolite terrains: comparisons and overview. 29th Inter Geol Cong. Abstract. 1. Kyoto. Japan. 134.
    133 Serri G 1981. The petrochmistry of ophiolite gabbroic complexes: a key for the calccification of ophiolites into low-Ti and high-Ti type. Earth Planet. Sci. Lett. 52: 203-212.
    134 Shervais J.W.,1982, Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett. 59, 101-118.
    135 Steinmann G 1927. Die Ophiolithischen Zonen in dem mediterranen Kettengebirge, 14th Inter. Geol. Cong. Madrid. 2:638-667. D
    136 Volpe A M, Macdougall J D, Hawkins J W. 1988. Lau Basalts (LBB): trace element and Sr-Nd isotopic evidence for heterogeneity in back arc-badin mantle. Earth Planet. Sci. Lett. 90:174-186.)
    137 Williams I S. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben M A, Shanks Ⅲ W C, Ridley W I, eds. Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology. 7: 1-35.
    138, Wood, D.A.1979. A variably-veined sub-oceanic upper mantle: genetic significance for mid-ocean ridge basalts from geochemical evidence. Geology,7,499~503.
    139, Zhao J X, McCulloch M T, Korsh R J. 1994. Charcterisation of a plume-related ~800Ma magmatac event and its implications for basin formation in central-southern Australia. Earth Planet. Sci. Lett. 121:349-367.
    140, Zhou G Q. 1989. The discovery and significance of the northeastern Jiangxi Province ophiolite (NEJXO), its metamorphic peridotite and associated high temperature-hign pressure metamorphic rocks. J SE Asian Earth Sci, 3:237-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700