用户名: 密码: 验证码:
连续覆膜旱作稻田土壤肥力及水稻营养特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了评价连续覆膜旱作对稻田土壤肥力及水稻营养特性的影响,从2001年起在浙江省兰溪市墩头镇(盆地地区)和海宁市丁桥镇(平原地区)2点进行水稻覆膜旱作长期定位试验。墩头点试验采用裂区设计,主处理设:(1)覆膜旱作,不施氮;(2)覆膜旱作,施纯氮45 kg·hm~(-2);(3)覆膜旱作,施纯氮90 kg·hm~(-2);(4)覆膜旱作,施纯氮135 kg·hm~(-2);(5)覆膜旱作,施纯氮180 kg·hm~(-2);(6)裸地旱作,施纯氮135 kg·hm~(-2);(7)常规水作,施纯氮135 kg·hm~(-2)。裂区设秸秆还田和不还田,重复3次。丁桥点试验也采用裂区设计,主处理为覆膜旱作条件下不同氮肥处理:(1)不施氮;(2)施纯氮45 kg·hm~(-2);(3)施纯氮90 kg·hm~(-2);(4)施纯氮135 kg·hm~(-2);(5)施纯氮180 kg·hm~(-2),裂区设秸秆还田和不还田,另外设常规水作(施纯氮135 kg·hm~(-2))和裸地旱作(施纯氮135 kg·hm~(-2))为对照,重复3次。采用常规分析和现代分子生物学技术相结合的方法对连续6年覆膜旱作稻田土壤物理、化学、生物学等性质的变化规律及水稻营养特性进行了分析,结果如下:
     1.连续覆膜旱作改变了稻田土壤团粒结构和pH值。与水作相比,覆膜旱作有利于土壤微团粒结构(小于5 mm)的形成,土壤pH值有升高趋势。与裸地旱作相比,覆膜旱作降低了大于5 mm的土壤团粒结构,增加了2-5 mm土壤团粒结构,土壤pH值有降低趋势。
     2.连续覆膜旱作对稻田土壤有机质和氮、磷、钾含量有明显影响。土壤有机质含量呈下降趋势,墩头点,覆膜旱作6年后土壤有机质比试验前降低了36.7%,丁桥点降低了51.4%。不同生育期土壤养分含量变化不同。与水作相比,墩头点,覆膜旱作稻田在全生育期(播前、拔节期、灌浆期、成熟期)土壤碱解氮和速效钾分别降低了5.3%-14.8%和13.2%-20.8%,土壤有效磷增加了5.1%-21.6%,有效硅增加了2.5%-9.1%;与裸地旱作相比,覆膜旱作使全生育期土壤碱解氮含量降低了2.4%-11.1%,有效磷降低了7.0%-12.7%,速效钾降低了1.6%-25.9%,有效硅差别不大。丁桥点,与水作相比,覆膜旱作使全生育期土壤碱解氮含量显著降低了8.7%-25.1%,有效磷显著增加了23.4%-114.4%,速效钾含量在各生育期变化不一致,而有效硅在灌浆期和成熟期显著降低了11.7%和7.6%。与裸地旱作相比,在播前和拔节期覆膜旱作土壤碱解氮含量显著低于裸地旱作,有效磷在全生育期降低了13.7%-47.3%,速效钾含量降低了5.0%-22.4%,有效硅显著降低了1.9%-7.6%。施氮肥对覆膜旱作稻田土壤有机质和氮、磷、钾含量有一定影响,墩头点,施纯氮135 kg·hm~(-2)和180 kg·hm~(-2)处理分别比不施氮肥有机质含量显著增加了11.8%和11.3%,在施纯氮45 kg·hm~(-2)、90 kg·hm~(-2)、135 kg·hm~(-2)和180 kg·hm~(-2)条件下碱解氮含量分别比不施氮肥显著增加了7.7%-22.5%,有效磷含量显著增加了6.6%-45.1%,速效钾含量差别不大。丁桥点,与不施氮肥相比,施氮肥对土壤有机质影响不大,随氮肥用量的增加,碱解氮含量逐渐增高,增加幅度为12.2%-29.2%,而有效磷和速效钾含量分别降低了27.1%-59.8%和6.3%-19.6%。
     3.覆膜旱作对稻田土壤全量及有效Fe、Mn、Cu、Zn含量有一定影响。从全量来看,与水作相比,覆膜旱作对稻田土壤全量Fe、Mn、Cu、Zn含量影响不大;与裸地旱作相比,覆膜旱作使2005年成熟期和2006年拔节期土壤全Fe含量显著增加了11.8%和7.7%,使2005年成熟期土壤全Mn含量增加了17.4%,但对全量Cu、Zn含量影响不大。从有效含量来看,与水作相比,覆膜旱作使全生育期土壤有效Fe、Mn含量分别显著降低了11.4%-15.1%和10.8%-33.5%,使有效Cu含量增加了1.6%-15.0%,而有效Zn含量在各生育期及年际间变化不一致。与裸地旱作相比,覆膜旱作处理显著增加了土壤有效Fe、Mn、Cu的含量,有效Zn含量在年际间变化不一致。
     4.覆膜旱作对稻田土壤酶活性有一定影响。与水作相比,覆膜旱作对土壤过氧化氢酶活性影响不大,使2006年灌浆期和成熟期脲酶活性显著增加了28.7%和45.6%,整个生育期蔗糖酶活性增加了14.2%-372.7%,使2005年成熟期、2006年灌浆期和成熟期碱性磷酸酶活性分别增加了60.0%、43.8%和51.1%;与裸地旱作相比,覆膜旱作对土壤过氧化氢酶影响不大,脲酶活性降低了14.1%-45.6%,蔗糖酶活性在2006年拔节和灌浆期显著增加了95.3%和57.7%,碱性磷酸酶活性在2005年成熟期、2006年灌浆期、成熟期分别增加了26.3%、31.3%和17.5%。与不施氮肥相比,施氮肥显著提高了覆膜旱作水稻成熟期土壤过氧化氢酶、脲酶、蔗糖酶、碱性磷酸酶活性,其中,以施纯氮135 kg·hm~(-2)处理各种酶活性最高。
     5.覆膜旱作明显影响了土壤微生物量碳、氮、磷含量。与水作相比,在播前和成熟期,覆膜旱作降低了土壤微生物量碳,降低幅度为12.2%和8.2%;微生物量氮在播前有所降低,但在拔节和灌浆期显著增加,增加幅度为45.0%和35.4%;微生物量磷在全生育期显著增加了8.7%-186.8%;与裸地旱作相比,覆膜旱作有增加土壤微生物量碳、氮、磷的趋势。施氮肥增加了土壤微生物量碳、氮、磷含量,以施纯氮135 kg·hm~(-2)处理微生物量碳、氮、磷含量最高,分别为243.2 mg·kg~(-1)、37.5 mg·kg~(-1)和15.0 mg·kg~(-1)。
     6.由于覆膜旱作改变了土壤的生态环境,从而影响了土壤细菌的多样性。群落水平生理剖面(CLPP)分析表明,平均孔的颜色变化(AWCD)值随培养时间的延长呈S型曲线变化;与水作相比,在拔节期和灌浆期,覆膜旱作处理AWCD值在72 h培养后均显著高于水作(P<0.05~*),细菌碳源利用的主成分分析表明,两个生育时期,覆膜旱作和水作处理在主成分1上均有显著差异(P<0.05~*),而且覆膜旱作处理后Shannon丰富度和均匀度均显著高于水作处理(P<0.05~*),表明覆膜旱作较水作处理有更加多样的可培养的土壤细菌。与裸地旱作处理相比,拔节期,AWCD值在培养72 h后覆膜旱作显著高于裸地旱作,而且在主成分1上有显著差异,Shannon丰富度和均匀度均显著高于裸地旱作;灌浆期,两处理间各指标差别不显著,说明覆膜旱作和裸地旱作在拔节期可培养的细菌多样性差别较大,后期差别较小。变性梯度凝胶电泳(DGGE)分析表明,与水作和裸地旱作相比,覆膜旱作显著增加了土壤细菌微生物区系基因总条带数;DGGE指纹图谱的系统聚类分析结果表明,覆膜旱作与水作处理聚类距离较远,而与裸地旱作处理距离较近。因此,与水作相比,覆膜旱作有利于稻田总的细菌群落多样性的形成,与裸地旱作相比,两个处理间稻田土壤总的细菌群落多样性相似。
