用户名: 密码: 验证码:
基于可靠度的裂隙岩质边坡稳定性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拟建的吉林靖宇核电厂,厂址位于吉林省东南部白山市靖宇县赤松乡岗顶村南侧,头道松花江白山水库左岸的台地上。初步拟定的一期主厂房地段整平高程为528.30m,边坡高差达100余米,在靠近坡顶的台地边缘多呈陡崖,边坡岩体受到多组结构面的切割其结构比较复杂。由于本次研究的边坡不仅会直接涉及到冷却塔的稳定性,也会对整个核电工程的安全带来巨大的影响。因此,将吉林靖宇核电厂赤松厂址南部边坡视为I级边坡工程,研究其边坡的稳定性将具有十分重要的意义。
     本文在获取研究区详细地质资料的基础上,采用概率统计理论研究了边坡结构面的优势分组,分析了边坡的岩体结构特征,并综合地运用动力学稳定性分析与赤平投影分析的方法对裂隙岩体的失效模式----潜在最危险滑动面进行了搜索和确定。在此基础上,依据可靠度理论,通过蒙特卡洛法与拉丁超立方体方法以七种概率分布函数建立了该岩质边坡岩体的抗剪强度参数样本,构造了相应的功能函数,进而计算出边坡的破坏概率,获得了可以用于岩质边坡稳定性分析的可靠度模型。本文大致完成了以下几个方面的工作:
     首先,论文详细地论述了调查区的区域地质、水文地质、工程地质条件、环境地质条件。根据2007年8~9月份的野外地质调查,详细介绍了吉林靖宇核电厂工程概况、地形地貌、地层岩性、地质构造、水文地质条件、地质物理现象等等。
     其次,论文分析了影响边坡稳定的主要因素----节理与岩体结构的特征:1)根据现场节理的调查,对节理裂隙几何形态、节理面特征、节理、裂隙的拉张松弛状况、充填物状况来进行了研究。2)为寻找出对岩体稳定性起控制作用的随机结构面,本文采用基于概率统计理论的随机结构面优势级数划分方法,对岩体随机结构面进行优势组划分。3)根据岩体边坡稳定性受结构面控制的原理,对边坡的岩体结构特征进行了总体分析。
     第三,系统阐述了可靠度的基本理论,主要包括可靠度的随机变量、极限状态方程、可靠度、可靠性指标等基本概念,以及可靠度的几种计算方法----一次二阶矩法、响应面法和本文所采用的蒙特卡洛(Monte Carlo)法、拉丁超立方体法与贝叶斯统计方法。
     第四,本文探讨了岩质边坡的失效模式—潜在最危险滑动面,并综合运用动力学稳定性分析与赤平投影分析方法来确定裂隙岩体的最危险滑动面。通过对边坡陡崖上可能出现的不利结构面组合的单滑面与楔形体进行了分析,给出了相应的滑动面滑动方向与倾伏角。
     第五,对于所确定的最危险滑动面的倾角值,采用贝叶斯公式进行了期望值值估计、区间估计,并以可靠度理论验证了所取值的合理性。
     第六,根据岩体结构面的结合程度确定了岩体抗剪强度的分布参数,通过蒙特卡洛法与拉丁超立方体方法以均匀分布、正态分布、指数分布、对数正态分布、Gamma分布、Beta分布、三角分布形式分别获得到抗剪强度的样本,对比了两方法的收敛效率,研究了七种概率分布对边坡稳定程度的影响。
     第七,在边坡的失效模式—确定的潜在最危险滑动面基础上,构造了其相应的功能函数和极限状态方程,采用拉丁超立方体方法计算出边坡体的破坏概率,得到了边坡结构可靠度分析模型。通过实例验证,本方法可以有效地提高边坡可靠度,对边坡可靠度的研究提供一定的参考价值。
     最后,用二维有限元软件对岩质边坡的形成历史进行了全过程机制模拟,包括河谷下切不同阶段的应力场(主应力、剪应力)的模拟、位移场变形和屈服单元的变化情况。通过有限元模拟分析,了解边坡现阶段的稳定程度。
The proposed Jilin Jingyu nuclear power plant is located in the tableland which on the left bank of the head way the Songhua river Baishan reservoir, in south of Gangdingcun, Chisongxiang, Jingyuxian, in the southeast of Jilin province.The draw up leveling elevation of the first phase of the preliminary main workshop area is about 528.30 m. Because of the slope in the research is directly related to the stability of the cooling tower in nuclear power project, and Baishan reservoir natural slope over the water level is reach to 100 meters, the tableland near the top of the slope present a steep cliff type, slope rock mass structure of the group were cutting by groups structural plane and its structure is complex, the stability degree of the natural slope has direct influence on the safely of the whole nuclear power project. So, the site of Jinli Jingyu nuclear power plant is took as class I slope engineering, and the study of the slope stability is very important.
