用户名: 密码: 验证码:
紫色土区主要农业活动对坡面土壤侵蚀的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国紫色土地区土壤肥力高、水热资源丰富,是农业生产的重要基地。由于紫色土地区人口密度大、坡地高强度利用,紫色土地区土壤侵蚀严重,仅次于我国黄土地区。人类活动是土壤侵蚀加剧或减缓的主导因素。针对紫色土坡地严重的土壤侵蚀退化,开展人为开垦种植和水土保持措施对土壤侵蚀的影响研究,对治理坡地土壤侵蚀、合理利用紫色土坡地资源具有重要意义。本文以三峡库区典型紫色土坡地为研究对象,通过人工降雨试验系统分析土壤侵蚀对坡地开垦种植的响应,通过野外调查和资料分析,探讨了紫色土坡地不同种植模式对土壤侵蚀强度的影响。此外,通过小区观测资料分析和野外取样调查,定量分析了紫色土坡地常见水土保持措施效益。取得的主要结果有:
     (1)通过改进传统径流收集装置,在野外人工降雨过程中收集了壤中流,分析了壤中流和地表径流共同作用下的紫色土坡地土壤侵蚀过程。结果表明,紫色土荒坡地和坡耕地降雨产流过程差别显著,荒坡地壤中流平均径流系数是坡耕地的4.7倍。降雨过程中,坡耕地壤中流产流过程呈现先增大后减小,而荒坡地壤中流流量先增加后趋于稳定。坡耕地壤中流径流系数随降雨强度增加而减小,但在荒坡地壤中流径流系数受降雨强度影响不明显,坡耕地壤中流径流强度随降雨强度的增加而减小,荒地壤中流径流强度随雨强增大而增大。坡耕地地表径流系数是荒坡地的2.0倍。坡耕地和荒坡地降雨产流的差异也导致二者在侵蚀产沙差异明显,模拟降雨过程中坡耕地的平均含沙量为42.2g/L,而荒坡地的平均含沙量仅为2.3g/L。
     (2)荒坡地植被割除和翻耕后的降雨侵蚀过程发生明显变化。植被割除后,壤中流径流系数迅速减少地表径流增加,壤中流占总径流的比例从30.3%降低到6.2%,表明植被覆盖是影响紫色土坡地壤中流的重要因素。坡地在翻耕初期壤中流较裸地明显增大,在小雨强下壤中流占到总径流的29.1%,但随着雨强的增加和疏松地表的压实,壤中流迅速减少。不同地表状况下壤中流与地表径流的比例变化显著,显示人为扰动导致了紫色土坡地降雨产流机制的转变。此外,荒坡地割除植被和耕作后,土壤侵蚀量明显增加,割除植被后裸地和翻耕地的平均土壤侵蚀强度是未扰动荒坡地的3.0和10.2倍。为减少土壤侵蚀,陡坡地最好不要开垦种植。在开垦种植的坡地,要尽量免耕和保持植被覆盖以减少土壤侵蚀。
     (3)通过分析三峡库区紫色土坡地主要农作物的农作期、种植模式,降雨侵蚀力的年内分布以及不同农作期的土壤流失比率,计算得22种种植模式下的作物覆盖管理因子C值。结果表明C值变化范围在0.16-0.65之间,不同种植方式中C值大小顺序为:间/轮作<轮作<单作。在单种作物中,油菜、马铃薯C值较高分别为0.65和0.60,棉花和红薯较低分别为0.29和0.33;轮作模式中小麦-棉花、玉米-油菜、小麦-红薯、马铃薯-黄豆C值相近,都在0.2左右;在所有种植模式中,玉米-红薯间作C值最小,为0.16。作物生长期和降雨侵蚀力年内分布之间的关系决定不同作物发生土壤侵蚀差别明显。
     (4)径流小区长期观察结果表明,梯田措施减少径流泥沙的效果受土地利用的影响。坡耕农地采取梯田措施后,年均径流量和侵蚀量分别减少23.0%和52.0%;而在坡地果园采取梯田措施后,年均径流量和侵蚀量分别减少了60.0%和68.0%。梯田措施减少了果园大径流和强侵蚀量事件的次数,而在农地只减少了大径流量事件的次数。梯田措施在果园保水保土效益更明显梯田措施还增加了作物产量,在梯田措施农地和橘园,作物产量分别增加了13.0%和15.0%。植物篱和植物篱+作物覆盖措施在减少侵蚀方面的作用相差不大,与无水保措施小区相比,植物篱措施小区的年均径流系数和侵蚀量减少了36.0%和67.0%。这一结果表明在紫色土陡坡农地,水土保持措施应优先考虑选择植物篱措施。
     (5)通过长期观测资料的分析,研究区侵蚀性降雨可分为三类降雨模式。降雨模式Ⅰ是降雨强度大、持续时间短,重现频率高的次降雨的集合,降雨模式Ⅲ降雨强度小,但持续时间长、降雨量大,降雨模式Ⅱ的次降雨强度和降雨量都很大,但重现次数少。结果表明,次降雨的径流系数受降雨模式影响不明显,但次降雨侵蚀量受降雨模式影响较大,在三种降雨模式下的径流小区的平均侵蚀量分别为1.1,2.0和0.5 kg。土地利用和梯田措施改变了降雨模式对坡地侵蚀的影响,在坡地农作小区,在降雨模式Ⅰ的侵蚀量明显高于降雨模式Ⅲ,而在坡地橘园小区,土壤侵蚀强度差别不明显。梯田措施小区土壤侵蚀受降雨模式的影响较小。
     (6)采取水土保持措施后,土壤性质明显得到改善。有水土保持措施橘园水稳性团聚体、饱和导水率、有机质及养分含量明显增加,砾石含量和土壤容重减少。在梯田+种草措施中土壤有机质和含量增加最多,平均有机质和速效N、P、K的含量分别增加了0.3、0.5、1.8和1.7倍。水土保持措施改变了土壤的机械组成,植物篱措施增加土壤粉粒含量,而梯田和梯田+种草措施增加了土壤粘粒含量。水土保持措施还改变了土壤性质的空间变异,在无水土保持措施小区砾石含量沿坡面向下递减,粘粒含量沿坡面向下递增,但在有水土保持措施小区没有这种空间变化特征。植物篱措施还明显增加植物篱坎前土壤氮的含量,改变了养分在地块的分布特征。
Purple soil region are abundant in hydrothermal resources and soil fertility, playing an important role in agriculture development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where slope farming is commonly practiced. Human activities can accelerate or reduce soil erosion and exerts a first-order control on soil erosion. Therefore, the aims of this study were to investigate the impact of human agricultural cultivation and protection on soil erosion. Field simulated rainfall experiments were used to exam the effect of vegetation removal and hoeing tillage on soil erosion processes. The effects of soil and water conservation measurements on runoff, erosion and plant production were analyzed through long term plots monitoring. The changes of soil properties in citrus orchards with different conservation measurements also were analyzed. The main content of this dissertation are as following:
     1. The surface and subsurface runoff were simultaneously collected during rainfall experiment with an original adaptation of common experimental frame. Results showed that the average runoff coefficient of subsurface runoff generated from wasteland was 4.7 times larger than that from cultivated land. The subsurface runoff in cultivated land was increased after rainfall started and then decreased, however, subsurface runoff in wasteland kept steady after increased. The runoff coefficient of subsurface runoff on cultivated land was increased with rainfall intensity. However, the subsurface runoff coefficient was not significantly affected by rainfall intensity on the wasteland. The average surface runoff coefficient in cultivated land were 1.0 times large than that in wasteland. Soil erosion rate in cultivated land were significant higher than in wasteland. The average sediment concentration in cultivated land and wasteland were 2.3 g/L and 42.2g/L, respectively
     2. The runoff generation was changed by vegetation removal and hoeing tillage. The ratio of subsurface runoff to total runoff was reduced from 30.3% to 6.2% caused by vegetation removal practice. For hoeing tillage practice, the subsurface runoff occupied 29.1% of total runoff during low rainfall intensity, and that ratio reduced quickly with rainfall intensity increased. Vegetation removal and hoeing tillage also significantly increased soil erosion. The average soil erosion rates at vegetation removal and hoeing tillage plots were 3.0 and 10.2 times larger than that at vegetation cover plots, respectively. Results of this study reflected both runoff generation mechanism and soil erosion were changed as a consequent of altering land use on steeplands. Thus, conservation practices with maximum vegetation cover and minimum tillage should be useful for reducing surface runoff and soil erosion on steeplands.