     7.由于连续覆膜旱作降低了稻田土壤肥力,可以通过秸秆还田等措施维持其地力。秸秆还田显著增加了稻田土壤有机质、碱解氮、有效磷和速效钾含量,墩头点分别增加了5.0%、9.9%、12.3%、61.5%,其中,覆膜旱作条件下施纯氮135 kg·hm~(-2)配合秸秆还田土壤有机质和碱解氮含量与水作不还田相比差别不大,但有效磷和速效钾含量分别比水作不还田显著提高了33.9%和48.6%;丁桥点秸秆还田后土壤有机质、碱解氮、有效磷和速效钾含量分别显著增加了5.4%、15.3%、17.8%、12.9%,其中,覆膜旱作条件下施纯氮135 kg·hm~(-2)配合秸秆还田土壤有机质和碱解氮含量与水作不还田相比差别不大,但有效磷和速效钾含量分别比水作不还田显著提高了44.1%和14.5%;秸秆还田也显著增加了成熟期土壤过氧化氢酶、脲酶、蔗糖酶、碱性磷酸酶活性,2005年分别增加了12.3%、35.3%、24.1%、25.0%,2006年分别增加了11.8%、28.3%、11.6%、50.0%,土壤微生物量碳、氮、磷含量也有不同程度提高。
     8.由于连续覆膜旱作明显改变了稻田土壤肥力,从而影响了水稻产量及植株对养分的吸收。连续7年覆膜旱作水稻产量结果表明,从2001年开始,水稻产量先增加后降低,以2003年产量最高,2004年开始下滑,到2007年又略有回升。以2006年为例,与水作相比,覆膜旱作使水稻穗粒数和结实率分别降低了6.6%和2.5%,因此,水稻产量比水作处理降低了5.0%。覆膜旱作使水稻成熟期地上部氮含量提高了6.O%,磷含量降低了9.6%,而钾含量差别不大;与裸地旱作相比,由于覆膜旱作主要提高了水稻有效穗和穗粒数,使得产量较裸地旱作显著增加了6.1%。覆膜旱作使水稻成熟期地上部氮、磷、钾含量比裸地旱作分别增加了24.8%、18.3%和4.3%;与不施氮肥相比,施氮肥显著增加了成熟期水稻地上部氮、磷、钾含量,均以施纯氮180 kg·hm~(-2)处理最高,分别为1.286 g·株~(-1)、0.227 g·株~(-1)、1.810 g·株~(-1);随氮肥用量的增加,水稻地上部氮、磷、钾总量逐渐增加,但是施纯氮135 kg·hm~(-2)和180 kg·hm~(-2)处理间差别不显著;施氮肥也显著增加了覆膜旱作稻平均有效穗、穗粒数、结实率和千粒重,从而增加了水稻产量,其中以施纯氮135 kg·hm~(-2)处理配合秸秆还田水稻产量最高,为7104 kg·hm~(-2);水稻产量(Y)与氮肥用量(X)之间呈显著正相关关系,可拟合为一元二次抛物线方程,秸秆还田处理条件下方程为:(?)=5390.2+20.216 X-0.0613 X~2 (R~2=0.9869~*),不还田条件下方程为:(?)=5212.2+15.287 X-0.0306 X~2 (R~2=0.9869~*)。施氮肥也增加了水稻氮收获指数、氮肥表观利用率,而氮肥农学利用率显著下降,其中,以施纯氮135 kg·hm~(-2)处理配合秸秆还田氮收获指数、氮肥表观利用率最高,氮肥农学利用率相对较高,分别为0.626、49.6%、12.6 kggrain·kg~(-1)。秸秆还田有利于覆膜旱作稻地上部养分含量、产量和氮肥利用率的全面提高。
     9.覆膜旱作明显影响了水稻地上部微量元素Fe、Mn、Cu、Zn含量。与水作相比,覆膜旱作降低了水稻茎、穗轴、壳、糙米及地上部总铁含量,降低幅度分别为9.1%、29.1%、46.2%、25.0%和9.5%,达到显著水平;覆膜旱作使茎、壳、糙米及地上部总锰含量显著降低了6.5%、74.2%、32.9%和10.3%,使茎中铜含量和地上部总铜含量增加了100.1%和15.0%,使穗轴和糙米中铜含量降低了25.8%和20.8%,使壳和糙米中锌含量降低了59.5%和7.9%,但地上部总锌含量差别不大。与裸地旱作相比,覆膜旱作对水稻不同器官Fe、Mn、Cu、Zn含量影响不同,但是显著提高了水稻地上部Fe、Mn、Cu、Zn总吸收量,提高幅度分别为28.0%、35.0%、35.2%和15.8%,而糙米中铁、锰、铜、锌含量差别不大。
     综上所述,连续覆膜旱作会导致土壤肥力降低,生产上可以通过合理施肥,如施用氮肥、钾肥以及稻草秸秆还田等措施培肥土壤,以保持该生态系统的健康持续发展。此外,覆膜旱作稻也应注意微量元素肥料的施用,以保证水稻能够正常生长并获得较高的产量和良好的品质。
Long-term experiment was conducted to study the effects of continuous plastic film mulchingunder non-flooding condition on paddy soil fertility properties and nutrition uptake of rice, whichstarted in 2001 at Duntou town of Lanxi city (basin area) and Dinqiao town of Haining city (plainarea), in Zhejiang Province, China, with one rice crop annually. The experiment was a randomizedsplit block design with three replications. At Duntou site, the main treatments included: nitrogendoses with 0, 45, 90, 135, 180 kg/hm~2 under non-flooded plastic film mulching condition (PM), noplastic film mulching and no flooding with 135 kg/hm~2 nitrogen (UM), and traditional floodingmanagement with 135 kg/hm~2 nitrogen (TF), subplots include rice straw incorporation or not. AtDinqiao site, the main treatments included: nitrogen doses with 0, 45, 90, 135, 180 kg/hm~2 undernon-flooded plastic film mulching condition, subplots include rice straw incorporation or not, andCK were UM with 135 kg/hm~2 nitrogen and TF with 135 kg/hm~2 nitrogen. Soil samples werecollected and analyzed for soil physical, chemical and biological properties, as well as thenutrition uptake characteristic of rice after six years's continuous planting. The results were asfollows:
     Continuous PM regime promoted the number of soil microaggregates (less than 5 mm) andimproved soil pH value slightly compared to TF treatment, whereas compared to UM treatment,the amount of more than 5 mm soil aggregation was decreased and that of 2 - 5 mm soilaggregation was increased, but soil pH value was decreased slightly.