     This article start from the structure characteristics of the fractured rock mass slope, in the foundation of detailed the geological data in research area, work on the failure mode-sliding surface of the slope, using dynamic stability analysis and stereographic projection analysis to search and determine the most dangerous sliding face of the fractured rock mass. And according to the reliability theory, through the Monte Carlo method and Latin hyper cubes method to establish the sample of the shear strength parameters, constructed the function, obtain model which can be used in the analysis of the reliability of the slope structure. Based on the above research results, he failure mode of searching and reliability calculation based on the fractured rock mass is put forward. The concrete content as follows:
     First, the paper discusses regional geological, hydrogeological and engineering geological conditions and environmental geological condition in the research area in details. The geological survey in June to September in 2007 introduced the Jingyu nuclear power plant project in summary, landform, rocks, geological structure, hydrology geology condition, physic-geologic phenomena, etc.
     Second, the paper analyses the main factors influencing slope stability and inducing factors, the rock mass structure characteristics and joints: 1)According to the survey of joints, the joints and fissures geometric shape, and joint planes characteristics, arid joints and fractures extensional status, fillings condition were studied. 2)For the stability of rock mass in the control effect of random structure surface, the paper based on the probability and statistics theories of random structure surface advantage method to partition series, divide random structure of rock face of advantage into groups. 4) According to the stability of the slope rock mass structure, analyze the overall characteristic of the slope rock mass structure.
     Third, this paper expounds the basic theory of reliability, mainly includes the basic concepts of the reliability of basic random variables, limit state equation, reliability, the reliability index etc. the reliability of the four kinds of common calculation methods are introduced such as a first order second moment method, , the response surface method, Monte Carlo (Monte Carlo) method Latin hyper cubes adopts in the paper detailed.
     Fourth, the paper in fractured rock's most dangerous sliding face search and determined. Using of dynamic stability analysis and stereographic projection analysis method to determine the fractured rock mass of the most dangerous sliding surface. Through to the slope steep cliff may appear on the surface of the adverse structure combination of single slide face and body wedge are analyzed, and gives corresponding sliding surface sliding direction and loose v Angle.
     Fifth, the dip angle of the most dangerous sliding surface is improved using Bayesian estimation method.
     Sixth, according to the combination level of rock mass structure set up the distribution parameters of structure surface shear strength; through the Monte Carlo method and Latin hypercube method establish the samples of the shear strength parameters. To contrast the convergence efficiency of the two methods, it studies the influence of shear strength parameters form in uniform distribution, normal distribution, the index distribution, logarithmic normal distribution, Gamma distribution, Beta distribution, triangle distribution on stability of the slope.
     Seventh, based on t he slope of the failure mode ( the potential sliding surface), performance function and limit state equation are constructed. Finally, the slope of the failure probability is calculated that through the Monte Carlo and Latin Hypercube method to get the slope structural reliability analysis model Verified by example, this method can effectively improve the reliability of the slope, the study of slope reliability has certain significance.
     Finally, the formation of rock slope history is simulated in the whole process mechanism, including the change of the valley slice different stages of the stress field (principal stress and the shear stress), displacement field deformation and yield unit. Through the finite element simulation analysis, understand the present stage of the stability of the slope.
引文
[1]张丽,边坡结构可靠度对随机参数的敏感度研究[D],内蒙古工业大学,2006:1-2.
    [2]陈祖煌,土质边坡稳定分原理·方法·程序[M],北京:中国水利水电出版社,2003:1-2.
    [3] Fellenius W.1927,Erdstatisch Berechnungen,Berlin W.Ernst und Sohn revised edition.1939.
    [4] Bishop,A.W.The use of the slip circle in stability analysis of slopes.Geotechnique.7-17.1955,5(1) .
    [5] Guzzetti F, Crosta G, Detti R, Agliardi F (2002) STONE: a computer program for the three-dimensional simulation of rockfalls. Comput Geosci 28(9):1079–1093.
