用户名: 密码: 验证码:
大跨刚构—连续梁桥结构性能的运营环境影响与规律分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶劣的服役环境、长期超负荷运营和损伤后未能及时修复和加固等原因,使得桥梁结构性能退化严重,安全性下降,以致发生重大事故。鉴于桥梁结构的重要性和事故的多发性,有必要对运营状态下的桥梁进行实时长期的连续监测,深入研究和掌握运营环境对桥梁结构的影响,及时准确地对结构进行状态评估和预测。
     本文以山东东营黄河公路大桥(大跨预应力钢筋混凝土刚构-连续梁桥)为对象,基于该桥梁结构健康监测系统的长期监测数据,对大跨刚构-连续梁桥结构性能的运营环境特性、影响和规律进行分析和研究,主要内容如下:
     (1)分别采用梁单元模型和三维实体元模型建立了一座大跨预应力钢筋混凝土刚构-连续梁桥的有限元模型,对比分析了两种模型的建模方法和优缺点,前者适用于结构的简化分析、后者适用于结构的精细化分析、尤其是结构局部损伤识别定位和模型修正等。基于大量监测数据,采用和发展了大跨刚构-连续梁桥模型修正的径向基函数(RBF)神经网络方法和响应面方法,两种方法把模型修正优化过程中反复迭代计算由有限元模型计算转移至计算效率更高的近似模型计算。东营桥有限元模型修正和对比分析表明,RBF响应面方法更适用于大型桥梁结构在线监测的快速模型修正。
     (2)对基于环境激励的结构模态频率识别的功率谱峰值法,提出了低通滤波去除高频噪声、半功率带宽去除虚假模态、多传感器加速度测试数据平均化的正则化功率谱方法,从而能够快速地识别大量在线监测数据、得到各阶真实准确的频率;然后,对长期连续的加速度数据利用小波分析进行综合处理,获得可信和稳定的频率时程。从而,发展了一种适用于实际桥梁结构连续监测数据快速在线识别模态频率的改进功率谱峰值法。
     (3)通过优化东营桥健康监测系统中的传感网络,由布设的大量光纤光栅温度和应力传感器构建出大规模的光纤光栅传感网络;通过东营桥的长期监测数据分析,得到了大型刚构-连续梁桥的三维温度分布规律:大型箱梁桥的纵向温差很小,可以忽略不计;横向温差并不大,主要出现在两侧翼缘与箱梁顶板之间;竖向温差最大,主要因桥梁竖向各部分受日照辐射的不同时间量和时间差而致。
     (4)基于大跨刚构-连续梁桥三维实体有限元模型,提出了环境温度及其变化对刚构箱梁预应力混凝土桥梁结构静动力性能影响的仿真分析方法。首先,通过预应力混凝土简支梁的温度效应(包括材料性能、应力、动力特性)的仿真分析,提出了桥梁结构温度影响的理论分析方法;然后基于东营桥的实体有限元模型,对多种温度分布工况进行了有限元分析;最后,考虑日照辐射的影响,对东营桥日照温度效应进行了实体有限元热效应分析以及温度场荷载作用下的静力和动力分析。东营桥运营环境温度效应的分析结果表明,环境温度荷载对刚构箱梁预应力混凝土桥的静动力特性影响很大,桥梁结构内部的温差以及由此引起的温度应力主要是日照辐射引起的。
     (5)通过东营桥的长期监测数据分析,得到了大型刚构-连续梁桥结构应力因温度变化的影响规律。经过温度补偿的光纤光栅应变传感器,能很好地监测到桥梁结构应力因温度和交通荷载引起的日周期性规律;环境温度对桥梁结构的应力影响非常大,季节性温差引起应力的大小有数倍的差异;通过对监测的应力与温度时程数据分析表明,两者具有较强的线性相关性,但不同的测点具有不同的相关系数。
     (6)根据东营桥监测系统中收费站实测的车重数据,对东营地区的车辆荷载进行了统计分析,通过对概率模型进行研究和比较,确定了该地区车辆荷载的概率模型及最大值分布;其次,提出了桥梁结构车辆移动荷载识别的荷载形函数方法,该方法利用形函数逼近移动荷载,无需限制结构类型,对复杂的大跨桥梁结构只要有较准确的有限元模型,就能够通过测量加速度准确识别移动荷载;利用东营黄河公路大桥有限元模型的数值仿真验证了荷载形函数方法有效性。
The performance of bridge structures are seriously deteriorated under thenegative effect of harsh environment, long-term overload operation, delayedmaintenance and reinforcement, leading to degraded safety and consequently majoraccidents. Considering the importance of bridge structures and multiple accidents, itis highly necessary to implement long-term real-time health monitoring on bridgesin operation state, carry out intensive study to grasp the effect of operatingenvironment on bridges, in order to make instant and precise assessment andprediction of structural condition.
     Choosing the Dongying Yellow River Bridge-a long-span prestressed concreterigid-continuous bridge as the research object, based on its long-term healthmonitoring data, this dissertation analyzed and studied the effect of operationalenvironment on the large-span rigid-continuous box-girder bridge. The maincontents are as followed:
     (1) Two finite element (FE) models of a large-span rigid-continuous box-girderbridge are developed using BEAM and SOLID elements respectively, then both theirmerits and drawbacks analyzed and compared. The BEAM model is valid forsimplified structural analysis; nevertheless, the SOLID one is more suitable forrefinement analysis, especially the structural local damage identification and modelupdating, etc. Based on massive monitoring data, radial basis function (RBF) neuralnetwork method and RBF response surface method are employed and developed,which transform the iterative computation from FE model to more effectiveapproximate model. The analysis and comparisons of the FE model updating resultsshow that the RBF response surface method is more compatible for rapid modelupdating of large-span bridge structures under real-time monitoring.
     (2) Based on the peak power spectrum method for modal frequenciesidentification under environmental excitation, the regularization power spectrummethod with low-pass filter eliminating high frequency noises, half powerband-width removing faulse modes, data averaging of multiple accelerations isdemonstrated to fast recognize the large amounts of online monotoring data andacquire real and accurate frequencies for different modes. Then, wavelet analysis isutilized to synthetically process the long-term health acceleration data to obtaincredible and stable frequency time histories. Thus, an improved peak powerspectrum is developed for rapid online identification using the continuousmonitoring data from actual bridge structures.
     (3) Amounts of fiber-Bragg grating (FBG) sensors for temperature and stress constitutes a large scale FBG sensor network by optimizing the sensor network ofthe structural health monitoring system of Dongying Bridge. Though analyzing thelong-term bridge monitoring data, the three dimensional temperature distributioncondition of the large rigid-continuous bridge are revealed: in longitudinal direction,the temperature differential is so small that can be neglected; for transverse, thedifferential is minor, mainly existing between the flanges in both sides and the topslab; in vertical, the differential is the largest, as different vertical areas suffer thesolar raidation with various time period and delay.