     3. The effects of cropping system on soil loss (C values) were analyzed through calculating crop stage, rainfall erosivity, and SLR in the USLE model. The results reflected the C values of 22 cropping system changed from 0.16 to 0.65 in the sloping crop land of purple soil. The order of C values of different cropping system were intercrop/rotation     4. Five years field monitoring results reflected that the effectiveness of terracing influenced by land use. After terracing, the average annual runoff and soil erosion rate were reduced by 23.0 and 52.0% in arable plots; in orchard plots, the average annual runoff and soil erosion rate were reduced by 60 and 68%, respectively. Moreover, the terracing measurement reduced the frequencies of events of high runoff amount and high soil erosion rate in orchard plots, but only reduced the frequencies of events of high soil erosion rates in arable plots. The terracing measurement also increased crop production. After terracing, crop production increased by 13.0% and 15.0% in arable and orchard plots, respectively. For contour strip-cropping measurements, the average annual runoff and soil erosion rate in plots with contour hedgerow were 36 and 67% lower than in plots without conservation measurements, respectively. These results showed the contour hedgerows measurement could be regarded as the best measurement in sloping arable land, and the terracing measurement in citrus orchard could be acceptable based on the ecological and economic benefits of that measurement.
     5. Based on ten years of field observation and K-mean clusters, erosive rainfall events were grouped into three rainfall regimes. Rainfall regimeⅠwas the group of events with strong rainfall intensity, high frequency, and short duration. Rainfall regimeⅢconsisted of events with low intensity, long duration, and high rainfall amount. Rainfall regimeⅡwas the aggregation of events of high intensity and amount, and less frequent occurrence. The results showed that event runoff coefficients were not significantly different among rainfall regimes. However, the average soil erosion rates in rainfall regimeⅠandⅡwere significantly higher than that in regimeⅢ. The average erosion rates under rainfall regimeⅠ,Ⅱ, andⅢwere 1.1,2.0 and 0.5 kg, respectively. The effect of rainfall regime on soil erosion also was changed by terracing and land use. Terracing significantly reduced runoff and soil erosion, and compensated the effects of rainfall regime on soil erosion, which indicated that runoff and erosion in terraced system may little influenced by climate change. On unterraced cropland, soil erosion rate in rainfall regimeⅠis significantly higher than that in regimeⅢ. However, but the situation did not exist in unterraced orchard. Based on these results, it was suggested more attention should paid to the timing of rainfall events in relation to crop development and the high erosion on unterraced citrus orchard to control soil erosion in this area.
     6. Soil conservation measurements significantly increased saturated hydraulic conductivity, aggregate stability, soil organic matter, and available N, P, K, but decreased bulk density. The terracing with grass cover measurement had the best effectiveness in improving soil fertility among the three measurements. The average soil organic matter, available P, N, K in TCG were 0.3,0.5,1.8 and 1.7 rates larger than in SC, respectively. Compared to control plot, silt content was increased in SCH, while clay content was increased in TC and TCG. There was a downslope increase in clay content and total N but a decrease in gravels in SC plot. However, that trend did not exist in the other plots. In the field scale, the total nitrogen was significantly higher near the hedgerow in SCH.
引文
1. 鲍士旦.土壤农化分析.北京:中国农业出版社.1999.
    2. 卜崇峰,蔡强国,袁再健.三峡库区等高植物篱的控蚀效益及其机制.中国水土保持科学,2006,4:14-18.
    3. 卜崇峰,蔡强国,程琴娟,吴淑安,范云涛,马廷.紫色土表土结皮发育特征的试验研究.土壤学报,2007,44:385-391.
    4. 卜兆宏.土壤流失量及其参数实测的新技术.土壤学报,1995,32:210-219.
    5. 卜兆宏,董勤瑞,周伏建,张立文.降雨侵蚀力因子的算法.土壤学报,1992,29:408-417.
    6. 蔡崇法,丁树文,张光远,黄丽,王道合.三峡库区紫色土坡地养分状况及养分流失.地理研究,1996,15:77-84.
    7. 蔡崇法,丁树文,史志华,黄丽,张光远.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究.水土保持学报,2000,14:19-24.
    8. 蔡强国,吴淑安,陈浩.坡耕地表土结皮对降雨径流和侵蚀产沙过程的影响.见:山西省水土保持研究所,中国科学院地理研究所和加拿大多伦多大学地理系.晋西黄土高原土壤侵蚀规律实验研究文集.北京:水利电力出版社,1990,48-57.
    9. 蔡强国,朱远达,王石英.几种土壤的细沟侵蚀过程及其影响因素.水科学进展,2004,15: 11-18.
    10.蔡强国,卜崇峰.植物篱复合农林业技术措施效益分析.资源科学,2004,26:7-12.
    11.蔡强国,吴淑安.紫色土陡坡地不同土地利用对水土流失过程的影响.水土保持通报,1998,18: 1-8.
    12.才业锦,唐寅,陈正发,史东梅.紫色丘陵区不同种植模式C因子探讨.西南农业大学学报(社会科学版).2010,8:14-17.
    13.曹银真.黄土地区梁峁坡的坡地特征与土壤侵蚀.地理研究,1983,3:19-28.
    14.陈明华,周福建,黄炎和.土壤可蚀性因子的研究.水土保持学报,1995,9:19-24.
    15.陈雷.中国的水土保持.中国水土保持,2002,4:4-6.
    16.陈法扬.不同坡度对土壤冲刷量影响试验.中国水土保持,1985,2:18-19.