    [6] Jones CL, Higgins JD, Andrew RD (2000) Colorado Rockfall Simulation Program Version 4.0. Colorado Department of Transportation, Colorado Geological Survey.
    [7] Peila D, Ronco C (2009) Technical Note: design of rockfall net fence and the new ETAG 027 European guideline. Nat Hazards Ear Syst Sci 9:1291–1298.
    [8] Baligh MM, Azzouz AS. End effects on cohesive slopes.Journal Geotechnical Engineering,ASCE,1975,101(11):1105–1107.
    [9] Lam L, Fredlund DGA. General limit equilibrium model for three-dimensional slope stability analysis. Canadian Geotechnical Journal, 1993, 30(6): 905–919.
    [10] Hutchinson JN, Sarma SK. Discussion on three-dimensional limit equilibrium analysis of slopes. Géotechnique,1985,35(6):215–216.
    [11] Lam L, Fredlund DGA General limit equilibrium model for three-dimensional slope stability analysis[J].Canadian Geotechnical Journal, 1993, 30(4): 905–9l9.
    [12] Goh ATC.Genetic algorithm search for critical slip surface in multi-wedge stability analysis.Canadian Geotechnical Journal,1999,36(2):383-391.
    [13] Boutrop e,Lovell C W.Search techniques in slope stability analysis.Engineering Geology,1980,16(1): 51-61.
    [14] Greco V R.Efficient Monte Carlo technique for locating critical slip surface.Journal of Geotechnical Engineering,ASCE,1996,122(7):517-526.
    [15]徐佩华,基于人工神经网络方法的锦屏一级水电站枢纽区高边坡稳定性分区研究[D],吉林大学,2006.
    [16]范景伟,岩石力学论文集,成都:成都科技大学出版社,1991: 1572.
    [17]张大宝,上坡稳定分析和上土建筑物的边坡设计[M],成都科技大学出版社,1987: 2一56.
    [18]崔政权、李宁,边坡土程—理论与实践最新发展[M],中国水利水电出版社,1999: 1一34.
    [19]张子新,孙钧,分形块体力学及其在三峡船闸高边坡岩上土程中的应用,1996: 2428.
    [20]哈秋林,岩石边坡土程与非线性岩石(体)力学[J],岩石力学与土程学报,1997,16(4):3236.
    [21]吴中如,分形几何理论在岩上边坡稳定性分析中的应用[J],水利学报,1996(4):1620.
    [22]陈清远,数值模拟法在边坡稳定分析中的应用,力学与土程学术讨论会论文集,1999: 1-50.
    [23] LM..Smith and D.V.Griifiths. Programming the Finite Element Method 2nd Edition,1-28.
    [24] Probert E J, Hasson O & Morgan K, Peraire J. An adaptive finite element for transient compressible flows with moving boundary.Int.J.Num.Meth.Eng. 1991,32(4):751-765.
    [25]周翠英,滑坡灾害复杂性探索,中国地质大学[D],1992: 1-18.
    [26]林峰、黄润秋,边坡稳定性极限条分法的探讨[J],地质灾害与环境保护,Dec.1997:1419.
    [27] IG .哥得赫,有限元法在岩上力学中的应用[J],张清、张弥译,北京:中国铁道出版社,1983: 1-56.
    [28] Zienkiewicz O C. The Finite Element Method. 3nd ed. London: McGraw-Hill. 1997:1-20.
    [29] Bathe K J. Finite Element Procedures in Engineering Analysis.Englewood Cliffs: Prentice-Hall, 1982: 1-32.
    [30] T.J.R.Hughes, W.K.Liu. Analysis Stability Theory. Implicit-explicit finite element in Transient J.Appl.Mechs.Vo1.45, 1978:610-614.
    [31]陈胜宏,三峡土程船闸边坡的弹粘塑性自适应有限元分析[J],岩上力学,1998,19(1):13-19.
    [32] Brown E T. Analytical and computational methods in engineering rock mechanics. New York: John Willy & Sonltd, 1987:2-16.
    [33]汪益敏,有限元法在边坡岩体稳定分析中的应用,西安公路学院学报,1994, 14(2):13-18.
    [34]伯芳,有限单元法原理与应用(第二版) [M],北京:中国水利水电出版社,1998: 1-25.