     (4) Based on the three-dimensional finite element model of a rigid-continousbox girder bridge, a simulation method is proposed to analyze the effect of ambienttemperature and its variety to the static and dynamic charateristics of this type ofbrdige. First, the theoretical method of thermal analysis for the bridge structures isproposed based the simulation study of a simply supported prestressed concretebeam, including material properties, stress and dynamic characteristics. Second, thevarious temperature distribution conditions on Dongying Bridge is discussed basedon the FE analysis using its SOLID model. Finally, thermal analysis on the SOLIDFE model and its static and dynamic analysis are conducted considering the solarradiation effect. Results from the analysis for the effect of the operationenvironment temperature on Dongying Bridge shows that ambient temperature loadhas significant effect to the static and dynamic characteristics. The temperaturedifferential inside the bridge structure and the consequent temperature stress ismainly caused by daily solar radiation.
     (5) The variation regulation of structure strain under temperature effect isobtained from the analysis of long-term monitoring data of Dongying Bridge. TheFBG strain sensor with temperature compensation can accurately monitor thesituation of structure strain changing with temperature and vehicle load in dailyperiod. Strucrural strain is heavily affected by environment temperature, and itschange caused by seasonal temperature differentials has severalfold differences.Comparatively strong linear correlation between strain and temperature is observedby analyzing of the monitoring data, yet different strain measuring point has its owncorrelation coefficient.
     (6) Vehicle loads in Dongying district are tatistically analysed according to thedata toll station of of Dongying Bridge monitoring system. The probability modeland maximum distribution of vehicle loads in this district are defined according tothe study and comparison of different probability models. Then, the load shapefunction method for moving vehicle load identification is proposed, which ultilizesthe shape function to approximate the moving vehicle load. This method has nolimitation of structure types. For complex large-span bridge structures, the movingforce can be accurately identified through measured acceleration if the FE model is precise enough. Its validity was certified by the numerical simulation of the FEmodel of Dongying Bridge.
引文
[1]马保林.高墩大跨连续刚构桥[M].北京:人民交通出版社,2001.
    [2]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991.
    [3]彭友松.混凝土桥梁结构日照温度效应理论及应用研究[D].成都:西南交通大学,2007.
    [4] Dilger W H, Chan M, Cheung M S, et al. Temperature Stresses in CompositeBox Girder Bridges[J]. Journal of Structural Engineering,1983,109(6):1460-1478.
    [5]张玥,胡兆同,贾润中.钢筋混凝土连续弯箱梁桥的温度梯度[J].长安大学学报(自然科学版),2006,(4):58-62.
    [6]何柏雷.“太阳把桥晒跑了?”—深圳市某立交A匝道桥事故分析[J].城市道路与防洪,2002,(2):39-43.
    [7]黄加亿.株六复线新响琴峡大桥设计施工探讨[J].桥梁建设,2005,35(6):72-74.
    [8]贺瑞.大跨桥结构监测系统的模态识别和误差分析及损伤识别[D].北京:清华大学,2009.
    [9]续秀忠,华宏星,陈兆能.基于环境激励的模态参数辨识方法综述[J].振动与冲击,2002,21(3):3-7.
    [10] Barrett L C, Wylie R. Advanced Engineering Mathematics[M]. McGraw-Hill,1995.
    [11] Thomas G B. Calculus and Analytic Geometry. Alternate Edition[M].Addison-Wesley Publishing Co. Inc,1972.
    [12] Brincker R, Zhang L, Andersen P. Modal Identification From AmbientResponses Using Frequency Domain Decomposition[C]. Proceedings of the18th international modal analysis conference, San Antonio, USA,2000.
    [13] Brincker R, Zhang L, Andersen P. Modal Identification of Output-OnlySystems Using Frequency Domain Decomposition[J]. Smart Materials andStructures,2001,10(3):441-445.
    [14] Brincker R, Ventura C, Andersen P. Damping Estimation by FrequencyDomain Decomposition[C].19th International Modal Analysis Conference,Kissimmee, FL, United states,2001.
    [15] Magalha F, Cunha L, Caetano E, et al. Damping Estimation Using Free Decaysand Ambient Vibration Tests[J]. Mechanical Systems and Signal Processing,2010,24(5):1274-1290.
    [16] Brincker R, Ventura C, Andersen P. Damping Estimation by FrequencyDomain Decomposition[C]. IMAC XIX, Kissimmee, USA,2001.
    [17] Brincker R, Zhang L, Andersen P. Modal Identification of Output-OnlySystems Using Frequency Domain Decomposition[J].2001,3(10):441-445.
    [18]张坤,段忠东,刘洋.连续刚构桥动力特性参数识别与有限元模型修正[J].公路交通科技,2008,(9):67-72.
    [19]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2002.
    [20] Garcia G V, Osegueda R A. Damage Detection Using Arma ModelCoefficients[C]. Proc. SPIE3671, Smart Structures and Materials: SmartSystems for Bridges, Structures, and Highways, Newport Beach, CA,1999.
    [21] Nair K, Kiremidjian A, Lei Y. Application of Time Series Analysis inStructural Damage Evaluation[C]. Proceedings of the International Conferenceon Structural Health Monitoring, Tokyo, Japan,2003.
    [22] Lei Y, Kiremidjian A S, K N K, et al. Statistical Damage Detection Using TimeSeries Analysis On a Structural Health Monitoring Benchmark Problem[C].Proceedings of the9th International Conference on Applications of Statisticsand Probability in Civil Engineering, San Francisco, CA, USA,2003.
    [23] Lei Y, Kiremidjian A S, Nair K K, et al. An Enhanced Statistical DamageDetection Algorithm Using Time Series Analysis[C]. Proceedings of the4thInternational Workshop on Structural Health Monitoring, Stanford, CA, USA,2003.
    [24] Naira K K, Kiremidjian A S, Law. K H. Time Series-Based Damage Detectionand Localization Algorithm with Application to the ASCE BenchmarkStructure[J]. Journal of Sound and Vibration,2006,291(1):349-368.
    [25] Naira K K, Kiremidjian. A S. Time Series Based Structural Damage DetectionAlgorithm Using Gaussian Mixtures Modeling[J]. Journal of DynamicSystems, Measurement, and Control,2007,129(3):285-293.
    [26] Silva S D, Júnior M D, Junior V L. Damage Detection in a BenchmarkStructure Using AR-ARX Models and Statistical Pattern Recognition[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2007,29(2):174-185.