     Continuous PM regime decreased soil organic matter content. After six years, the soil organicmatter content in PM decreased by 36.7% at Duntou site and by 54.1% at Dingqiao site comparedto the initial experiment soils, respectively. Compared to TF, PM decreased soil hydrolysis N andavailable K by 5.3% - 14.8% and 13.2% - 20.8%, respectively, during the growing stage of rice(before transplanting, jointing stage, grain-filling stage and maturing stage) at Duntou site,however, soil available P was increased by 5.1% - 21.6%, as well as soil available Si by 2.5% -9.1%. Compared to UM, PM decreased soil hydrolysis N, available P and available K by 2.4% -11.1%, 7.0% - 12.7% and 1.6% - 25.9%, respectively, however, available Si content had nosignificant difference between PM and UM. At Dingqiao site, compared to TF, PM reducedsignificantly soil hydrolysis N by 8.7% - 25.1%, and improved available P by 23.4% - 114.4%,whereas the dynamic of available K content was inconsistent in different growing stages of rice,and soil available Si was decreased significantly by 11.7% and 7.6% at grain-filling stage andmaturing stage, respectively. Compared to UM, PM reduced soil hydrolysis N significantly atbefore transplanting and jointing stage, available P was decreased significantly by 13.7% - 47.3%,as well as available K and available Si by 5.0% - 22.4% and 1.9% - 7.6%, respectively. Soilorganic matter content was affected by nitrogen fertilizer application. Compared with CK (N0kg·hm~(-2)), soil organic matter content was increased significantly by 11.8% and 11.3% after N 135kg·hm~(-2) and N 180 kg·hm~(-2) application at Duntou site. With the improvement of nitrogen dose, soilhydrolysis N was enhanced significantly by 7.7%, 12.9%, 15.3% and 22.5% at Duntou site and by 12.2%, 12.7%, 23.1% and 29.2% at Dingqiao site after 45 kg/hm~2, 90 kg/hm~2, 135 kg/hm~2 and 180kg/hm~2 nitrogen fertilizer application, respectively. The more the nitrogen fertilizer dose was, thehigher soil hydrolysis N was. Soil available P was significantly improved by 6.6% - 45.1% andavailable K content wasn't influenced by nitrogen fertilizer application at Duntou site, whereasavailaNe P and available K were reduced significantly by 27.1% - 59.8% and 6.3% - 19.6%,respectively, after nitrogen fertilizer application at Dinqiao site.
     Continuous non-flooded plastic film mulching had no remarkable effect on soil total Fe, Mn,Cu, Zn content compared to TF, but soil total Fe was improved significantly by 11.8% and 7.7% atmaturing stage in 2005 and at jointing stage in 2006 compared to UM, and total Mn content wasenhanced by 17.4% at maturing stage in 2005, total Cu and total Zn content had a slight butstatistically insignificant change. Soil available Fe and available Mn content were decreasedremarkably by 11.4% - 15.1% and 10.8% - 33.5% during the whole growth stage of rice,respectively, compared to TF, and available Cu was improved by 1.6% - 15.0%, and available Zncontent was inconsistent trend during the growth stage of rice. Compared with UM, soil availableFe, available Mn and available Cu content were enhanced under PM regime, but there wasinconsistent trend on available Zn content in 2005 and 2006.
     Compared with TF, PM had no remarkable effect on catalase activity, however, ureaseactivity under PM treatment was significantly improved by 28.7% and 45.6% at grain-filling stageand maturing stage, respectively. And sucrase activity was also markably enhanced by 14.2% - 3times during the whole growth stage, and soil alkaline phosphatase activity under PM treatmentsignificantly increased 60.0%, 51.1% and 43.8% at maturing stage in 2005 and 2006 and atgrain-filling stage in 2006, respectively. Compare to UM, PM regime had no markable effect oncatalase activity, whereas, PM significantly decreased urease activity by 14.1% - 45.6% during thegrowth of rice, and sucrase was markably enhanced by 95.3% and 57.7% at jointing stage andgrain-filling stage in 2006, respectively, and soil alkaline phosphatase activity under PM treatmentsignificantly increased 26.3%, 17.5% and 31.3% at maturing stage in 2005 and 2006 and atgrain-filling stage in 2006. The results in two years showed that soil catalase, urease, sucrase andalkaline phosphatase activities were improved after nitrogen fertilizer application, but the highestwas the treatment of N135 kg/hm~2 application.
     PM regime affected soil microbial biomass content. Compared to TF, microbial biomasscarbon was significantly decreased by 12.2% and 8.2% at before transplanting and maturing stageunder PM treatment, respectively. PM declined microbial biomass nitrogen at before transplanting,but significantly increased by 45.0% and 35.4% at jointing stage and grain-filling stage,respectively. Microbial biomass phosphorus was significantly increased by 8.7% - 3 times duringthe growth stage of rice. Compared with UM, the increased trend of soil microbial biomass C, Nand P was found under PM treatment. Soil microbial biomass C, N and P were improved bynitrogen application, but the highest microbial biomass C, N and P in different N dose were thetreatment of N135 kg/hm~2 application, which was 243.2 mg/kg, 37.5 mg/kg and 15.0 mg/kg,respectively.