    [35]王泳喜,离散单元法----一种适用节理岩石力学分析的数值方法[J],第一届全国岩石力学数值计算及模型试验市场化会文集,成都:西南交通大学出版社,1986:32-37.
    [36]黄润秋,许强,拉格朗日差分分析在岩石边坡工程中的应用,岩石力学与工程学报,1995(16):346-353.
    [37]许瑾、郑书项,边界元法分析边坡动态稳定性[J],西北建筑工程学院学报(自然科学版),2000(4):72-76.
    [38]卓家寿、章青,不连续介质力学问题的界面元法[M],科学出版社,2008:2-4。
    [39]裴觉民,数值流形方法与非连续变形分析,岩石力学与工程学报,1997,16(3):405-410.
    [40]王芝银、王思敬、杨志法,岩石大变形分析的流形方法[J],岩石力学与工程学报,1997,16(5):399-404.
    [41] Shi G. H.,Numerical manifold method//Proccedings of the Second International Conference on Analysis of Discontinuous Deformantion.Kyoto,Japan, 1997:1-36.
    [42]刘式达、刘式适,非线性动力学与复杂现象[M],北京:气象出版社,1989:1-185.
    [43]黄建平、衣育红,利用观测资料反演非线性动力模型[J],中国科学(B),1991,21(3) .
    [44]周翠英,滑坡灾害复杂性探索[D],中国地质大学,1992, 1-21.
    [45]秦四清、张悼元、黄润秋,非线性土程地质地学导引[M],成都:西南交通大学出版社,1993, 1-27.
    [46] Freuclenthal A M.The Safety Structures, Transation, ASCE,V112,1947: 77-186.
    [47] Cornel C. A. A probability-based structural code, ACI J.,1969, Vo1.66 (12):974-986.
    [48] Rackwitz R. Fiessler B. Strucrural sequences, Computer Structures,9(5)reliability under combined random load 1978, 489-494.
    [49]黄建,衣育红,利用观测资料反演非线性动力模型[J],中国科学(B ),1991,21(3):23-29.
    [50]秦四清,张悼元,黄润秋,非线性土程地质学导引[M],成都:西南交通大学出版社,1993: 1-29。
    [51]张子新,孙钧,分形块体力学及其在三峡船闸高边坡岩上土程中的应用,1996: 24-28.
    [52]哈秋林,岩石边坡土程与非线性岩石(体)力学[J],岩石力学与土程学报,1997, 16(4): 32-36.
    [53]吴中如,分形几何理论在岩上边坡稳定性分析中的应用[J],水利学报, 1996(4):16-20 ;
    [54]陈清远,数值模拟法在边坡稳定分析中的应用[J],力学与土程学术讨论会论文集,1999: 1-50.
    [55]周维垣等,岩石高边坡的稳定与治理[J],岩上土程的回顾与前瞻,北京:人民交通出版社,2001: 1-62.
    [56]陈涛,最小势能原理在锚固边坡稳定性分析中的应用[D][D],中南大学,2008.
    [57]李育超,基于实际应力状态的土质边坡稳定分析研究[D],浙江大学,2006.
    [58]王薇,残积层红黏土路堑边坡稳定性分析方法研究[D],中南大学,2011.
    [59]朱超,大瑞铁路罗家村隧道地质环境与工程稳定性研究[D],北京交通大学,2011.
    [60]徐佳成,基于矢量和法安全系数的边坡稳定性研究[D],中国地质大学,2009.
    [61]赖海林,可靠性分析在土坡加固中的应用研究[D],中国地质大学,2005.
    [62]刘兵,江西省寻乌县城南滑坡稳定性影响参数分析[D],江西理工大学,2008.
    [63]郑轶轶,抗滑桩加固边坡的稳定性分析[D],大连理工大学,2008.
    [64] Freuclenthal A M.The Safety Structures, Transation, ASCE V112,1947: 77-185.
    [65] Cornel l C. A. A probability-based structural code, ACI J. , 1969, Vol.66(12):974-985.
    [66] Rackwitz R. Fiessler B. Strucrural sequences, Computer Structures,9(5) reliability under combined random load 1978:489-494.
    [67]聂士诚,土质边坡稳定的可靠度分析及其土性参数的敏感性研究[D],中南大学,2006:5-8.
    [68]张宇,工程结构可靠度分析的若干问题研究[D],同济大学,2006:9-10.