    [27] Carden E P, Brownjohn. J M W. Arma Modelled Time-Series Classification forStructural Health Monitoring of Civil Infrastructure[J]. Mechanical Systemsand Signal Processing,2008,22(2008):295-314.
    [28] Juang J N, Pappa R S. Eigensystem Realization Algorithm for ModalParameter Identification and Model Reduction[J]. Journal of Guidance,Control, and Dynamics,1985,8(5):620-627.
    [29] Juang J N, Cooper J E, Wright J R. An Eigensystem Realization AlgorithmUsing Data Correlations (ERA/DC) for Modal Parameter Identification[J].Journal of Guidance Control and Dynamics,1987,4(1):620-627.
    [30] De Callafon R A, Moaveni B, Ponte J P, et al. General Realization Algorithmfor Modal Identification of Linear Dynamic Systems[J]. Journal ofEngineering Mechanics,2008,134(9):712-722.
    [31] James III G H, Carne T G, Lauffer J P. The Natural Excitation Technique(NExT) for Modal Parameter Extraction From Operating Wind TurbinesAlbuquerque. NM: Sandia National Labs.,1993.
    [32] Kung S Y. A New Identification Method and Reduction Algorithm ViaSingular Value Decomposition[C].12th Asilomar Conf. on Circuits, Systemsand Comp., CA,1978.
    [33] Overschee P, Moor B. Subspace Identification for Linear Systems[M].Belgium. Katholieke Universiteit Leuven,1996.
    [34] Peeters B, De Roeck G. Reference-Based Stochastic Subspace Identification forOutput-Only Modal Analysis[J]. Mechanical Systems and Signal Processing,1999,13(6):855-878.
    [35] Overschee P, Moor B, Hensher D, et al. Subspace Identification for the LinearSystems: Theory-Implementation-Applications[M].1996.
    [36] Yu D J, Ren W X. Emd-Based Stochastic Subspace Identification of StructuresFrom Operational Vibration Measurements[J]. Engineering Structures,2005,27(12SPEC. ISS.):1741-1751.
    [37] Peeters B, De Roeck G. Reference Based Stochastic Subspace Identification inCivil Engineering[J]. Inverse Problems in Science and Engineering,2000,8(1):47-74.
    [38]任伟新,林友勤,彭雪林.大跨度斜拉桥环境振动试验与分析[J].实验力学,2006,(4):418-426.
    [39] Lardies J, Gouttebroze S. Identification of Modal Parameters Using theWavelet Transform[J]. International Journal of Mechanical Sciences,2002,44(11):2263-2283.
    [40]闫桂荣.基于广义柔度矩阵和小波分析的结构损伤识别方法[D].哈尔滨:哈尔滨工业大学,2006.
    [41] Slavic J, Simonovski I, Boltezar M. Damping Identification Using aContinuous Wavelet Transform: Application to Real Data[J]. Journal of Soundand Vibration,2003,262(2):291-307.
    [42] Bonabeau E, Dorigo M, Theraulaz G. Inspiration for Optimization FromAocial Insect Behavior[J]. Nature,2000,406(6):39-42.
    [43] Hera A, Hou. Z. Application of Wavelet Approach for Asce Structural HealthMonitoring Benchmark Studies[J]. Journal of Engineering Mechanics,2004,130(1):96-104.
    [44] Sun Z, Chang. C C. Structural Degradation Monitoring UsingCovariance-Driven Wavelet Packet Signature[J]. Structural Health Monitoring,2003,2(4):309-325.
    [45] Taha M M R. A Neural-Wavelet Technique for Damage Identification in theAsce Benchmark Structure Using Phase Ii Experimental Data[J]. Advances inCivil Engineering,2010, Article ID675927,13pages.
    [46]侯立群,欧进萍.基于时频分析的运营桥梁模态参数识别方法[J].振动工程学报,2009,22(01):19-25.
    [47] Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition andthe Hilbert Spectrum for Nonlinear and Non-Stationary Time SeriesAnalysis[J]. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,1998,454(1971):903-995.
    [48] Huang N E, Shen Z, Long S R. A New View of Nonlinear Water Waves: TheHilbert Spectrum[J]. Annual Review of Fluid Mechanics,1999,(31):417-457.
    [49] Huang N E, Long S R. Normalized Hilbert Transform and InstantaneousFrequency[P]. NASA Pantent Pending, GSC,2003,14:673:1.
    [50] Huang N E, Wu M L C, Long S R, et al. A Confidence Limit for the EmpiricalMode Decomposition and Hilbert Spectral Analysis[J]. Proceedings of theRoyal Society of London. Series A: Mathematical, Physical and EngineeringSciences,2003,459(2037):2317-2345.
    [51] Yang J N, Lei Y, Lin S, et al. Hilbert-Huang Based Approach for StructuralDamage Detection[J]. Journal of Engineering Mechanics,2004,130(1):85-95.
    [52] Huang N., Huang K.基于希尔伯特一黄变换的铁路桥梁结构健康监测[J].中国铁道科学,2006,27(1):1-7.
    [53]王学敏,黄方林,陈政清. Hilbert-Huang变换在桥梁振动分析中的应用[J].铁道学报,2005,27(2):80-84.
    [54]樊海涛,何益斌,周绪红.基于Hilbert-Huang变换的结构损伤诊断方法研究[J].建筑结构学报,2006,26(6):114-122.
    [55] Zhu X Q, Law S S. Nonlinear Characteristics of Damaged ReinforcedConcrete Beam From Hilbert-Huang Transform[J]. Journal of StructuralEngineering,2004,133(8):1186-1191.
    [56] Liu J B, Wang X W, Yuan S F, et al. On Hilbert-Huang Transform Approachfor Structural Health Monitoring[J]. Journal of Intelligent Material Systemsand Structures,2006,17:721-729.
    [57]孙智,侯伟.惟输出小波基结构模态识别方法及其时频解析度研究[J].振动与冲击,2010(8):198-203.
    [58] Muria Vila D, Gomez R, King C. Dynamic Structural Properties ofCable-Stayed Tampico Bridge[J]. Journal of structural engineering,1991,117(11):3396-3416.
    [59] Paultre P, Proulx J, Talbot M. Dynamic Testing Procedures for HighwayBridges Using Traffic Loads[J]. Journal of structural engineering,1995,121(2):362-376.
    [60]淳庆,邱洪义.基于环境激励下钢桁梁桥的模态识别[J].特种结构,2005,22(02):62-65.
    [61]陈常松,田仲初,颜东煌,等.基于环境激励的大跨度双主肋混凝土斜拉桥模态的优化识别研究[J].振动与冲击,2006(5):158-161.