     Non-flooded plastic film mulching changed soil environment, so soil bacterial communitydiversity was changed. The result of community level physiological profiles (CLPP) showed thataverage well color development (AWCD) generally followed at the sigmoid pattern withincubation time, and AWCD under PM regime was significantly higher than that of TF regime atjointing stage and grain-filling stage after 72 h incubation, and there was statistically significantdifference on PC1 between PM and TF (P<0.05~*), and Shannon richness and evenness under PMregime were remarkably higher than those of TF regime. These results suggested that continuousPM regime in paddy fields had a diverse culturable bacterical population compared with TF.Moreover, AWCD, Shannon richness and evenness under PM regime were markedly higher thanthose of UM regime at jointing stage, and there was significant difference on PCl between PMand UM (P<0.05~*), but no remarkable difference was found between PM and UM treatments atgrain-filling stage. These results showed that PM treatment stimulated the development of adiverse bacterial community to a larger extent than UM treatment at jointing stage. Denaturinggradient gel electrophoresis (DGGE) showed that PM enhanced significantly total bands onDGGE fingerprint profiles compared with TF and UM, and similarity dendrograms by the imageanalysis of DGGE profiles showed that the communities of PM and UM regimes were moresimilar to each other than they were to the TF regime.
     Straw incorporation was important to maintain paddy soil fertility under continuous PMregime. Rice straw incorporation increased soil organic matter content, hydrolysis N content,available P content and available K content by 6.25%, 9.9%, 12.3% and 61.5% at Duntou stie andby 5.2%, 15.3%, 17.8% and 12.9% at Dinqiao site, respectivity. Especially, compared to no strawincorporation under TF, soil organic matter and hydrolysis N content had no significant differenceunder PM and straw incorporation at two sites, but available P and available K were increasedsignificantly by 33.9% and 48.6% at Duntou site and 44.1% and 14.5% at Dingqiao site. Andcatalase, urease, sucrase and alkaline phosphatase activity were improved by 12.3%, 35.3%,24.1% and 25.0% at maturing stage in 2005 and 11.8%, 28.3%, 11.6% and 50.0% in 2006 underrice straw incorporation, and soil microbial biomass C, N, P were increased.
     Continuous PM regime changed paddy soil fertility, so grain yield and nutrient uptake of ricewere affected. From 2001 to 2003, grain yield increased gradually, the hightest was in 2003, andthe grain yield decreased gradually from 2004 to 2006, but increased slightly in 2007. In 2006,kernel number and seed setting rate of rice under PM were decreased by 6.6% and 2.5%,respectively, so the yield of grain of the PM regime lower than the TF regime, decreased by 5.0%,however, N content in shoot of rice under PM regime was increased by 6.0%, and P content wasdeclined by 9.6%, and K content had no significant difference at maturing stage. Because of theimprovement of the effective panicle number per plant and kernel number, grain yield under PMtreatment was remarkably higher than that of UM treatment, increased by 6.1%, and N, P and Kcontents in shoot of rice under PM regime were increased by 24.8%, 18.3% and 4.3% at maturingstage, respectively. Compared with CK (NO kg/hm~2), N, P, K content in shoot of rice under PMregime were increased after N fertilizer application at maturing stage, and the highest content of N, P, K in different N dose was the treatment of N180 kg/hm~2 application, which were 1.286g/plant, 0.227 g/plant and 1.810 g/plant, respectively. With the improvement of the N dose, total N,P and K content in shoot of rice enhanced gradually, but no signicant difference was foundbetween N135 kg/hm~2 and N180 kg/hm~2 application. Average effective panicle number per plant,kernel number, seed setting rate and 1000-grain weight under PM management were enhanced byN application, so the grain yield was improved, and the highest yield was 7104 kg/hm~2 underN135 kg·hm~2 application and the incorporation of rice straw. The positive correlated relationshipwas found between grain yield (Y) and N dose (X), and the fitting parabola equations under ricestraw incorporation and no rice straw incroporation were as follows: (?) = 5390.2 + 20.216 X -0.0613 X~2 (R~2 = 0.9869~*) and (?) = 5212.2 + 15.287 X- 0.0306 X~2(R~2 = 0.9869~*). In addition,compared to CK (NO kg/hm~2), N application increased N harvest index and fertilizer-N-recoveryefficiency, but agronomic-N-use efficiency was decreased. Among these N dose, the highest Nharvest index and fertilizer-N-recovery efficiency were the N135 kg·hm~2 application and ricestraw incorporation, which were 0.626 and 49.6%, respectively, and agronomic-N-use efficiencywas 12.6 kg grain/kg. Rice straw incropation could promote the nutrient content in shoot of rice,grain yield and N use efficiency under PM treatment.
     PM affected Fe, Mn, Cu, Zn content in shoot of rice. Compared with TF, Fe content in thestem, panicle axis, hull, brown rice and total Fe content in shoot under PM regime were decreasedsignificantly by 9.1%, 29.1%, 46.2%, 25.0% and 9.5%, respectively. And Mn content in stem, hull,brown rice and total Mn content in shoot also decreased remarkably by 6.5%, 74.2%, 32.9% and10.3%, respectively. However, Cu content in stem and total Cu content in shoot of rice under PMtreatment enhanced by 100.1% and 15.0%, Cu content in panicle axis and brown rice decreased by25.8% and 20.8%. Zn content in hull and brown rice were decreased by 59.5% and 7.9%, but totalZn content in shoot had no significant difference between PM and UM. Compared to UM, Fe, Mn,Cu, Zn content in different organ of rice under PM had different changes, whereas total Fe, Mn,Cu, Zn content in shoot were increased by 28.0%, 35.0%, 35.2% and 15.8%, there was noremarkable difference in brown rice between PM and UM.
     In conclusion, paddy soil fertility under continuous PM regime was decreased, so we mustpay more attention to apply fertilizer rationally, such as N fertilizer, potassium fertilizer and ricestraw incorporation application for sustainable ecosystem, at the same time, the micronutrientfertilizer was important for the rice growth under PM management to improve grain yield and thequality.
引文
Alef K, Beck TH and Kleine D. A comparison of methods to estimate microbial biomass and N mineralization in agricultural and grassland soils. Soil Biology & Biochemistry, 1988, 20: 561 - 565.
    Aman RI, Ludwig W, Schleifer KH. Phylogenetic identification in situ detection of individual microbial cells without cultivation. Microbial Reviews, 1995, 59 (1): 143 -169.
    Amato M, Ladd JN. Studies of nitrogen immobilization and mineralization in calcareous soils. V. Formation and distribution of isotope labeled biomass during decompsition of ~(14)C and ~(15)N labeled plant material. Soil Biology & Biochemistry, 1980, 12: 405 - 411.
    Aslam T, Choudhary MA and Sagar S. Tillage impact on soil microbial biomass C, N and P, earthworms and agronomy after two years of cropping following permanent pasture in New Zealand. Soil Tillage and Research, 1999, 51:103-111.
    Azam F, Yousaf M, Huddain F, et al. Determination of biomass N in some agricultural soils of Punjab, Pakistan. Plant and Soil, 1989, 113: 223 - 228.
    Bai Q, Gattinger A, Zells L. Characterization of microbial consortia in paddy rice soil by phospholipids analysis. Microbial Ecology, 2000, 39: 273 - 281.