    17.陈晓燕,牛青霞,周继,魏朝富,谢德体,何丙辉.人工模拟降雨条件下紫色土陡坡地土壤颗粒分布空间变异特征.水土保持学报.2010,24:163-168.
    18.陈晓燕.紫色土坡面土壤侵蚀预测模型应用研究.[硕士论文].重庆:西南大学图书馆.2003.
    19.陈永宗.黄土高原现代侵蚀与治理.北京:科学出版社,1988.
    20.丁文峰,张平仓,王一峰.紫色土坡面壤中流形成与坡面侵蚀产沙关系试验研究.长江科学院院报,2008,25:14-17.
    21.丁树文,王峰, 蔡崇法,史志华,彭业轩,姜成,张光远. 三峡库区秭归盆地岩性构造对坡地紫色土某些特性影响.华中农业大学学报,2000,19:129-132.
    22.董杰,张重阳,罗丽丽,杨达源,陈可锋.三峡库区紫色土坡地土壤粗骨沙化和酸化特征.水土保持学报,2007,21:31-34.
    23.高美荣,刘刚才,朱波.四川紫色土丘陵区不同耕作制的产流过程初步分析.2000,14:118-121.
    24.郭培才,王佑民.黄土高原沙棘林地土壤抗蚀性及其指标的研究. 中国水土保持,1992,4:27-30.
    25.韩建刚,李占斌.紫色土小流域土壤流失对不同土地利用类型的响应.中国水土保持科学, 2006,3:37-41.
    26.郝俊萍.三峡库区典型小流域非点源污染模拟研究.[硕士论文].武汉:华中农业大学图书馆.2008.
    27.贺康宁,王治国,赵永军.开发建设项目水体保持.北京:中国林业出版社,2009.
    28.何毓蓉.中国紫色土.北京:科学出版社.2001.
    29.胡建忠,范小玲,王愿昌,张鉴,王鸿斌.黄土高原沙棘人工林地土壤抗蚀性指标探讨.水土保持通报,1998,18:25-30.
    30.黄丽,丁树文,张光远,彭业轩.三峡库区紫色土坡地的耕作利用方式与水土流失初探.华中农业大学学报,1998,17:45-49.
    31.黄丽,张光远,丁树文,蔡崇法.侵蚀紫色土土壤颗粒的研究.土壤侵蚀与水土保持学报,1999,5:35-39.
    32.贾海燕,雷阿林,雷俊山,赵景柱.紫色土地区水文特征对硝态氮流失的影响研究.环境科学学报,2006,26:1658-1664.
    33.蒋定生,李新华,范兴科,张汉雄.黄土高原土壤崩解速率变化规律及影响因素研究.水土保持通报,1995,15:20-27.
    34.蒋光毅.人工模拟降雨条件下紫色土土壤可蚀性研究.[硕士论文].重庆:西南大学图书馆.2006.
    35.江忠善.坡面流速的试验研究中国科学院西北水土保持研究所集刊.1988,7:46-52.
    36.景可,王万忠,郑粉莉.中国土壤侵蚀与环境.北京:科学出版社,2005.
    37.靳长兴.论坡面侵蚀的临界坡度.地理学报,1995,50:234-239.
    38.雷瑞德. 华山松林冠下透过降雨的水平分布.陕西林业科技,1988,4:1-5.
    39.李军健.不同种植模式下紫色土坡耕地及养分流失特征研究.[硕士论文].重庆:西南大学图书馆.2006.
    40.李秋艳,蔡强国,方海燕,王成超.长江上游紫色土地区不同坡度坡耕地水保措施的适宜性分析.自然科学进展,2009,31:2157-2163.
    41.李树利,彭培好,王玉宽,傅斌,杨金凤.雨前土壤含水量对紫色土坡耕地地表产流过程的影响.安徽农业科学,2008,36:15593-15595.
    42.李树利.USLE模型在川中紫色土区应用研究.[硕士论文].成都:成都理工大学图书馆.2009.
    43.李毅,邵明安.草地覆盖坡面流水动力参数的室内降雨试验.农业工程学报,2008,24:1-5.
    44.李勇,徐晓琴,朱显漠,田积莹. 植物根系与土壤的抗冲性.水土保持学报,1993,7:11-18.
    45.李勇,吴钦孝,朱显漠,田积莹.黄土高原植物根系提高土壤抗冲性能的研究.水土保持学报,1990,4:1-16.
    46.李元寿,王根绪,王一博,王军德, 贾晓红. 长江黄河源区覆被变化下降水的产流产沙效应研究.水科学进展,2006,17:616-623.
    47.李朝霞.降雨过程中红壤表土结构变化与侵蚀特点.[博士论文].武汉:华中农业大学图书馆,2004.
    48.廖小勇,陈治谏,刘邵权,王海明.三峡库区紫色土坡耕地不同利用方式的水土流失特征.水土保持学报,2005,12:159-161.
    49.林超文,涂仕华,黄晶晶,陈一兵.植物篱对紫色土区坡耕地水土流失及土壤肥力的影响.生态学报,2007,27:2191-2198.
    50.刘宝元,张科利,焦菊英.土壤可蚀性及其在侵蚀预报中的应用.自然资源学报,1999, 14:345-350
    51.刘秉正,刘世海,郑随定.作物植被的保土作用及作用系数.水土保持研究,1999,63:2-35.
    52.刘刚才,李兰,周忠浩,杜树汉.紫色土容许侵蚀量的定位试验确定.水土保持通报.2008,28:90-94.
    53.刘刚才,朱波,代华龙,张建辉,李勇.四川低山丘陵区紫色土不同土地利用类型的水蚀特征.水土保持学报,2001,15:98-103.
    54.刘刚才,李兰, 周忠浩,张建辉.紫色土丘陵区坡耕地退耕对水土流失的影响及其效益评价.中国水土保持科学,2005,3:32-36.
    55.刘纪根,李蓉.紫色土区土地利用类型与降水变化对水土流失的影响.2009,26:10-14.
    56.刘向东,吴钦孝,赵鸿雁.森林植被垂直截留作用与水土保持.水土保持研究,1994,1:8-13.
    57.卢喜平,史东梅,吕刚,蒋光毅.紫色土坡地果草种植模式的水土流失特征研究.水土保持学报,2005,19:21-25.
    58.吕甚悟.紫色土丘陵区坡地改梯田的效益.土壤,1989,3:51-53.
    59.陆兆熊,蔡强国.黄土的表土结皮强度和溅蚀试验研究.见:山西省水土保持研究所,中国科学院地理研究所和加拿大多伦多大学地理系.晋西黄土高原土壤侵蚀规律实验研究文集.北京:水利电力出版社,1990,58-67
    60.陆兆熊,Merz W.应用盐液示踪技术测定表面流速.见:中国科学院地理研究所,加拿大多伦从大学地理系,山西省水土保持研究所.晋西黄土高原土壤侵蚀管理与地理信息系统应用研究.北京:科学出版社,1992.
    61.马春艳.黄河班多水电站工程区主要地类坡面侵蚀动力学过程试验研究.[硕士论文].西安:西北农林科技大学图书馆.2009.