    [62] Cho S, Jang S A, Jo H, et al. Structural Health Monitoring System of aCable-Stayed Bridge Using a Dense Array of Scalable Smart SensorNetwork[C]. San Diego, CA, United states: SPIE,2010.
    [63]徐晓霞,任伟新,韩建刚.基于响应协方差小波变换和SVD的结构工作模态参数识别[J].振动工程学报,2010(2):194-199.
    [64] Brownjohn J M W, Magalhaes F, Caetano E, et al. Ambient VibrationRe-Testing and Operational Modal Analysis of the Humber Bridge[J].Engineering Structures,2010,32(8):2003-2018.
    [65] Liu J, Zhang Q. Dynamic Characteristics of a Thousands-Meter ScaleCable-Stayed Bridge[C]. San Diego, CA, United states: SPIE,2010.
    [66] Farhat C, Hemez F M. Updating Finite Element Dynamic Models Using anElement-by-Element Sensitivity Methodology[J]. AIAA journal,1993,31(9):1702-1711.
    [67] Guo S, Hemingway N. An Orthogonality Sensitivity Method for AnalyticalDynamc Model Correction Using Modal Test Data[J]. Journal of Sound andVibration,1995,187(5):771-780.
    [68] Brownjohn J M W, Xia P Q. Dynamic Assessment of Curved Cable-StayedBridge by Model Updating[J]. Journal of structural engineering New York,2000,126(2):252-260.
    [69] Zhang Q W, Chang T Y P, Chang C C. Finite-Element Model Updating for theKap Shui Mun Cable-Stayed Bridge[J]. Journal of Bridge Engineering,2001,6(4):285-294.
    [70]张启伟.基于环境振动测量值的悬索桥结构动力模型修正[J].振动工程学报,2002,15(1):74-78.
    [71]夏品奇, Brownjohn James M. W.斜拉桥有限元建模与模型修正[J].振动工程学报,2003,16(2):219-223.
    [72] Liu Y, Qian Z. Double-Layer Model Updating for Steel-Concrete CompositeBeam Cable-Stayed Bridge Based On GPS[J]. Journal of Southeast University(English Edition),2008,24(1):80-84.
    [73] Hua X G, Ni Y Q, Ko J M. Adaptive Regularization Parameter Optimization inOutput-Error-Based Finite Element Model Updating[J]. Mechanical Systemsand Signal Processing,2009,23(3):563-579.
    [74]周志红,姜东,陈红亮,等.钢管混凝土拱桥有限元模型修正[J].南京航空航天大学学报,2010,42(6):793-796.
    [75]袁爱民,戴航,孙大松.考虑边界条件约束和参数灵敏度的斜拉桥有限元模型修正[J].应用基础与工程科学学报,2010,18(6):900-909.
    [76]朱张峰,郭正兴.基于应变残差的装配式简支梁桥有限元模型修正[J].世界桥梁,2011(3):41-44.
    [77] Beck J L. Statistical System Identification of Structures[C]. San Francisco, CA,USA,1989.
    [78]费庆国,张令弥,李爱群,等.基于统计分析技术的有限元模型修正研究[J].振动与冲击,2005,24(3):23-26.
    [79]任伟新,陈华斌.基于响应面的桥梁有限元模型修正[J].土木工程学报,2008,41(12):73-78.
    [80] Igusa T, Buonopane S G, Ellingwood B R. Bayesian Analysis of Uncertaintyfor Structural Engineering Applications[J]. Structural Safety,2002,24(2):165-186.
    [81] Beck J L. System Identification Methods Applied to Meassured SeismicResponse[C]. In the Proceedings11th World Conference on EarthquakeEngineering, Acapulco Mexico,1996.
    [82] Beck J L, Katafygiostis L S. Updating Models and their Uncertainties I:Bayesian Statistical Framework[J]. Journal of structural engineering,1998,124(4):455-461.
    [83] Katafygiostis L S, Beck J L. Updating Models and their Uncertainties II:Bayesian Model Identifiability[J]. Journal of engineering mechanics,1998,124(4):463-467.
    [84] Ka-Veng Y, Lambros S. Bayesian Time-Domain Approach for Modal UpdatingUsing Ambient Data[J]. Probabilistic Engineering Mechanics,2001,16(3):219-231.
    [85] Vanik M W, Beck J L, Al. E. Bayesian Probabilistic Approach to StructuralHealth Monitoring[J]. Journal of engineering mechanics,2000,126(7):738-745.
    [86] Sohn H, Kincho, A E. A Bayesian Probabilistic Approach for StructureDamage Detection[J]. Earthquake Engineering and Structural Dynamics,1997,26(12):1259-1281.
    [87] Sohn H, Law K H. Bayesiann Probabilistic Damage Detection of aReinforced-Concrete Bridge Column[J]. Earthquake Engineering andStructural Dynamics,2000,29(8):1131-1152.
    [88] Ching J, Beck J L. New Bayesian Model Updating Algorithm Applied to aStructural Health Monitoring Benchmark[J]. Structural Health Monitoring,2004,3(4):313-332.
    [89] Ching J, Beck J L. Bayesian Analysis of the Phase II IASC–ASCE StructuralHealth Monitoring Experimental Benchmark Data[J]. Journal of EngineeringMechanics,2004,130(10):1233-1244.
    [90] Yun C, Lee H. Substructural Identification for Damage Estimation ofStructures[J]. Structural Safety,1997,19(1):121-140.
    [91] Koh C G, Shankar K. Substructural Identification Method without InterfaceMeasurement[J]. Journal of Engineering Mechanics,2003,129(7):769-776.
    [92]谢献忠,易伟建.结构物理参数时域识别的子结构方法研究[J].工程力学,2005,22(5):94-98.
    [93]郭力,韩晓林,李兆霞.基于环境振动测试的润扬桥塔模型修正[J].特种结构,2003,20(4):68-70.
    [94]跃朱,张令弥,郭勤涛.基于分层思想对复杂工程结构的有限元模型修正技术[J].振动与冲击,2011,30(12):175-180.
    [95]侯吉林,欧进萍.基于局部脉冲响应的约束子结构修正法[J].工程力学,2009,26(11):23-30.
    [96]侯吉林,欧进萍.基于局部模态的约束子结构模型修正法[J].力学学报,2009,42(5):748-756.
    [97]侯吉林,欧进萍.基于局部时间序列的约束子结修正[J].振动工程学报,2009,22(3):305-312.
    [98]杨秋伟,刘济科,李翠红.基于局部静力测试的约束子结构修正法[J].振动与冲击,2012,31(9):39-43.