    Bandara WM, Gunatilaka J. Effect of iron toxicity on growth, photosynthesis and dry production of rice. Rice and Problem Soils in South and Southeast Asian. Manila: IRRI. 1994, 166 - 175.
    Belder P, Bouman BAM, Cabangon R, Lu GA, Quilang EJP, Li YH, Spiertz JHJ and Tuong TP. Effects of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricutural Water Management, 2004, 65, 193 - 210.
    Bending GD, Putland C, Rayns F. Changes in microbial community metabolism and liable organic matter fractions as early indicators of the impact of management on soil biological quality. Biology & Fertility of Soils, 2000, 31: 78 - 84.
    Beyrouty CA, Grigg BC, Norman RJ, Wells BR. Nutrient uptake by rice in response to water management. Journal of Plant Nutrition, 1994, 17(1): 39 - 55.
    Bolton JrH, Smith JJ and Link SO. Soil microbial biomass and activity of a disturbed and undisturbed shrub steppe ecosystem. Soil Biology & Biochemistry, 1993, 25: 545 - 552.
    Bonde AT, Schniirer J, Rosswall T. Microbial biomass as a fraction of potentially mineralizable N in soil from long-term field experiments. Soil Biology & Biochemistry, 1988, 20(4): 447 -452.
    Bossio DA, Scow KM. Impact of carbon and flooding on the metabolic diversity of microbial communities in soils. Applied Environmental Microbiology, 1995, 61,4043 - 4050.
    Bossio DA, Scow KM. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology, 1998, 35,265-278.
    Brock TD. The study of microorganisms in situ: progress and problems. Symposium of Society Gene Microbiology, 1987,41:1-17.
    Brookes PC, Powlson DS and Jenkinson DS. Measurement of microbial biomass phosphorus in soil. Soil Biology & Biochemistry, 1982, 14: 319 - 329.
    Calbrix R, Laval K, & Barray S. Analysis of the potential functional diversity of the bacterial community in soil: a reproducible procedure using sole-carbon-source utilization profiles. European Journal of Soil Biology, 2005, 41, 11 - 20.
    Cassman KG, Peng S, Olk DC, el al. Opportunities for increased nitrogen use efficiency form improved resource management in irrigated rice systems. Field Crops Research, 1998, 56(1-2): 7-39.
    Chan KY and Heenan DP. Microbial-induced soil aggregate stability and different crop rotations. Biology & Fertility of Soils, 1999, 30: 29 - 32.
    Chatterjee AK, Biswapatimandall, Mandal N. Interaction of nitrogen and potassium with zinc in submerged soil and lowland rice. Indian Society Soil Science, 1996,44(4): 792 - 794.
    Chaudry MS, McClean EO. Comparative effects of flooded and nutrient uptake by rice plants. Journal of Agronomy, 1963, 55: 555 - 567.
    Chen MM, Zhu YG, Su YH, Chen BD, Fu BJ & Marschner P. Effects of soil moisture and plant interactions on the soil microbial community structure. European Journal of Soil Biology, 2007,43,31-38.
    Chen XS, Guo SF, Wang JK & Zhang J. Effect of mulching cultivation with plastic film on soil microbial population and biological activity. Chinese Journal of Applied Ecology, 1998, 9, 435-439.
    Chen GC, He ZL and Wang YJ. Impact of pH on microbial biomass carbon and micriobial biomass phosphorus in red soils. Pedosphere, 2004,14(1): 9-15.
    Choi KH, Dobbs FC. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. Journal of Microbiological. Methods, 1999,36,203-213.
    Clark F, Nearpass DC, Spect AW. Influence of organic additions and flooding on iron and manganese uptake by rice. Journal of Agronomy, 1957,49: 586 - 589.
    Clasen AT, Boyle SI, Haskins KE, Overby ST & Hart SC. Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microbiology Ecology, 2003, 44, 319 - 328.
    Cruz RT, O'Toole JC. Dryland rice response to an irrigation gradient at flowering stage. Agron. J., 1984, 76(2): 178-182.
    Dlugokencky EJ, Steeele LP, Lang PM, et al. The growth rate and distribution of atmospheric methane. Journal of Geophysical Research, 1994, 99: 17021 -17043.
    Duineveld BM, Rosado AS, van Elsas JD & van Veen JA. Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Applied Environmental Microbiology, 1998,64,4950-4957.
    Eagle AJ, Bird JA, Horwath WR, Linquist BA, Brouder SM, Hill JE, Kessel CV. Rice yield and nitrogen efficiency under alternative straw management practices. Journal of Agronomy, 2000,92: 1096-1103.
    Fan Mingsheng, Liu Xuejun, Jiang Rongfeng, Zhang Fusuo, Lu Shihua, Zeng Xiangzhong, Christie Peter. Crop yield, internal nutrient efficiency and changes in soil properties in rice-wheat rotations under non-flooded mulching cultivation. Plant and Soil, 2005, 277: 265 -276.
    Fan MS, Jiang RF, Liu XJ, Zhang FS, et al. Interactions between non-flooded mulching cultivation and varying nitrogen inputs in rice-wheat rotation. Field Crops Reseach, 2005, 91: 307 - 318.
    Fan X, Zhang J, Wu P. Water and nitrogen use efficiency of lowland rice in ground covering rice production system in south China. Journal of Plant Nutrition., 2002, 25 (9): 1855 -1862.
    FAO, IAEA. Measurement of methane and nitrous oxide emissions from agriculture. A Joint Undertaking by the Food and Agriculture Organization of the United Nations and International Atomic Energy Agency, International Atomic Energy Agency, Vienna, 1992, 5 - 6.
    FAO. Statistical Databases. Food and Agriculture Organization (FAO) of the United Nations, 2001.
    Findlay RH, Trexler MB, Guckert JB, White DC. Response of a benthic microbial biomass to biotic disturbance. Marine Ecology Progress Series, 1990, 62: 135 - 144.
    Fraser PM, Williams PH and Haynes RJ. Earthworm species, population size and biomass under different cropping systems across the Canterbury Plains, New Zealand. Applied Soil Ecology, 1996,3:49-57.
    Garland JL, Mills AL. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology, 1991, 57, 2351 - 2359.
    Ghoshal N and Singh KP. Effects of farmyard manure and inorganic fertilizer on the dynamics of soil microbial biomass in a tropical dryland agroecosystem. Biology & Fertility of Soils, 1995, 19:231 -238.
    Giller KE, Witter E and McGraph SP. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology & Biochemistry, 1998, 30: 1389-1414.
    Glendining MJ, Powlson DS, Poulton PR, et al. The effects of long term application of inorganic nitrogen fertilizer on soil nitrogen in the Broadbalk Wheat Experiment. Journal of Agricultural Science (Camb.), 1996, 27: 347 - 363.
    Gotoh S, Patrick WH. Transformation of iron in a water-logged soil as influenced by redox potential and pH. Soil Science Society America Process, 1974,38: 66 - 71.