    62.缪驰远,何丙辉,陈晓燕.水蚀模型USLE与WEPP在紫色土水蚀预测中的应用对比研究.农业工程学报,2005,21:13-16.
    63.秦耀东,任理,王济.土壤中大孔隙流研究进展与现状.水科学进展,2000,11:203-207.
    64.史德明,杨艳生,姚宗虞.土壤侵蚀调查方法中的侵蚀分类和侵蚀制图问题.中国水土保持,1983,5:33-37.
    65.史东梅,卢喜平,刘立志.三峡库区紫色土坡地桑基植物篱水土保持作用研究.水土保持学报.2005,19:75-79.
    66.史东梅.基于RUSLE模型的紫色丘陵区坡耕地水土保持研究.水土保持学报.2010,24:39-44.
    67.史志华.基于GIS和RS的小流域景观格局变化及其土壤侵蚀响应.[博士论文].武汉:华中农业大学图书馆,2003.
    68.史学正,于东升,吕喜玺.用人工模拟降雨仪研究我国热带土壤可蚀性.水土保持学报,1995,9:38-42.
    69.申元村.三峡库区植物篱坡地农业技术水土保持效益研究.土壤侵蚀与水土保持学报,1998,4:62-66.
    70.孙虎,唐克丽.城镇建设中人为弃土降雨侵蚀实验研究.土壤侵蚀与水土保持学报,1998,4:29-35.
    71.唐克丽,郑世清,席道勤,孙清芳,刘炳武.杏子河流域坡耕地的水土流失及其防治.水士保持通报,1983,5:43-48.
    72.万丹.紫色土不同利用方式下土壤侵蚀及氮磷流失研究.[硕七论文].重庆:西南大学图书馆.2007.
    73.王平,朱阿兴,蔡强国,刘慧平.概念性土壤侵蚀模型的建立及在紫色土小流域的应用.农业工程学报,2009,25:80-87.
    74.王喜龙,蔡强国,王忠科,孙国亮.冀西北黄土丘陵沟壑区梯田地埂植物篱的固埂作用与效益分析.自然资源学报,2000,15:74-79.
    75.王勇强,王玉宽,傅斌,王先拓,王道杰.不同耕作方式对紫色土侵蚀的影响.水土保持研究.2007,14:333-335.
    76.王万忠,焦菊英,郝小品,张宪奎,卢秀琴,陈法扬,吴素业.中国降雨侵蚀R值的计算与分布.土壤侵蚀与水土保持学报,1996,2:29-39.
    77.王占礼,邵明安,雷廷武.黄土区耕作侵蚀及其对总土壤侵蚀贡献的空间格局.生态学报,2003,23:1328-1335.
    78.王治国,白中科, 赵景逵, 佟则昂,陈建军.黄土区大型露天矿排土场岩土侵蚀及其控制技术的研究.水土保持学报,1994,8:10-17.
    79.王志刚,郑粉莉,李靖. 不同近地表水文条件下紫色土坡面土壤侵蚀过程研究. 水土保持通报,2007,27:9-11.
    80.吴普特,周佩华.地表坡度对雨滴溅蚀的影响.水土保持通报,1991,11:8-13.
    81.徐创军, 杨立中, 唐家良, 杨红薇,白平, 吴鹏飞.紫色土坡地不同种植模式生态经济效益综合评价.中国生态农业学报,2008,16:196-199.
    82.谢云,章文波,刘宝元.用日雨量和雨强计算降雨侵蚀力.水土保持通报,2001,21:53-56.
    83.许峰,蔡强国,吴淑安,张光远,蔡崇法,丁树文,史志华,黄丽.等高植物篱控制紫色土坡耕地侵蚀的特点.土壤学报,2002,39:71-79.
    84.杨武德,王兆骞.红壤坡地不同利用方式土壤侵蚀模型研究. 土壤侵蚀与水土保持学报.1999,5:52-58.
    85.杨子生.滇东北山区坡耕地土壤流失方程研究.水土保持通报,1999,19:1-9.
    86.杨子生.滇东北山区坡耕地土壤侵蚀的作物经营因子.山地学报,1999,17:19-21.
    87.闫峰陵,李朝霞,史志华,蔡崇法.红壤团聚体特征与坡面侵蚀定量关系.农业工程学报,2009,25:37-41.
    88.姚文艺,汤立群.水力侵蚀产沙过程及模拟.郑州:黄河水利出版社,2001.
    89.尹忠东,左长清,高国雄,彭婉君.江西红壤缓坡地壤中流特征研究.西北林学院学报.2006,21:47-49.
    90.尹忠东,左长清,苟江涛,贾俊姝.川中紫色土区小流域土地利用与土壤流失关系.2011,42:239-365.
    91.袁再健,蔡强国,褚英敏,冯明汉,李双喜.四川紫色土地区鹤鸣观小流域分布式侵蚀产沙模型.地理研究,2006,25:967-976.
    92.于东升,史学正,吕喜玺.低丘红壤区不同土地利用方式的C值及可持续性评价. 土壤侵蚀与水土保持学报,1998,4:71-76.
    93.郑度,申元村.坡地过程及退化坡地恢复整治研究-以三峡库区紫色土坡地为例.地理研究,1998,53:116-122.
    94.郑粉莉.黄土区坡耕地细沟间侵蚀和细沟侵蚀的研究.土壤学报,1998,35(1):95-103.
    95.郑粉莉,康绍忠.黄土坡面不同侵蚀带侵蚀产沙关系及其机理.地理学报,1998,53:422-428.
    96.郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀影响因素的研究,土壤学报,1989,26:99-116.
    97.郑进军,张信宝,贺秀斌.川中丘陵区坡耕地侵蚀空间分布的WEPP模型和137Cs法研究.水土保持学报,2007,21:19-23.
    98.张光辉,刘宝元,何小武.黄土区原状土壤分离过程的水动力学机理研究.水土保持学报,2005,19:48-52
    99.张洪江.土壤侵蚀原理.北京:中国林业出版社,2006.
    100.张建辉,李勇,Lobb DA,张建国.我国南方丘陵区土壤耕作侵蚀的定量研究.水土保持学报,2001,15:1-4.
    101.张科利,刘宝元.土壤侵蚀预报研究中的标准小区问题论证.地理研究,2000,19:297-302.
    102.章文波,付金生.不同类型雨量资料估算降雨侵蚀力.资源科学,2003,25:35-41.
    103.张信宝,李少龙,王成华.137Cs法测算梁峁坡农耕地土壤侵蚀量的初探.水土保持通报,1988,8:18-22.
    104.张雪花,侯文志,王宁.东北黑土区土壤侵蚀模型中植被因子C值的研究.农业环境科学学报,2006,25:797-801.
    105.张岩,刘宝元,史培军,江忠善.黄土高原土壤侵蚀作物覆盖因子计算.生态学报,2001,21:1050-1056.
    106.张宪奎,许靖华,卢秀琴,邓育江,高德武.黑龙江省土壤流失方程的研究.水土保持通报,1992,12:1-9.