    [99]王浩,王付全,李爱群,等.大跨度缆索支撑桥梁分阶段有限元模型修正[J].工程力学,2009,26(10):111-116.
    [100]周林仁.桥梁的几类SHM Benchmark及模型修正的子结构与响应面方法
    [D].大连:大连理工大学,2012.
    [101]穆雪峰,姚卫星,余雄庆,等.多学科设计优化中常用代理模型的研究[J].计算力学学报,2005,22(5):608-612.
    [102] Matherton. Principles of Geo-Statistics[J]. Economic geology,1963,58:1246-1266.
    [103] Giunta A A, Watson L T. A Comparison of Approximation ModelingTechniques: Polynomial Versus. Interpolating Models[J]. AIAA-98-4758,1998.
    [104]张崎.基于Kriging方法的结构可靠性分析及优化设计[D].大连:大连理工大学,2005.
    [105] Welch W J, Buck R J, Sacks J. Predicting and Computer Experiments[J].Technometrics,1992,34(1):15-25.
    [106] Welch W J, Mitchell T J, Wynn H P. Design and Analysis of ComputerExperiments[J]. Statistics Science,1989,4(4):409-435.
    [107] Martin J D, Simpson T W. A Study On the Use of Kriging Models toApproximate Deterministic Computer ModelsChicago:2003:2-6.
    [108] Hill W J, Hunter W G. A Review of Response Surface Methodology: ALiterature Review[J]. Technometrics,1966,8(5):571-590.
    [109] Mead R, Pike D J. A Review of Response Surface Methodology From aBiometrics Viewpoint[J]. Biometrics,1975,31(12):803-851.
    [110]隋允康,张立新,杜家政.基于响应面方法的桁架截面敏度分析和优化[J].力学季刊,2006,27(1):96-102.
    [111]佟晓利,赵国藩.一种与结构可靠度分析几何法相结合的响应面方法[J].土木工程学报,1997,30(4):51-57.
    [112] Marwala, T. Finite Element Model Updating Using Response SurfaceMethod[C]. Collection of Technical Papers–AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamicsand Materials Conference,2004,7:5165–5173.
    [113] Deng L, Cai C S. Bridge Model Updating Using Response Surface Method andGenetic Algorithm[J]. Journal of Bridge Engineering,2010,15(5):553-564.
    [114] Ren W X, Chen H B. Finite Element Model Updating in Structural Dynamicsby Using the Response Surface Method[J]. Engineering Structures,2010,32:2455-2465.
    [115] Ren W X, Fang S E, Deng M Y. Response Surface Based Finite ElementModel Updating Using Structural Static Responses[J]. Journal of EngineeringMathematics,2011,137(4):248-257.
    [116]周林仁,欧进萍.大跨桥梁参数识别响应面方法中的近似函数及样本选取[J].计算力学学报,2012,29(3):306-314.
    [117]吴宗敏.函数的径向基表示[J].数学进展,1998,27(3):202-208.
    [118] Powell M J D. The Theory of Radial Basis Function Approximation in1990[M].Oxford, UK: Oxford University Press,1991.
    [119] Hardy R L. Theory and Applications of the Multiquadric-BiharmonicMethod[J]. Comput. Math. Appl.,1990,19:163-208.
    [120] Franke C, Schaback R. Solving Partial Differential Equations by CollocationUsing Radial Basis Functions[J]. Applied Mathematics and Computation,1998,93(1):73-82.
    [121] Dyn N. Interpolation of Scattered Data by Radial Functions: Topics inMultivariate Approximation[M]. Academic Press,1987.
    [122] Jackson I R H. Radial Basis Functions: A Survey and New Results[M].University of Cambridge, Report No. DAMTP, NA16,1988:115-133.
    [123] Frank R. Scattered Data Interpolation: Test of some Methods[J]. Math. Comp,1982,38(157):181-200.
    [124]窦毅芳,王中伟,张为华.固体火箭发动机内弹道响应面建模方法研究[J].弹箭与制导学报,2007,27(5):133-135.
    [125]孔宪仁,秦玉灵,罗文波.基于改进高斯径向基函数响应面方法的蜂窝板模型修正[J].复合材料学报,2011,28(5):220-227.
    [126]周林仁,欧进萍.基于径向基函数响应面方法的大跨斜拉桥有限元模型修正[J].中国铁道科学,2012,33(3):8-15.
    [127] Levin R I, Lieven N A J. Dynamic Finite Element Model Updating UsingSimulated Annealing and Genetic Algorithms [J]. Mechanical Systems andsignal Processing,1998,12(1):91-120.
    [128] Levin R I, Lieven N A J, Lowenberg M H. Measuring and Improving NeuralNetwork Generalization for Model Updating[J]. Journal of Sound andVibration,2000,238(2):401-424.
    [129] Chang C C, Xu T Y P C. Selection of Training Samples for Model UpdatingUsing Neural Networks[J]. Journal of Sound and Vibration,2002,249(5):867-883.
    [130] Levin R I, Lieven N A J. Dynamic Finite Element Model Updating UsingSimulated Annealing and Genetic Algorithms[J]. Mechanical Systems andSignal Processing,1998,12(1):91-120.
    [131]徐宜桂,周轶尘,王志华.用神经网络方法修正悬索桥动力模型[J].振动工程学报,2000,13(1):46-52.
    [132]瞿伟廉,谭冬梅,汪菁,等.基于神经网络的大型空间网架结构的有限元模型修正[J].地震工程与工程振动,2003,23(4):83-89.
    [133]费庆国,李爱群,张令弥.基于神经网络的非线性结构有限元模型修正研究[J].宇航学报,2005,26(3):267-269.
    [134]费庆国,张令弥.基于径向基神经网络的有限元模型修正研究[J].南京航空航天大学学报,2004,36(6):748-752.
    [135] Modak S V, Kundra T K, Nakra B C. Model Updating Using ConstrainedOptimization[J]. Mechanics Research Communications,2000,27(5):543-551.
    [136] Teughels A, De Roeck G, Suykens J A K. Global Optimization by CoupledLocal Minimizers and its Application to Fe Model Updating[J]. Computers andStructures,2003,81(24-25):2337-2351.
    [137] Daniell W E, Macdonald J H G. Improved Finite Element Modelling of aCable-Stayed Bridge through Systematic Manual Tuning[J]. EngineeringStructures,2007,29(3):358-371.
    [138]张连振,黄侨.基于优化设计理论的桥梁有限元模型修正[J].哈尔滨工业大学学报,2008,40(2):246-249.
    [139]张坤,段忠东,刘洋.连续刚构桥动力特性参数识别与模型修正[J].公路交通科技,2008,25(9):67-72.