    Gyaneshwar P, Naresh KG, Parekh LJ, et al. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 2002, 245: 83-93.
    H(?)kan W, Shahid M, David H, Leif J, Jan P. Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiology Ecology, 2003, 44, 57 - 65.
    He ZL, Wu J, O Donnell AG and Syers JK. Seasonal responses in microbial biomass carbon, phosphorus and sulfur in soils under pasture. Biology & Fertilty of Soils, 1997, 24: 421- 428.
    Hideto U, Shigekazu Y. Nitrogen dynamics in paper-mulched paddy field fertilized with controlled-release coated urea by ~(15)N method. In: Ande T, et al, eds. Plant nutrition for sustainable food production and environment. Japan: Kluwer Academic Publishers, 1997, 539 - 540.
    Hoque MM, Inubushi K, Miura S, Kobayashi K, Kim HY, Okada M and Yabashi S. Biological dinitrogen fixation and soil microbial biomass carbon as influenced by free-air carbon dioxide enrichment (FACE) at three levels of nitrogen fertilization in a paddy field. Biology & Fertilty of Soils,2001,34:453-459.
    Imura K. Heavy metal problems in paddy soils. In: Kitagisthik, Yamane I, eds. Heavy Metal Pollution Soils of Japan. Tokyo: Japan Scientific societies Press, 1981.
    Inubushi K, Hoque MM, Miura S, Kobayashi K, Kim HY, Okada M and Yabashi S. Effect of free-CO_2 enrichment (FACE) on microbial biomass in paddy field soil. Soil Science and Plant Nutrition, 2001, 47: 737 - 745.
    IPCC. Climate Change: IPCC WGI third assessment report. Chapter 6. Assessment and Expect Review Draft. 2000.
    Islam KR and Weil RR. Soil quality indicator properties in mid-Atlantic soils as influenced by conservative management. Journal of Soil Water Conservation, 2000, 55: 69 - 78.
    Jayawardena SDG, Warable T. Relation between root oxidizing power and resistance to iron toxicity in rice. Report of Society of Crop Science and Breeding in Kinki, Japan, 1997, 22: 38 - 40.
    Jenkinson DS and Ladd JN. Microbial biomass in soil: measurement and turnover. In: Paul EA and Ladd JN. (ed.) Soil Biochemistry. Marcel Dekker, New York. pp. 1981, 415 - 471.
    Jenkinson DS. Determination of microbial biomass C and N in soil. In Wilson JR (ed.). Advances in Nitrogen in Agricultural Ecosystems. CAB International, Willingford. 1988, pp. 368 - 386.
    Jensen KD, Beier C, Michelsen A, Emmett BA. Effect of experimental drought on microbial processes in two temperate healthlands at contrasting water conditions. Applied soil Ecology, 2003,24: 165-176.
    Kenji Kouno, Yasuhiro Tuchiya and Tadao Ando. Measurement of soil microbial biomass phosphorus by an anion exchange membrane method. Soil Biology & Biochemistry, 1995, 27(10): 1353-1357.
    Khalid SK, Huang CY, Xie ZM. Effect of different iron compounds on growth of rice in a selected Pakistani calcareous soil. Journal of Zhejiang Agricultural University, 1997(5): 595-600.
    Kunio ITO. Development in paddy rice transplanting using recycling paper mulch. Agricultural Mechanization, 1993, (9): 47 - 49.
    Laverman, AM, Braster, M, R(?)ling, WFM, Van Verseveld, HW. Bacterial community structure and metabolic profiles in a forest soil exhibiting spatially variable net nitrate production. Soil Biology & Biochemistry, 2005, 37, 1581 - 1588.
    Li FM, Song QH, Jjemba PK and Shi YC. Dynamic of microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem. Soil Biology & Biochemistry, 2004, 36: 1893 -1902.
    Liang YC, Hu F, Yang MC, Yu JH. Antioxidative defenses and water deficit-induced oxidative damage in rice (Oryza sativa L.) growing on non-flooded paddy soils with ground mulching. Plant and Soil, 2003,257: 407 - 416.
    Liu XJ, Wang JC, Lu SH, Zhang FS, Zeng XZ, Ai YW, Peng BS, Christie P. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems. Field Crops Research, 2003, 83: 297 - 311.
    Liu Xuejun, Ai Yingwei, Zhang Fusuo, Lu Shihua, Zeng Xiangzeng, Fan Mingsheng. Crop production, nitrogen recovery and water use efficiency in rice-wheat rotation as affected by non-flooded mulching cultivation (NFMC). Nutrient Cycling in Agroecosystem, 2005, 71: 289 - 299.
    Liu, B, Gumpertz, ML, Hua, SJ & Ristaino, JB. Long-term effects of organic and synthetic soil fertility amendments on soil microbial communities and the development of southern blight. Soil Biology & Biochemistry, 2007, 39, 2302 - 2316.
    Lu Jun, Taiichiro Ookawa and Tadashi Hirasawa. The effects of irrigation regimes on the water use, dry matter production and physiological responses of paddy rice. Plant and Soil, 2000, 223:207-216.
    Lu YH, Watanabe A, Kimura M. Contribution of plant derived carbon to soil microbial biomass dynamics in a paddy rice microcosm. Biology & Fertility of Soils, 2002, 36: 136 -142.
    Luo AC, et al. Effect of nitrogen (NH_4NO_3) supply on absorption of ammonium and nitrate by conventional and hybrid rice during reproductive growth. Plant and Soil, 1993, 155/156: 395 -398.
    Luo Ancheng, Sun Xi. Effect of organic manure on the biological activities associated with insoluble phosphorous release in a blue purple paddy soil. Communications of Soil Science and Plant Analysis, 1994, 13-14:2513-2522.
    Magalhaes JR, Huber DM. Response of ammonium assimilation enzyme to nitrogen from treatment in different plant species. Journal of Plant Nutrition, 1991, 14(2): 175-185.
    Magurran AE. Ecological diversity and its measurement. Princetion: Princrton University Press, 1988,34-49.
    Mao DM, Lin YW, Yu L, Martens R and Insam H. Effect of afforestation on microbial biomass and activity in soils of tropical China. Soil Biology & Biochemistry, 1992, 24: 865 - 872.
    McGill WB, Camnon KR, Robertson JA, et al. Dynamic of soil microbial biomass and water soluble organic C in BretonL after 50 years of cropping to two rotations. Journal of Soil Science, 1986, 66: 1-19.
    McMarty GW, Meisinger JJ. Effect of N fertilizer treatments on biologically active N pools in soils under plow and no tillage. Biology & Fertility of Soils, 1997, 24: 406 - 412.
    Mitchell, RL. Trace elements in soils and factors that affecting their availability. Bulliten of the Geological Society America, 1972, 83, 1069.