    107.张照录,薛重生.湖北三峡库区降雨侵蚀力的计算及其特征分析.中国水士保持,2005,8:10-12.
    108.中国大百科全书(水利卷).北京:中国大百科全书出版社,1983.
    109.周璟.涪陵区不同土地利用方式下土壤养分及侵蚀特征研究.[硕士论文].重庆:西南大学图书馆.2006.
    110.朱波,高美荣,刘刚才,罗贵生,张先婉.川中丘陵区农业生态系统的演替山地学报,2003,21:56-62.
    111.周佩华,窦葆璋,孙清芳.降雨能量试验研究初报.水土保持通报,1981,1:51-60.
    112.朱显漠.黄土高原水蚀的主要类型及其有关因素.水土保持通报,1981,3:1-9.
    113.朱显谟.黄土高原枯落物因素对水体流失的影响.土壤学报1960,2:110-121.
    114. Abrahams AD, Luk SH, Parsons AJ. Threshold relations for the transport of sediment by overland flow on desert hillslopes. Earth Surface Processes and Landforms,1988,13:407-419.
    115. Abrahams AD, Parsons AJ, Luk SH. The effect of spatial variability in overland flow on the downslope pattern of soil loss on a semiarid hillslope, southern Arizona. Catena,1991 18: 255-270.
    116. Abrahams AD, Parsons AJ, Wainwright J. Effects of vegetation change on interrill runoff and erosion, Walnut Gulch, southern Arizona. Geomorphology.1995,13:37-48.
    117. Amezketa E. Soil aggregate stability:a review. Journal of Sustainable Agriculture,1999,14: 83-151.
    118. Barton AP, Fullen MA, Mitchell DJ, Hocking TJ, Liu L, Bo ZW, Zheng YX. Effects of soil conservation measures on erosion rates and crop productivity on subtropical Ultisols in Yunnan Province, China. Agriculture, Ecosystem and Environment,2004,104:343-357.
    119. Bochet E, Poesen J, Rubio JL. Runoff and soil loss under individual plants of a semi-arid Mediterranean shrubland:influence of plant morphology and rainfall intensity. Earth Surface Processes and Landforms.2006,31:536-549.
    120. Bochet E, Rubio JL, Poesen J. Relative efficiency of three representative matorral species in reducing water erosion at the microscale in a semi-arid climate, Geomorphology.1998,23, 139-150.
    121.Bonsu M. Organic residues for less erosion and more grain in Ghana. In El-Swaify SA, Moldenhauer WC, Lo A. (Eds), Soil erosion and conservation. Iowa:Soil Conservation Society, 1985.615-620.
    122. Bradford JM, Remley PA, Ferris JE, Santini JB. Effect of soil surface sealing on splash from a single waterdrop. Soil Science Society of America Journal,1986,50:1547-1552.
    123. Brandt CJ. The size distributions of throughfall drops under vegetation canopies. Catena.1989, 16:507-524.
    124. Bruijnzeel LA. Hydrological functions of tropical forests:not seeing the soil for the trees? Agriculture, Ecosystems and Environment.2004,104:185-228.
    125. Cai QG, Wang H, Curtin D, Zhu Y. Evaluation of the EUROSEM model with single event data on Steeplands in the ThreeGorges Reservoir Areas, China. Catena,2005,59:19-33.
    126. Chaplot V, Le Bissonnais Y. Field measurements of interrill erosion under different slopes and plot sizes. Earth Surface Processes and Landforms,2000,25:145-153.
    127. Cruse RM, Larson WE. Effect of soil shear strength on soil detachment due to raindrop impact. Soil Science Society of America Journal,1977,41:777-781.
    128. Critchley WRS, Sombatpanit S, Medina SM. Uncertain steps? Terraces in the tropics. In Bridges EM, Hannam ID, Oldeman LR, Penning de, Vries FWT, Scherr SJ, Sombatpanit S. (eds), Response to land degradation. Enfield:Science Publishers,2001.325-338.
    129. De Ploey J. A stemflow equation for grasses and similar vegetation. Catena,1982,9:139-52.
    130. De Ploey J. A model for headcut retreat in rills and gullies. Catena Supplement.1989:14:81-6.
    131. Dercon G, Deckers J, Govers G., Poesen J, Sanchez H, Vanegas R, Raminez M, Loaiza G. Spatial variability in soil properties on slow-forming terraces in the Andes region of Ecuador. Soil and Tillage Research,2003.72:31-41.
    132. D'Souza VPC, Morgan RPC. A laboratory study of the effect of slope steepness and curvature on soil erosion. Journal of Agricultural Engineering Research,1976,21:21-31.
    133. Duran ZVH, Aguilar RJ, Martinez RA, Franco DT. Impact of erosion in the taluses of subtropical orchard terraces. Agriculture, Ecosystems and Environment,2005,107:199-210.
    134. Ekern PC. Problems of raindrop impact erosion. Agricultural Engineer,1953,34:23-25.
    135. Elwell HA. A soil loss estimation technique for southern Africa. In Morgan, R.P.C. (ed.), Soil conservation:problems and prospects. Chichester:Wiley,1981.281-292.
    136. Ellison WD. Studies of raindrop erosion. Aric Eng,1944,25:131-136
    137. Emmett WW. The hydraulics of overland flow onhillslopes. USGS Professional Paper,1970. 662-663.
    138. Engman ET. Roughness coefficients for routing surface runoff. Journal of the Irrigation and Drainage. Division ASCE,1986,112:39-53.
    139. Environment Agency. Agriculture and natural resources:benefits, costs and potential solutions. Bristol:Environment Agency.2002.
    140. Esteves M, Lapetite JM. A multi-scale approach of runoff generation in a Sahelian gully catchment:a case study in Niger. Catena,2003,50:255-271.
    141. Evans R. Mechanics of water erosion and their spatial and temporal controls:an empirical viewpoint. In Kirkby, MJ and Morgan, RPC. (Eds), Soil erosion. Chichester:Wiley,1980. 109-28.
    142. Everaert W. Empirical relations for the sediment transport capacity of interrill flows. Earth Surface Processes and Landforms,1991,16:513-532.
    143. Fang HY, Cai QG, Chen H, Li QY. Effect of rainfall regime and slope on runoff in a gullied loess region on the Loess Plateau in China. Environmental Management,2008,42:402-411.
    144. Foster GR. Modeling the erosion process. American Society of Agricultural Engineers Monograph,1982,5:297-380.
    145. Foster GR, Johnson CB, Moldenhauer WC. Hydraulics of failure of unanchored corn-stalk and wheat straw mulches for erosion control. Transactions of the American Society of Agricultural Engineers,1982,25:940-947.
    146. Fournier F. Soil conservation. Nature and Environment Series, Brussels:Council of Europe. 1972.68-69.
    147. Fox DM, Bryan RB. The relationship of soil loss by interrill erosion to slope gradient. Catena, 1999,38:211-222.
    148. Fox DM, Bryan RB, Price AG. The influence of slope angle on final infiltration rate for interrill conditions. Geoderma,1997,80:181-194.