    [69]杨俊雷、刘瑞海,结构可靠度计算方法综述[J],中国西部科技,2011 Vol.22:31-33.
    [70]李炜,康海贵,结构可靠度计算的实用二次二阶矩法[J],水运工程,2008 Vol.12:15-1.
    [71]陈德勇、马凤英等,机械功能参数下可靠度的最大嫡分布和贝叶斯统计[J],北京科技大学学报,199416(1):49-51.
    [72]高仁璟;刘书田,基于遗传算法的复杂系统可靠度和冗余数设计分配优化[D],大连理工大学学报:2006(6):741-744.
    [73]曲广琇,基于节理几何参数不确定性的边坡稳定性和可靠度研究[D],中南大学,2009.
    [74]米君楠,参数变异性及样本容量对边坡可靠度影响的研究[D],浙江大学,2007.
    [75]刘喜宁,基于可靠性的析架结构优化设计方法研究[D],长安大学,2009.
    [76]谭晓慧,边坡稳定的非线性有限元可靠度分析方法研究[D],合肥工业大学,2007。
    [77]李东升,基于可靠度理论的边坡风险评价研究[D],重庆大学,2006.
    [78]徐辉,基于模糊集理论的边坡稳定模糊随机可靠度分析[D],浙江大学,2006.
    [79]黄小平,基于RAGA的重力坝抗滑稳定可靠度分析[D],合肥工业大学,2007.
    [80]郭灵敏,基于蒙特卡洛法的土质边坡稳定性研究[D],中国地质大学(北京),2008.
    [81] Wu T H, Kraft L M. Safety analysis of slopes [J].Journal of Soil Mechanics and Foundations Division, ASCE, 1970, 96(2): 609-630.
    [82] Lumb, P. The variability of natural soils [J]. Canadian Geotechnical Journal, 1966, 3: 74-97.
    [83] Vanmarcke E H. Probabilistic modeling of soil profiles[J]. Journal of the Geotechnical Engineering, ASCE, 1977,103(11):1227-1246.
    [84] DeGroot D J, Baecher G B. Estimating autocovariance of in-situ soil properties [J]. Journal of Geotechnical Engineering, ASCE, 1993, 119(1): 147-166.
    [85] Chowdhury R N, Xu D W. Rational polynomial technique in slope-reliability analysis [J]. Journal of eotechnical Engineering, ASCE, 1993, 119(12): 1910-1928.
    [86] Christian J T, Ladd C C, Baecher G B. Reliability pplied to slope stability analysis [J]. Journal of Geotechnical Engineering, ASCE, 1994, 120(12): 2180-2207.
    [87]谭文辉等,岩体强度参数空间变异性分析[J],岩石力学与工程学报,1999,18(5):546-549.
    [88]严春风,岩体强度准则参数相关性对可靠度的敏感性研究[J],第六次全国岩石力学与工程学术大会,2000:162-164.
    [89] Li KS,Lumb P. Probabilistic design of slopes.Canadian Geotechnical Journal,1987,24(4):520–536.
    [90] Nguye VU,Chowdhury RN. Probabilistic study of spoil pile stability in strip coal mines- Two techniques compared. International Joumal of Rock Mechanics and Mining Scienee & Geomechanics1984 21(6): 303-312.
    [91] Vanmarke E, Reliability of earth slope. Journal of Geotechnical Engineering Division, ASCE, 1977, 103(11):1247-1266.
    [92] Hiroshi HS,Wilson HT. Probabilistic evaluation on progressive failure incut slopes. Structural safety, 1994, 14(l-2):31-46.
    [93] Abbranson L.W. Lee T. S., Sharms S.et al.Slope Stability and Stabilizaiton Meththods.2nd ed.New York: John Wiley & Sons, 2002.
    [94] Ahmed MH. A practical approach to combined Probabilistic analysis of slope stability and seepage problem[J].USA: Michigan State University,1998.
    [95] Abdallall I,Husein M,Ealeed FH, Fayez AA. Uneertainiy and reliability analysis applied to slope stability. Structural Safety,2000,22:161-187.、
    [96] Low BK. Reliability analysis of rock slopes involving corrceted nonnormals. International Joumal of Rock Mechanics and Mining Science.
    [97] Vanmarke E H. Probabilistic Stability Analysis of Earth slopes. Engineering Geology, 1980,16(1):29-50.