    [140]刘洋,段忠东,周道成.基于模态综合技术的结构有限元模型修正[J].振动、测试与诊断,2009,29(3):287-291.
    [141]谢开仲,覃乐勤,吕文高.钢管混凝土拱桥拱肋模型修正方法研究[J].桥梁建设,2010(3):24-28.
    [142]侯立群.基于实测频率进行斜拉桥模型修正的实用方法[J].黑龙江科技信息,2011(17):1-11.
    [143]林迟.基于结构全寿命设计需求的环境作用于结构性能退化研究[D].哈尔滨:哈尔滨工业大学,2010.
    [144] Ou J P. Advances On Vibration Control and Health Monitoring of CivilInfrastructures in Mainland China[C]. International Symposium on Networkand Center-Based Research for Smart Structures Technologies and EarthquakeEngineering, Tokyo, Japan,6-10.
    [145] Ou J P, Li H. Structural Health Monitoring in Mainland China: Review andFuture Trends[J]. Structural Health monitoring-an International Journal,2010,9(3):219-231.
    [146] Bell E S, Sipple J D. Accounting for the Impact of Thermal Loads inNondestructive Bridge[C]. Austin, TX.,2009, ASCE.
    [147] Bell E S, Sipple J, Yost J. Long-Term Thermal Performance of aCfrp-Reinforced Bridge DeckVancouver, Canada:2008:242-251.
    [148]孙君,李爱群,丁幼亮.润扬长江大桥钢箱梁的温度分布监测与分析[J].公路交通科技,2009,26(8):94-98.
    [149]姚昌荣,李亚东.大跨度桥梁健康监测过程中的温度影响研究[J].华东交通大学学报,2008,25(2):25-28.
    [150] Catbas F N, Susoy M, Frangopol D M. Structural Health Monitoring andReliability Estimation: Long Span Truss Bridge Application withEnvironmental Monitoring Data[J]. Engineering Structures,2008,30(9):2347-2359.
    [151] Moorty S, Roeder C. Temperaturedependent Bridge Movements[J]. Journal ofStructural Engineering, ASCE,1992,118(4):1090-1105.
    [152] Branco F A, Mendes P A. Thermal Actions for Concrete Bridge Design[J].Journal of Structural Engineering, ASCE,1993,119(8):2313-2331.
    [153] Cornwell P J, Farrar C R, Sohn S W D, et al. Environmental Variability ofModal Properties [J]. Experimental Techniques,1999,23(6):45-48.
    [154] Farrar C R, Cornwell P J, Doebling S W. Structural Health Monitoring Studiesof the Alamosa Canyon and I-40Bridges Los Alamos NationalLaboratoryReport LA-13635-MS.,2000.
    [155] Peeters B, Maeck J, De Roeck G. Vibration-Based Damage Detection in CivilEngineering: Excitation Sources and Temperature Effects[J]. Smart Materialsand Structures,2001,10(3):518-527.
    [156] Kim J T, Yun C B, Park J H. Thermal Effects On Modal Properties andFrequency-Based Damage Detection in Plate-Girder Bridges[C].2004:400-409.
    [157] Hoon S, Mark D, Erik G S, et al. Adaptive Modeling of Environmental Effectsin Modal Parameters for Damage Detection in Civil Structures[C].1998:127-138.
    [158] Peeters B, de Roeck G. One-Year Monitoring of the Z24-Bridge:Environmental Effects Versus Damage Events[J]. Earthquake Engineering andSturctural Dynamics,2001,30:149-171.
    [159] Yang Z, Dutta U, Zhu D. Seasonal Frost Effects on the Dynamic Properties ofSoil-Foundation-Structure Interaction System[C]. Proceedings of13thInternational Conference on Cold Regions Engineering, Orono,2006, ME,July23-26.
    [160]李爱群,丁幼亮,费庆国,等.润扬大桥斜拉桥模态频率识别的环境变异性[J].东南大学学报(自然科学版),2007,37(2):245-250.
    [161] Xia Y, Hao H, Zanardo G, et al. Long Term Vibration Monitoring of an RcSlab: Temperature and Humidity Effect[J]. Engineering Structures,2006,28(3):441-452.
    [162]王立宪.考虑温度影响下的钢筋混凝土梁桥的模态参数识别研究[D].兰州:兰州理工大学结构工程,2009.
    [163]凯尔别克.太阳辐射对桥梁结构的影响[M].北京:中国铁道出版社,1981.
    [164] Zuk W. Summary Review of Studies Relating to Thermal Stresses in HighwayBridges Highway Research Records, No.103,1965:
    [165] Zuk W. End Movement Studies of Various Type Highway BridgesHighwayResearch Records, No.295,1969:
    [166] Churchward A Y J S. Prediction of Temperatures in Concrete Bridges[J].Journal of the Structural Division,1981,107(11):2163-2176.
    [167] Emanuel J H, Hulsely J L. Temperature Distributions in Composite Bridges[J].Journal of Sturctural Division,1978,104(1):65-78.
    [168] Elbadry M, Ghali A. Temperature Viriations in Concrete Bridges[J]. Journal ofStructural Engineering,1983,109(10):2355-2374.
    [169] Priestley M N. Design of Concrete Bridges for Temperature Gradients[J].Journal of American Institute,1978,75(5):209-217.
    [170] Priestley M N. Thermal Gradients in Bridges-some Design Onsiderations[J].New Zealand Engineering,1972,27(7):228-233.
    [171] Hunt B, Cooke N. Thermal Calculation for Bridge Design[J]. Journal of theStructural Division,1975,101(9):1763-1781.
    [172] Pant B, Ashwath B K. Discussion of Temperature Variations in ConcreteBridges[J]. Journal of Structural Engineering,1984,110(2):3059-3060.
    [173] Reynolds J C, Emanue J K. Thermal Stresses and Movements in Bridges[J].Journal of Structural Engineering,1974,100(1):63-78.
    [174] Ariyawardena N, Ghali A, Elbadry M. Experimental Study On ThermalCracking in Reinforced Members[J]. Struchual Journal, ACI,1997,94(4):432-441.
    [175] Thurston S J, Priestley M J N. Influence of Cracking On Thermal Response ofReinforced Concrete Bridges[J]. Concrete International, ACI,1984,6(8):36-43.
    [176]Elbadry M M, Ghali A. Control of Thermal Cracking of Concrete Structures[J].Structural Journal, ACI,1995,92(4):435-450.
    [177]刘兴法.预应力混凝土箱梁温度应力计算方法[J].土木工程学报,1986(1):44-54.