    Mizutani M, Kalita PK and Shinde D. Effect of rice varieties and midterm drainage practice on water requirement in dry season paddy-observational studies on water equioment of lowland in Thailand (Ⅰ). Irrigation Engineering and rural Planning, 1989, (17): 6 - 20.
    Muthusamy S. Effect of micronutrients on rice brown spot incidence. International Rice Research Newsletter, 1998, 13: 32 - 33.
    Myrod DD. Relationship between microbial biomass nitrogen and nitrogen availability index. Soil Science Society of America Journal, 1987, 51: 1047 - 1049.
    Nagata M, Hiyoshi K, Umezaki T. Mulching cultivation system by using polyethylene film for early-season culture of rice (Oryza sativa) Measurement of paddy soil temperature in pot experiment. Bulletin of the Faculty of Agriculture, Miyazaki University (Japan), 1994, 41(2): 57-64.
    Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G & Renella G. Microbial diversity and soil functions. European Journal of Soil Science, 2003, 54, 655 - 670.
    Narteh LT, Sahrawat KL. Influence of flooding on electro-chemical and chemical properties of West African soil. Geoderma, 1999, 87: 179 - 207.
    Navas A, Berm(?)dez F, Mach(?) J. Influence of sewage sludge application on physical and chemical properties of Gypsisols. Geoderma, 1998, 87: 179 - 207.
    Neue HU, Bloom PR. Nutrient kinetics and availability in flooded rice soil. Progress in Irrigated Rice Research. Manila Pilip: IRRI, 1989: 173 -190.
    NovoaR, Loomis RS. Nitrogen and plant production. Plant and Soil, 1981, 58(1-3): 177-204.
    Ocio JA, Brookes PC. An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops. Soil Biology & Biochemistry, 1990, 22: 685 - 694.
    Osborone BA, Whittingin WJ. Variation in nitrate reductase activity between Agrosticspectes and ecotypes. New Phytology, 1981, 890: 581 - 590.
    Pandey N, TRipathi RS, Mittra BN. Yield, nutrient uptake and water use efficiency of rice as influenced by nitrogen and irrigation. Annnals of Agricultural Research, 1992, 13 (4): 377 -382.
    Pankhurst CE, et al. Defining and assessing soil health and sustainable productivity biological indicators of soil health. New York: CAB international, 1997, 1 - 324.
    Peng S, Shen K, Wang X, Liu J, Luo X and Wu L. A new rice cultivation technology: plastic film mulching. International Rice Research Notes, 1999, 24: 9 - 10.
    Ponnamperuma FN, Bradfield R, Reech M. Physiological disease of rice attributed to iron toxccity. Nature, 1955, 175:265-270.
    Ponnamperuma FN. The chemistry of submerged soils. Advances in Agronomy, 1972, 24: 29 -96.
    Raman DR, Spanswick RM, Walker LP. The kinetics of nitrate uptake from flowing nutrient solutions by rice: Influence of pretreatment and light. Bioresourse Technology, 1995, 53: 125-132.
    R(?)ling WFM, van Breukelen BM, Braster M, Goeltom MT, Groen J & van Verseveld HW. Analysis of microbial communities in a landfill leachate polluted aquifer using a new method for anaerobic physiological profiling and 16s rDNA based fingerprinting. Microbial Ecology, 2000,40,177-188.
    Sarathchandra SU, Perrot KW and Upsdell MR Microbiological and biochemical characteristics of a ramge of New Zealand soils under established pastures. Soil Biology & Biochemistry, 1984, 16: 177-183.
    Schutter M, Dick R. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biology & Biochemistry, 2001, 33, 1481 -1491.
    Schwab AP, Lindsay WL. Effect of redox on the solubility and availability of iron. Soil Science Society of America Journal, 1983, 47: 201 - 205.
    Shane MP, John PB, Ian S, Jonathan SS. Microbial community variation in pristine and polluted near shore. FEMS Microbiology Ecology, 2003, 45, 135 - 145.
    Shen SM, Hart PBS, Pruden G, et al. The nitrogen cycle in the Broadbalk Wheat Experiment: ~(15)N labeled residues in the soil and in the soil microbial biomass. Soil Biology & Biochemistry, 1989,21:529-533.
    Shi CH, Zhu J, Yu YG. Genotypexenvironment interaction effects effect and genotypic correlation for nutrient quality traits of indica rice (Oryza sativa L.). Indian Journal of Agricultural Sciences, 2000, 70(2): 85 - 89.
    Singh JS, Raghubanshi AS, Srivastava SC. Microbial biomass act as a source of plant nutrients in dry tropical forest and savanna. Nature, 1989, 338: 499 - 500.
    Smalla K, Wachtendorf U, Heuer H, Liu W & Forney L. Analysis of Biolog GN substrate utilization patterns by microbial communities. Applied Environmental Microbiology, 1998, 64, 1220- 1225.
    Smith JL, Papendic RI, Bezdicek DF and Lynch JM. Soil organic matter dynamics and crop residue management. In: Blaine Metting, F (ed.) Soil Microbial Ecology --- Application in Agricultural and Environmental Management. Marcel Dekker, New York, 1993, pp.65-94.
    Stanford G, Frere MH, Schwaninger DH. Temperature coefficient of soil nitrogen mineralization. Soil Science, 1973, 115:321 -323.
    Suzuki M, Kamekawa K. Effect of continuous application of organic and inorganic fertilizer for sixty years on soil fertility and rice yield in paddy field. Translation of 14~(th) Inter. Soil Sci., 1990, Ⅳ: 14-19.
    Tao Hongbin, Breck Holger, Dittert Klaus, Kreye Christine, Lin Shan, Sattelmacher. Growth and yield formation of rice in the water-saving ground cover rice production system (GCRPS). Field Crops Research, 2006, 95: 1 -12.
    Thurston HD. Slash and mulch system. Westview Press, London, UK, 1997
    Vestal JR, White DC. Lipid analysis in microbial ecology: quantitative approaches to the study of microbial communities. BioScience, 1989, 39: 535 - 541.
    Wang Y, Shen QR, Yang ZM, and Yu L. Size of microbial biomass in soils of China. Pedosphere, 1996, 6 (3): 265 - 272.
    White DC, Pinkart HC, Ringelberg AB. Biomass measurements: biochemical approaches. In: Hurst CJ, KnuDson GR, Mclnerney MJ, Stetzenbach LD, Water MV (Eds). Manual of environmental microbiology. ASM Press, DC. 1997, pp 91 -101.
    Wilson DJ, Jefferies RL. Nitrogen mineralization, plant growth and goose herbivore in an arctic coastal ecosystem. Journal of Ecology, 1996, 84: 841 - 851.
    Winding A, Hund-Rinke K & Rutgers M. The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety, 2005, 62, 230 - 248.
    Wit C, Cassman KG, Olk DC. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant and Soil, 2000, 225: 263 - 278.