    [98] Chowdhury R N.. Simulation of risk of progressive slope failure. Cannadal Geotechnical. Journal, 1992, 29(1):94-102.
    [99]胡小荣;唐春安;,岩土力学参数随机场的离散研究,岩土工程学报,1999(04):71-76.
    [100]刘沐宇;李宏;池秀文,岩体结构的可靠性设计武汉工业大学学报1998.04:65-68.
    [101]张征;程祖锋;王恩祥;刘淑春;,岩土参数随机场空间最优估计精度分析与特异值研究[J],岩土工程学报,1999(5):61-65.
    [102] Chowdhury R N. Slope Analysis. Amsterdam[J]: Elsevier Scientific Publishing Corporation, 1978.
    [103] Chowdhury R N., Grivas D. A. Probabilistic model of progressive failure of slopes[J]. ASCE: Journoal of the Geotechnical Enigineering Division, 1982,108(GT6):803-819.
    [104]卢肇均,粘性土抗剪强度石头与展望[J],土木工程学报,1999(8):3-9.
    [105]王庚荪,边坡的渐进三十及稳定性分析[J],岩石力学与工程学报,2000,19(1):29-33.
    [106]王家臣,边坡工程随机分析原理[M],北京:煤炭出版社,1993.
    [107]石丙飞,广州科学城林语山庄人工高边坡稳定性评价及设计研究[D],吉林大学,2006.
    [108]吉亮,基于人工智能与三维数值模拟的乌竹岭隧道围岩稳定性系统研究[D],吉林大学,2009.
    [109]唐胜传,复杂场地高坝建设适宜性的工程地质研究[D]。成都理工大学,2002.
    [110]吴韬,层间隔震结构的动力时程分析及可靠度分析[D],合肥工业大学,2009.
    [111]谭晓慧,边坡稳定的非线性有限元可靠度分析方法研究[D],合肥工业大学,2007.
    [112]李猛边坡稳定可靠度的蒙特卡罗数值模拟及其应用研究[D],郑州大学,2004。
    [113]聂士诚,土质边坡稳定的可靠度分析及其土性参数的敏感性研究[D],中南大学,2002.
    [114]谭晓慧、王建国、刘新荣,改进的响应面法及其在可靠度分析中的应用[J],岩石力学与工程学报,2005.
    [115]李世文,边坡稳定的可靠性分析方法的研究[D],内蒙古工业大学,2006.
    [116]曾向农、程运材、杨海洋、陈建宏,可靠性分析方法在矿山边坡中应用研究[J],矿冶工程。2009.
    [117] IMAN R L, CONOVER W J A. distribution-free approach to inducing rankcorrelation among input variables[J]. Communications in Statistics, 1982, B11:311-334.
    [118] STEIN M L. Large sample properties of simulations using Latin hypercube sampling[J]. Technometrics, 1987, 29:143-151.
    [119]毕中伟,岩体力学参数推断的Bayes方法及截尾可靠度的研究与应用[D],中南大学。2008.
    [120]常晓林,蒋春艳等.岩质坝基稳定分析的等安全系数法及可靠度研究[J].岩石力学与土程学报. 2007,26(8):1594-1602.
    [121]茆诗松,贝叶斯统计[M].中国统计出版社.1999:1-31.
    [122]张国春,庄河电厂岩质边坡稳定性评价[D],吉林大学,2006.
    [123]张丽,蓟县老虎顶采石矿复垦工程地质评价[D],吉林大学,2009.
    [124]张国春,某电厂岩质边坡稳定性评价[J],电力勘测设计,2004.
    [125]王文峰,广州林语山庄边坡稳定性研究[D],吉林大学,2006.
    [126]吴振君、王水林、葛修润,LHS方法在边坡可靠度分析中的应用[J],岩土力学,2010.
    [127]刘明维、郑颖人,边坡岩体结构面抗剪强度参数确定方法探讨[J],重庆交通大学学报(自然科学版),2007.
    [128]吴振君,土体参数空间变异性模拟和土坡可靠度分析方法应用研究[D],中国科学院研究生院(武汉岩土力学研究所),2009.
    [129]薛飞鸿,内蒙古锦—茅高等级公路边坡稳定性分析及加固[D],太原理工大学,2004.
    [130]曹中兴,岩质边坡稳定性概率分析与可靠性研究[D],吉林大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700