    149. Gabriels D, Pauwels JM, De Boodt M. The slope gradient as it affects the amounts and size distribution of soil loss material from runoff on silt loam aggregates. Mededelingen Fakulteit Landbouwwetenschappen, Rijksuniversiteit Gent,1975,40:1333-1338.
    150. Gafur A, Jensen JR, Borggaard OK, Petersen L. Runoff and losses of soil and nutrients from small watersheds under shifting cultivation (Jhum) in the Chittagong Hill Tracts of Bangladesh. Journal of Hydrology.2003,279:292-309.
    151. Ghinassi G, Neri L. Effect of mulching with black polyethylene sheets on sweet pepper evapotranspiration losses. In:Pereira LS, Gowing J (Eds) Water and the Environment:Innovation Issues in Irrigation and Drainage. New York:E & FN Spon,1998.
    152. Ghadiri H, Payne D. Raindrop impact and soil splash. In Lal, R. and Greenland, D.J. (eds), Soil physical properties and crop production in the tropics. Chichester:Wiley,1979,95-104.
    153. Gilley JE, Woolhiser, DA, McWhorter DB. Interrill soil erosion. Part Ⅱ. Testing and use of model equations. Transactions of the American Society of Agricultural Engineers,1985,28:154-159.
    154. Gomez JA, Giraldez JV, Fereres E. Analysis of infiltration and runoff in an Olive Orchard under no-till. Soil Science Society of America Journal,2001,65:291-299.
    155. Govers G. Empirical relationships for the transporting capacity of overland flow. International Association of Hydrological Sciences Publication,1990,89:45-63.
    156. Govers G. Evaluation of transporting capacity formulae for overland flow. In Overland Flow: Hydraulics and Erosion Mechanics, Parsons A.J. and Abrahams A.D. (Eds.), UCL Press:London, 1992,243-273.
    157. Govers G. Selectivity and transport capacity of thin flows in relation to rill erosion. Catena,1985, 12,35-49.
    158. Govers G. Time-dependency of runoff velocity and erosion:the effect of the initial soil moisture profile. Earth Surface Processes and Landforms,1991,16:713-29.
    159. Greenway DR. Vegetation and slope stability. In Anderson, M.G. and Richards, K.S. (eds), Slope stability:geotechnical engineering and geomorphology. Chichester:Wiley,1987.187-230.
    160. Graaff Jde, Dwiwarsito K. Economic Monitoring and Evaluation of Konto River Project Implementation Activities. Project Communication No.15 Konto River Project:Malang.1990.
    161. Guzha AC. Effects of tillage on soil microrelief, surface depression storage and soil water storage. Soil and Tillage Research.2004,76:105-114.
    162. Gyssels G, Poesen J. The importance of plant root characteristics in controlling concentrated flow erosion rates. Earth Surface Processes and Landforms,2003,28:371-384.
    163. Gyssels G, Poesen J, Bochet E, Li Y. Impact of plant roots on the resistance of soils to erosion by water:a review, Progress in Physical Geography.2005,2:189-217.
    164. Hammad AA, Bφrresen T, Haugen LE. Effects of rain characteristics and terracing on runoff and erosion under the Mediterranean. Soil and Tillage Research,2006,87:39-47.
    165. Heede BH. Stages of development of gullies in the west. USDA-ARS PublicationARSS.1975,40: 155-61.
    166. Horton RE. Erosional development of streams and their drainage basins. Hydrological approach to quantitative morphology, Bull Geo Soc Am,1945,56:275-370
    167. Huang C, Bradford JM, Cushman JH. A numerical study of raindrop impact phenomena:the rigid case. Soil Science Society of America Journal,1982,46:14-19.
    168. Huang C, Bradford J. Analyses of slope and runoff factors based on the WEPP erosion model. Science Society of America journal,1993,57:1176-1183.
    169. Hudson NW. Soil Conservation. London:BT Batsford,1976.
    170. Hudson NW. Raindrop size distribution in high intensity storms. Rhodesian Journal of Agricultural Research,1963,1:6-11.
    171. Hudson NW. Soil conservation,2nd edn. London:Batsford.1981.
    172. Hudson NW, Jackson DC. Results achieved in the measurement of erosion and runoff in Southern Rhodesia. Proceedings of the Third Inter-African Soils Conference. Dalaba,1959, 575-83.
    173.IFDA (The International Fund for Agricultural Development). West Bank and Gaza Strip Participatory Natural Resource Management Programme (PNRMP). Rome:IFAD.1998.
    174. Keesstra SD, Dam OV, Verstraeten G, Huissteden VJ. Changing sediment dynamics due to natural reforestation in the Dragonja catchment, SW Slovenia. Catena,2009,78:60-71.
    175. Kienzler PM, Naff F. Temporal variability of subsurface stormflow formation. Hydrological Earth System Science,2008,12:257-265.
    176. Kirkby MJ. Hillslope process-response models based on the continuity equation. In Brunsden D. (ed.), Slopes:form and process. Institute of British Geographers Special Publication,1971,3: 15-30.
    177. Lal, R. Soil-conserving versus soil-degrading cops and soil management for erosion control. In Greenland DJ, Lal R. (Eds), Soil conservation and management in the humid tropics. Wiley, London,1977.81-86.
    178. Lal R. Global soil erosion by water and carbon dynamics. In Lal, R., Kimble, J.M., Levine, E. and Stewart, B.A. (Eds), Soils and global change. Boca Raton:CRC/Lewis,1995.131-141.
    179. Le Bissonnais Y, Cerdan O, Lecomte V, Benkhadra H, Souchere V, Martin P. Variability of soil surface characteristics influencing runoff and interrill erosion. Catena,2005,62:111-124.
    180. Legout C, Leguedois S, Le Bissonnais Y. Aggregate breakdown dynamics under rainfall compared with aggregate stability measurements. European Journal of Soil Science,2005,56: 225-237
    181. Li Y, Lindstrom MJ. Evaluating soil quality-soil redistribution relationship on terraces and steep hillslope. Soil Science Society of America Journal,2001,65:1500-1508.
    182. Lin CW, Tu SH, Huang JJ, Chen YB. The effect of plant hedgerows on the spatial distribution of soil erosion and soil fertility on sloping farmland in the purple-soil area of China. Soil and Tillage Research,2009,10:307-312.
    183. Liu GC, Tian GL, Shu DC, Lin SY, Liu SZ. Characteristics of surface runoff and throughflow in a purple soil of Southwestern China under various rainfall events. Hydrological Processes.2005, 19:1883-1991.
    184. Loch R. Using rill/interrill comparisons to infer likely responses of erosion to slope length: Implications for land management, Australian Journal of Soil Research,1996,34,489-502.
    185. Lobb DA, Kachanoski RG, Miller MH. Tillage translocation and tillage erosion on shoulder slope landscape positions measured using Cs-137 as a tracer. Canadian Journal of Soil Science, 1995:75,211-18.