    [178]康为江.钢筋混凝土箱梁日照温度效应研究[D].湖南:湖南大学结构工程,2000.
    [179]黄毅.混凝土连续箱梁日照温度场及温度效应研究[D].武汉:武汉理工大学桥梁与隧道工程,2009.
    [180]方志,汪剑.大跨预应力混凝土连续箱梁桥日照温差效应[J].中国公路学报,2007(1):62-67.
    [181]张建荣,徐向东,刘文燕.混凝土表面太阳辐射吸收系数测试研究[J].建筑科学,2006,22(1):42-45.
    [182]刘文燕,黄鼎业,华毅杰.混凝土表面对流系数测试研究明[J].建筑材料学报,2004,7(2):232-235.
    [183] Sohn H, Dzwonczyk M, Straser E G, et al. An Experimental Study ofTemperature Effect On Modal Parameters of the Alamosa Canyon Bridge[J].Earthquake Engineering and Structural Dynamics,1999(28):879-897.
    [184] Farrar C R, Doebling S W, Cornwell P J, et al. Variability of Modal ParametersMeasured On the Alamosa Canyon BridgeOrlando, FL, USA: SEM,1997:257-263.
    [185] Kim J, Yun C, Park J. Thermal Effects On Modal Properties andFrequency-Based Damage Detection in Plate-Girder BridgesSan Diego[C]. CA,United states: SPIE,2004:400-409.
    [186]樊可清,倪一清,高赞明.大跨度桥梁模态频率识别中的温度影响研究[J].中国公路学报,2006(2):67-73.
    [187]公路桥梁车辆荷载研究课题组.公路桥梁车辆荷载研究[J].公路,1997(3):8-12.
    [188]梅刚,秦权,林道锦.公路桥梁车辆荷载的双峰分布概率模型[J].清华大学学报(自然科学版),2003(10):1394-1396.
    [189]王磊,张建仁.基于平衡更新过程的既有桥梁车辆荷载效应模型[J].中国公路学报,2008,21(5):50-56.
    [190]郭彤,李爱群,赵大亮.用于公路桥梁可靠性评估的车辆荷载多峰分布概率模型[J].东南大学学报(自然科学版),2008,38(5):763-766.
    [191]贡金鑫,李文杰,赵君黎,等.公路桥梁车辆荷载概率模型研究(一)——非治超地区[J].公路交通科技,2010,27(6):40-45,57.
    [192]贡金鑫,李文杰,赵君黎,等.公路桥梁车辆荷载概率模型研究(二)——计重收费地区和强制治超地区[J].公路交通科技,2010,27(7):56-60.
    [193]周泳涛,翟辉,鲍卫刚,等.公路桥梁标准疲劳车辆荷载研究[J].公路,2009(12):21-25.
    [194]李嘉维,夏樟华,宗周红.高速公路桥梁车辆荷载模型分析[J].公路,2010(7):14-17.
    [195]冯苠,赵君黎,李文杰,等.轻型高速公路桥梁车辆荷载研究[J].公路,2011(6):67-72.
    [196]孙守旺,孙利民.基于实测的公路桥梁车辆荷载统计模型[J].同济大学学报(自然科学版),2012,40(2):198-204.
    [197]王硕.桥梁运营荷载状况研究[D].上海:同济大学,2007.
    [198] Law S S, Chan T H T, Zeng Q H. Moving Force Identification: A TimeDomain Method[J]. Journal of Sound and Vibration,1997,201(1):1-22.
    [199] Chan T H T, Yu L, Law S S, et al. Moving Force Identification Studies, Ii:Comparative Studies[J]. Journal of Sound and Vibration,2001,247(1):77-95.
    [200] Zhu X Q, Law S S. Time Domain Identification of Moving Loads On BridgeDeck[J]. Journal of Vibration and Acoustics, Transactions of the ASME,2003,125(2):187-198.
    [201]姜增国,孙艳茹.三次样条函数在桥梁移动荷载识别中的应用[J].振动与冲击,2006(6):124-126.
    [202]张渔勇,瞿伟廉,陈波.基于样条函数的桥梁列车多轴移动荷载识别[J].武汉理工大学学报,2007,29(6):104-106.
    [203] Zhu X Q, Law S S. Identification of Moving Interaction Forces withIncomplete Velocity Information[J]. Mechanical Systems and SignalProcessing,2003,17(6):1349-1366.
    [204] Law S S, Zhu X Q. Study On Different Beam Models in Moving ForceIdentification[J]. Journal of Sound and Vibration,2000,234(4):661-679.
    [205]李忠伟,张表志.基于模态选取法的桥梁移动荷载识别研究[J].公路交通科技(应用技术版),2009(3):115-118.
    [206]陈震,余岭.桥梁移动荷载识别及其PCGM预优矩阵选取[J].浙江大学学报(工学版),2009(7):1293-1296.
    [207]侯秀慧,邓子辰,黄立新.桥梁结构移动荷载识别的辛精细积分算法[J].动力学与控制学报,2008,6(1):66-72.
    [208]侯秀慧,邓子辰,黄立新,等.桥梁结构移动平稳随机荷载识别新方法[J].计算力学学报,2009,26(5):659-663.
    [209]尤琼,史治宇,罗绍湘.基于小波有限元的移动荷载识别[J].振动工程学报,2010(2):188-193.
    [210]尤琼,史治宇.基于区间B样条小波有限元的移动荷载识别[J].工程力学,2011,28(5):35-40.
    [211] Wu S Q, Law S S. Moving Force Identification Based On Stochastic FiniteElement Model[J]. Engineering Structures,2010,32(4):1016-1027.
    [212]余岭,朱军华,陈敏中,等.基于矩量法的移动荷载识别[J].振动工程学报,2006(4):509-513.
    [213] Yu L, Chan T H T, Zhu J H. A Mom-Based Algorithm for Moving ForceIdentification: Part I-Theory and Numerical Simulation[J]. StructuralEngineering and Mechanics,2008,29(2):135-154.
    [214] Yu L, Chan T H T, Zhu J H. A Mom-Based Algorithm for Moving ForceIdentification: Part II-Experiment and Comparative Studies[J]. StructuralEngineering and Mechanics,2008,29(2):155-169.
    [215]李忠献,陈锋.基于时间元模型的复杂桥梁结构移动荷载识别[J].天津大学学报,2006,39(9):1043-1047.
    [216]李忠献,陈锋.基于梁格法的桥梁移动荷载识别[J].土木工程学报,2006,39(12):83-87.
    [217]秦远田,陈国平,余岭,等.复杂结构移动载荷识别的有限元法[J].南京航空航天大学学报,2008,40(2):174-179.
    [218] Zhang Q, Jankowski, Duan Z. Identification of Coexistent Load and DamageBased On Virtual Distortion Method:4th European Workshop on StructuralHealth Monitoring[C]. Cracow, Poland,2008.
    [219]张青霞,段忠东, Jankowski Lukasz,等.基于形函数方法快速识别结构动态荷载的试验验证[J].振动与冲击,2011,30(9):98-102.
    [220]张通.大跨刚构—连续梁桥的全寿命性能监测与分析[D].哈尔滨:哈尔滨工业大学,2008.
    [221]章灵加.基于神经网络的桥梁安全性评估[D].武汉:武汉理工大学结构工程,2005.
    [222]韩芳,钟冬望,汪君.基于径向基神经网络的有限元模型修正研究[J].武汉科技大学学报(自然科学版),2011,34(2):115-118.
    [223] Powell M J D. Radial Basis Functions for Multivariable Interpolation: AReviewShrivenham, England: RMCS,1985:143-167.
    [224]宗周红,赖苍林,林友勤,等.大跨度预应力混凝土连续刚构桥的动力特性分析[J].地震工程与工程振动,2004(3):98-104.
    [225]刘洋.高性能优化算法与结构模型修正的研究[D].哈尔滨:哈尔滨工业大学,2008.
    [226]吴宗敏.径向基函数、散乱数据拟合与无网格偏微分方程数值解[J].工程数学学报,2002,19(2):1-12.
    [227] Dyn N. Interpolation of Scattered Data by Radial Functions. Topics inMultivariate Approximation[M]. Academic Press,1987:
    [228] Carlson R E, Foley T A. The Parameter R2in Multiquadric Interpolation[J].Comp. Math. Appl.,1991,21(9):29-42.
    [229] Kansa E J, Carlson R E. Improved Accuracy of Multiquadric InterpolationUsing Variable Shape Parameters[J]. Comp. Math. Appl.,1992,24(12):99-120.
    [230] Sarra S A, Sturgill D. A Random Variable Shape Parameter Strategy for RadialBasis Function Approximation Methods[J]. Engineering Analysis withBoundary Elements,2009,33(11):1239-1245.
    [231]周林仁.桥梁的几类SHM Benchmark及模型修正的子结构与响应面方法
    [D].大连理工大学,2012.
    [232]李生勇,张哲,石磊.一种在响应面法中选取样本点的新方法[J].计算力学学报,2007,24(6):899-904.
    [233] Montgomery D C. Design and Analysis of Experiments[M]. New York: JohnWiley&Sons, Inc,2006.
    [234]顾培英,邓昌,吴福生.结构模态分析及损伤诊断[M].东南大学出版社,2008.
    [235]应怀樵,刘进明,沈松.半功率带宽法与INV阻尼计法求阻尼比的研究[J].噪声与振动控制,2006(2):4-6.
    [236]朱汉华,陈孟冲,袁迎捷.预应力混凝土连续箱梁桥裂缝分析与防治[M].人民交通,2006.
    [237]方志,汪剑.大跨预应力混凝土连续箱梁桥日照温差效应[J].中国公路学报,2007(1):62-67.
    [238]周智.土木工程结构光纤光栅智能传感元件及其监测系统[D].哈尔滨:哈尔滨工业大学,2003.
    [239]周学军,路鹤,马晓.光纤光栅在结构健康监测中的误差分析[J].山东建筑大学学报,2010,25(5):495-498.
    [240]周建华,张东生,付荣.低温环境下光纤光栅啁啾异常现象研究[J].武汉理工大学学报(信息与管理工程版),2010(5):733-737.
    [241] Roberts G P, Pearson A J. Health Monitoring of Structures-Towards aStethoscope for Bridges[C].Proceedings of the23rd International Conferenceon Noise and Vibration Engineering, ISMA, Leuven, Belgium,1998.
    [242] Cornwell P, Farrar C R, Doebling S W, et al. Environmental Variability ofModal Properties[J]. Experimental Techniques,1999,23(6):45-48.
    [243] Ding Y, Li A. Structural Health Monitoring of Long-Span Suspension BridgesUsing Wavelet Packet Analysis[J]. Earthquake Engineering and EngineeringVibration,2007,6(3):289-294.
    [244] Limongelli M P. Frequency Response Function Interpolation for DamageDetection Under Changing Environment[J]. Mechanical Systems and SignalProcessing,2010,24(8):2898-2913.
    [245]克拉夫R.,彭津J.结构动力学[M].北京:高等教育出版社,2006.
    [246] Adams R D, Cawley P, Pye C J, et al. A Vibration Technique forNon-Destructively Assessing the Integrity of Structures[J].1978,20(2):93-100.
    [247] Baldwin R, North M A. Stress-Strain Relationship for Concrete at HighTemperatures[J]. Magazine of Concrete Research,1973,25(85):208-212.
    [248]Brockenbrough RL M F. Structural Steel Designer‘S Handbook[M]. New York:McGraw-Hill,1994.
    [249] XU Y, ZHU S. Experimental Study On Effects of Environmental TemperatureOn Dynamic Characteristics of Bridge Structures[J]. Journal of EarthquakeEngineering and Engineering Vibration,2007(6):119-123.
    [250] YAO C R, LI Y D. Research On Temperature Influences in Long-Span BridgesHelath Monitoring[J]. Journal of East China Jiaotong University,2008(2):25-28.
    [251]赵雪峰,田石柱,周智等.钢片封装光纤光栅监测混凝土应变试验研究[J].光电子.激光,2003,14(2):171-174.
    [252]詹雅歌,蔡海文,耿建新等.铝槽封装光纤光栅传感器的增敏特性研究[J].光电子学报,2004,33(8):952-955.
    [253]梁磊,姜德胜,孙东亚.光纤传感器在混凝土结构中的相容性研究[J].武汉工业大学学报,2000,22(2):11-14.
    [254]周智,赵雪峰,武湛君等.光纤光栅毛细钢管封装工艺及其传感特性研究[J].中国激光,2002,29(12):1089-1092.
    [255]兰成明.平行钢丝斜拉索全寿命安全评定方法研究[D].哈尔滨:哈尔滨工业大学,2009.
    [256]贾金山,陈凤山.桥梁工程设计计算方法及应用[M].北京:中国建筑工业出版社,2003.
    [257]张青霞.基于虚拟变形法的动态荷载与结构损伤识别方法研究[D].哈尔滨工业大学,2010.
    [258]王勖成.有限单元法[M].北京:清华大学出版社,2009.
    [259]张青霞,段忠东, Jankowski Lukasz.基于虚拟变形法的车-桥耦合系统移动质量识别[J].力学学报,2011(3):598-610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700