    186. Luk SH, Abrahams AD, Parsons AJ. A simple rainfall simulator and trickle system for hydro-geomorphic experiments. Physical Geography,1986,7(4):344-356
    187. Merz R, Bloschl G, Parajka J. Spatio-temporal variability of event runoff coefficients. Journal of Hydrology 2006,331:591-604.
    188. Meyer LD, Monke EJ. Mechanics of soil erosion by rainfall and overland flow. Transactions of the American Society of Agricultural Engineers,1965,8:572-577.
    189. Meyer LD, Foster, GR, Romkens, MJM. Source of soil eroded by water from upland slopes. USDA-ARS Publication ARSS,1975.40:177-189.
    190. Michael DG, Thomas WG. Macropore flow on a reclaimed surface mine:infiltration and hillslope hydrology. Geomorphology.2001,39:151-169.
    191. Mo, P. Effect of integrated farm practices on sustainable agriculture in Zigui County, the Three Gorges Region of China. Unpublished M.Phil Thesis, Hong Kong:The Chinese University of Hong Kong,1997.
    192. Morgan RPC. Field studies of rainsplash erosion,1978, Earth Surface Processes and Landforms, 1978,3:295-299.
    193. Morgan RPC. Field studies of sediment transport by overland flow. Earth Surface Processes, 1980,3:307-16.
    194. Morgan RPC. The role of climate in the denudation system:a case study from Peninsular Malaysia. In Derbyshire, E. (ed.), Climate and geomorphology. London:Wiley,1976.317-43.
    195. Morgan RPC. Soil erosion and conservation in Britain. Progress in Physical Geography,1980,4: 24-47.
    196. Morgan RPC. Soil Erosion and Conservation. Edinburgh:Addison-Wesley Longman,1995.
    197. Morgan RPC, Quinton JN, Smith RE, Govers G, Poesen J, Auerswald K, Chisci G, Torri D, Styczen ME. The European Soil Erosion Model (EUROSEM):a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 1998,23:527-544.
    198. Mosley, MP. The effect of a New Zealand beech forest canopy on the kinetic energy of water drops and on surface erosion. Earth Surface Processes and Landforms,1982.7:103-107.
    199. Moret D, Arrue JL. Dynamics of soil hydraulic properties during fallow as affected by tillage.Soil & Tillage Research,2007,96:103-113.
    200. Naef F, Scherrer S, Weiler M. A process based assessment of the potential to reduce flood runoff by land use change,2002, Journal of Hydrology,267:74-79.
    201. Neave M, Rayburg S. A field investigation into the effects of progressive rainfall-induced soil seal and crust development on runoff and erosion rates:The impact of surface cover. Geomorphology,2007,87:378-390.
    202. Nearing MA, Bradford JM. Single water drop splash detachment and mechanical properties of soil. Soil Science Society of America Journal,1985,49:547-548.
    203. Nearing MA, Foster G R, Lane L J. A process-based soil erosion model for USDA-water erosion prediction project technology. Trans ASAE,1989,32:1587-1593
    204. Nearing MA. A probabilistic model of soil detachment by shallow turbulent flow. Transactions of the American Society of Agricultural Engineers,1991,34:81-85.
    205. Nearing MA. Detachment of soil by flowing water under turbulent and laminar conditions. Soil Science Society of America Journal,1994,58:1612-1614.
    206. Nearing MA, Jetten V, Baffaut C, Cerdan O, Couturier, A, Hernandez, M, Le Bissonnais, Y, Nichols, MH, Nunes, JP, Renschler, CS, Souchere, V, van Oost, K. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena,2005,61:131-154.
    207. Ng SL, Cai QG, Ding SW, Chau KC, Qin J. Effects of contour hedgerows on water and soil conservation, crop productivity and nutrient budget for slope farmland in the Three Gorges Region (TGR) of China. Agroforestry systems.2008,74:279-291.
    208. Norbiato D, Borga M, Merz R, Bloschl G, Carton A. Controls on event runoff coefficients in the eastern Italian Alps. Journal of Hydrology,2009,375:312-325.
    209. Ni SJ, Zhang JH. Variation of chemical properties as affected by soil erosion on hillslopes and terraces. European Journal of Soil Science,2007,58:1285-1292.
    210. Nyssen J, Poesen J, Moeyersons J, Lavrysen E, Haile M, Deckers J. Spatial distribution of rock fragments in cultivated soils in Northern Ethiopia as affected by lateral and vertical displacement processes. Geomorphology,2002,43:1-16.
    211. Odemerho FO. Variation in erosion-slope relationship on cut slopes along a tropical highway. Singapore Journal of Tropical Geography,1986,7:98-107.
    212. Osuji GE, Babalola O, Aboaba FO. Rainfall erosivity and tillage practices affecting soil and water loss on a tropical soil in Nigeria. Journal of Environmental Management.1980,10:207-17.
    213. Palmer RS. The influence of a thin water layer on water-drop impact forces. International Association of Scientific Hydrology Publication,1964.65:141-8.
    214. Parsons AJ, Abrahams AD, Luk SH. Hydraulics of interrill overland flow on a semi-arid hillslope, southern Arizona. Journal of Hydrology,1990,117:255-73.
    215. Parsons AJ, Stromberg SGL, Greener M. Sediment-transport competence of rain-impacted interrill overland flow. Earth Surface Processes and Landforms,199823:365-375.
    216. Parsons AJ, Stromberg SGL. Experimental analysis of size and distance of travel of unconstrained particles in interrill flow. Water Resources Research,1998,34:2377-2381.
    217. Parsons AJ, Wainwright J, Powell DM, Kaduk J, Brazier RE. A conceptual model for determining soil erosion by water. Earth Surface Processes and Landforms,2004,29:1203-1302.
    218. Pearce, AJ. Magnitude and frequency of erosion by Hortonian overland flow. Journal of Geology, 1976,84:65-80.
    219. Poesen J. The influence of slope angle on infiltration rate and Hortonian overland flow volume. Zeitschrift fur Geomorphologie Supplement.1984,49:117-131.
    220. Poesen J. Transport of rock fragments by rill flow-a field study. Catena, Supplement,1987,8: 35-54.
    221. Poesen J, van Wesemael B, Govers G., Martinez-Fernandez J. Desmet P, Vandaele K, Quine T. Degraer G. Patterns of rock fragment cover generated by tillage erosion. Geomorphology 1997, 18:183-197.
    222. Posthumus H, Graaff JD. Cost-benefit analysis of bench terraces:a case study in Peru. Land Degradation and Development,2005,16:1-11.
    223. Poulenard J, Podwojewski P, Janeau JP, Collinet J. Runoff and soil erosion under rainfall simulation of Andisols from the Ecuadorian paramo:effect of tillage and burning. Catena,2001, 45:185-207.
    224. Pruski FF, Nearing MA. Runoff and soil loss responses to changes in precipitation:a computer simulation study. Journal of Soil and Water Conservation,2002,57:7-16.
    225. Ramos MC, Cots-Folch R, Martinez-Casasnovas JA. Effects of land terracing on soil properties in the Priorat region in Northeastern Spain:A multivariate analysis. Geoderma,2007, 142:251-261.
    226. Rauws G, Govers G. Hydraulic and soil mechanical aspects of rill generation on agricultural soils. Journal of Soil Science,1988,39:111-124.
    227. Ree WO. Hydraulic characteristics of vegetation for vegetated waterways. Agricultural Engineering,1949,30:184-189.
    228. Renard KG, Foster GR, Weesies GA, Porter JP. RUSLE:revised universal soil loss equation. Journal Soil and Water Conservation,1991,46:30-33.
    229. Reynolds W, Gregorich E, Curnoe, W. Characterization of water transmission properties in tilled and untilled soils using tension infiltrometers. Soil and Tillage Research.1995.33:117-131.
    230. Richter G, Negendank JFW. Soil erosion processes and their measurement in the German area of the Moselle river. Earth Surface Processes,1977.2:261-278.
    231. Ritchie JC, Hawks PH, McHenry JR. Deposition rates in valleys determined using fallout cesium-137. Geological Society of America Bulletin,1975,86:1128-1130.
    232. Sanginga N, Vanlauwe B, Danso SKA. Management of biological N2 fixation in alley cropping systems:estimation and contribution to N balance. Plant and Soil,1995,174:119-141.
    233. Schenk HJ, Jackson RB. The global biogeography of roots. Ecological monographs.2002, 72:311-328.
    234. Schuller P, Walling DE, Sepulveda A, Castilloa A, Pinoe I. Changes in soil erosion associated with the shift from conventional tillage to a no-tillage system, documented using 137Cs measurements. Soil and Tillage Research,2007,94:183-192.
    235. Shen ZY, Gong YW, Li YH, Liu, RM. Analysis and modeling of soil conservation measures in the Three Gorges Reservoir Area in China. Catena,2010,81:104-112.
    236. Sherchan DP, Chand SP, Thapa YB, Tiwari, TP, Gurung, GB. Soil and nutrient losses in runoff on selected crop husbandry practices on hill slope soil of the eastern Nepal. In Proceedings, International symposium on water erosion, sedimentation and resource conservation. Central Soil and Water Conservation Research and Training Institute, Dehra Dun,1990.
    237. Siriri D, Tenywa MM, Raussen T, Zake JK. Crop and soil variability on terraces in the highlands of SW Uganda. Land Degradation and Development,2005,16:569-579.
    238. Statistical Package for the Social Sciences Inc. SPSS Advanced Statistics 11.0. SPSS Inc., Chicago,2001.
    239. Sterk G, Herrmann L, Bationo A. Wind-blown nutrient transport and soil productivity changes in southwest Niger. Land Degradation & Development,1996,7:325-335.
    240. Stocking MA. The cost of soil erosion in Zimbabwe in terms of loss of three major nutrients. FAO Consultants Working Paper 3, Rome:AGLS,1986.
    241. Stone JJ, Paige GB, Hawkins RH. Rainfall intensity-dependent infiltration rates on rangeland rainfall simulator plots. Transactions of the Asabe,2008,51:45-53.
    242. Torri D, Poesen J. The effect of soil surface slope on raindrop detachment. Catena,1992, 19:561-577.
    243. Trac CJ, Harrell S, Hinckley TM, Henck AC. Reforestation programs in southwest China: Reported success, observed failure, and the reasons why. Journal of Mountain Science,2007,4: 275-292.
    244. Uri ND, Lewis JA. The dynamics of soil erosion in US agriculture. Science of the Total Environment,1998,218:45-58
    245. Van Dijk, AIJM, Bruijnzeel, LA, Rosewell, CJ. Rainfall intensity-kinetic energy relationships:a critical literature review. Journal of Hydrology,2002,261:1-23.
    246. Van Dijk AIJM. Water and sediment dynamics in bench-terraced agricultural steeplands in West Java, Indonesia. Ph.D.Thesis, Amsterdam:Vrije Universiteit.2002.
    247. Valmis S, Dimoyiannis D, Danalatos, N G. Assessing interrill erosion rate from soil aggregate instability index, rainfall intensity and slope angle on cultivated soils in central Greece. Soil and Till Research,2005,80:139-147.
    248. Vogel H. Conservation tillage in Zimbabwe. Evaluation of several techniques for the development of sustainable crop production systems in smallholder farming. Geographica Bernensia, African Studies Series A11.1994.
    249. Wang XG, Wang L. On the ancient terraced fields in China. Tools and Tillage,1991,6:191-201.
    250. Watung RL, Sutherland RA, El-Swaify SA. Influence of rainfall energy flux density and antecedent soil moisture content on splash transport and aggregate enrichment ratios for a Hawaiian Oxisol. Soil Technology,1996,9:251-272.
    251. Wei CF, Shao JA, Pai NJ, Gao M, Xie DT, Pan GX, Hasegawa S. Soil aggregation and its relationship with organic carbon of purple soils in the Sichuan Basin, China. Agricultural Sciences in China,2008,7:987-998.
    252. Wei W, Chen LD, Fu BJ, Wu DP, Gui LD. The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. Journal of Hydrology,2007, 335:247-258.
    253. Wischmeier WH, Smith DD. Rainfall energy and its relationship to soil loss. Transactions of the American Geophysical Union.1958,39:285-91.
    254. Wischmeier WH, Smith DD. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agricultural Handbook, vol.282. Washington:USDA,1965
    255. Wischmeier WH, Smith, DD. Predicting rainfall erosion losses. USDA Agricultural Research Service Handbook 537.1978.
    256. Young A. Agroforestry for Soil Conservation, Oxford:B/ICRAF.1989.
    257. Young RA, Wiersma JL. The role of rainfall impact in soil detachment and transport, Water Resources Research,1973,9,1629-1636.
    258. Young RA, Onstad CA, Bosch DD, Anderson WP. AGNPS:a nonpoint-source pollution model for evaluating agricultural watersheds. Journal of Soil and Water Conservation,1989,44: 168-173
    259. Zhang B, Yang YS, Zepp H. Effect of vegetation restoration on soil and water erosion and nutrient losses of a severely eroded clayey Plinthudult in southeastern China. Catena,2004,57: 77-90.
    260. Zhao F, Deng H, Zhao XY. Rainfall regime in Three Gorges area in China and the control factors. International Journal of Climatology,2010,30:1396-1406.
    261. Zhang JH, Quine T, Ni SJ, Ge FL. Stocks and dynamics of SOC in relation to soil redistribution by water and tillage erosion. Global Change Biology,2006,12:1834-1841.
    262. Zhang JH, Su ZA, Liu GC. Effects of terracing and agroforestry on soil and water loss in hilly areas of the Sichuan Basin, China. Journal of Mountain Science,2008.5:241-248.
    263. Zhang XC, Nearing MA. Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklahoma. Catena,2005,61:185-195.
    264. Zingg AW. A portable wind tunnel and dust collector developed to evaluate the erodibility of field surfaces. Agronomy Journal,1951,43:189-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700