    Witt C, Biker U, Galicia CC and Ottow JCG. Dynamics of soil microbial biomass and nitrogen availability in a flooded rice soil amended with different C and N sources. Biology & Fertility of Soils, 2000, 30:520-527.
    Woods LE and Schuman GE. Influence of soil organic matter concentration on carbon and nitrogen activity. Soil Science Society of America Journal, 1986, 50: 1241 -1245.
    Wu J, Joegensen RG, Pommerening B, Chaussod R and Brookes PC. Measurement of soil microbial biomass C by fumigation: A automated procedure. Soil Biology & Biochemistry, 1990,22: 1167- 1169.
    Xinhua Lu, Lianghuan Wu, Linjiang Pang, Yongshan Li, Jianguo Wu, Chunhai Shi and Fusuo Zhang. Effects of plastic film mulching cultivation under non-flooded condition on rice quality. Journal of Science of Food and Agriculture, 2007, 87: 334 - 339.
    Xu HS, Roberts N, Singleton FL, Atwell RW, Grimes DJ, Colwell RR. Survival and viability of non-culturabl Escherichia coli and Vibrio cholerae in the esturine and marine environment. Microbial Ecology, 1982, 32: 305 - 321.
    Xu YC, Sh QR, Li ML, Dittert K. Effect of soil water status and mulching on N_2O and NH_4 emission from lowland rice field in China. Biology and Fertility of Soils, 2004, 39: 215 - 217.
    Yamanauchi M, Yoshida S. The difference of leaf tissues tolerance for iron toxicity among rice varieties. Plant Science and Plant Nutrition, 1982, 28: 983 - 987.
    Yang C, Yang L, Ouyang Z. Organic carbon and its fraction in paddy soil as affected by different nutrient and water regimes. Geoderma, 2005, 124: 133 - 142.
    Yang JC, Zhang JH, Wang ZQ, et al. Remobilization of carbon reserves in response to water deficit during grain filling of rice. Field Crops Research, 2001, 71, 47 - 55.
    Yong-Shan Li, Liang-Huan Wu, Li-Mei Zhao, Xing-Hua Lu, Qiao-Lan Fan, Fu-Suo Zhang. Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition. Soil & Tillage Research, 2007, 93:370 - 378.
    Yong-Shan Li, Liang-Huan Wu, Li-Mei Zhao, Xing-Hua Lu, Qiao-Lan Fan, Fu-Suo Zhang. Soil microbial biomass as affected by non-flooded plastic mulching cultivation in rice. Biology & Fertility of Soils, 2006, 43: 107 - 111.
    Zhou JB, Li SH, Chen ZJ. Soil microbial nitrogen and its relationship to uptake of nitrogen by plants. Pedosphere, 2002, 12(3): 251 - 256.
    艾应伟,刘学军,张福锁,毛达如,曾祥忠,吕世华,潘家荣.不同覆盖方式对旱作水稻氮肥肥效的影响.植物营养与肥料学报,2003,9(4):416-419.
    艾应伟,刘学军,张福锁等.旱作与覆盖方式对水稻吸收利用氮的影响.土壤学报,2004,41(1):152-155.
    宝雪梅,张福锁,马文奇.我国作物秸秆资源及养分循环研究.中国农业科技导报,2003,5(增刊):14-17.
    蔡昆争,骆世明,方祥.水稻覆膜旱作对根叶性状、土壤养分和土壤微生物活性的影响.生态学报,2006,26(6):1903-1911.
    蔡永萍,杨其光,黄义德.水稻水作与旱作对抽穗后剑叶光合特性、衰老和根系活性的影响.中国水稻科学,2000,14(4):219-224.
    曹启章,单连贵.谈旱作水稻的发展前景.辽宁农业科学,1994,(3):45-47.
    曹书恒,刘海燕,慕永红,那永光,沈巧梅,赵金英.寒地水稻垄作覆膜半旱式栽培技术研究.垦殖与稻作,2001,1:13-15.
    陈国潮,何振立.红壤不同利用方式下的微生物量研究.土壤通报,1998,29(6):276-278.
    陈国潮,何振立,黄昌勇.红壤中微生物量磷、土壤磷和植物磷有效性关系的研究.土壤学报,2001,38(1):76-80.
    陈家坊,何群,绍宗臣.土壤中的氧化铁的活化过程的探讨.土壤学报,1983,20(4):387-392.
    陈锡时,郭树凡,汪景宽,张键.地膜覆盖栽培对土壤微生物种群和生物活性的影响.应用生态学报,1998,9(4):435-439.
    陈旭辉.试论黄壤地区的土壤微量元素问题.贵州农业科学,1992,(4):50-52.
    陈一珠等.应用同位素~(15)N研究淹水与旱地条件下作物对铵态氮和硝态氮的吸收利用.见:温贤芳,王宝忠编.同位素示踪技术农业应用研究进展.北京:科学出版社,1989:67-72.
    程旺大,赵国平,张国平,姚海根.水稻和陆稻籽粒灌浆特性的比较.中国水稻科学,2002,16(4):335-340.
    崔德杰,张继宏.长期施肥及覆膜栽培对土壤锌、铜、锰的形态及有效性影响的研究.土壤学报,1998,35(2):260-265.
    崔国贤,沈其荣,范晓荣.全生育期模拟覆盖旱作水稻的生理反应.湖南农业大学学报(自然科学版),2003,29(1):1-6,44.
    崔骁勇,曹一平,张福锁.氮素形态及HCO_3~-对豌豆铁素营养的影响.植物营养与肥料学报,2000,6(1):84-90.
    崔玉亭,李季,靳乐山.化肥与生态环境保护.北京:化学工业出版社,1999.
    邓纯宝.日本地膜覆盖栽培的现状与动向.辽宁农业科学,1982,(3):52-56.
    邓文胜,我国水资源开发利用的问题及对策.武汉教育学院学报,1999,18(6):50-54.
    丁友苗,黄文江,王纪华等.水稻旱作对产量和产量构成因素的影响.干旱地区农业研究,2002,20(4):50-54.
    董明辉,唐成.不同栽培环境对稻米品质的影响.耕作与栽培,2005,(3):20-22.
    樊军,郝明德.长期施肥和轮作对土壤微生物量碳和氮的影响.水土保持学报,2003,10(1):85-87.
    付立东,王宇,徐久升,展广军.水稻覆膜插秧节水栽培技术研究.垦殖与稻作,2000,5:9-11
    高瑞,吕家珑.长期定位施肥土壤酶活性及其肥力变化研究.中国生态农业学报,2005,13(1):143-145.
    高真伟,王冬梅,展广军,徐文升.水田覆膜对稻作生长的影响.垦殖与稻作,2001,2:11-13.
    关松荫,张德生,张志明.土壤酶及其研究法.北京:农业出版社,1986.
    郭树凡,陈锡时,汪景宽.覆膜土壤微生物区系的研究.土壤通报,1995,26(1):36-39.
    郭咏梅,穆平,刘家富,卢义宣,李自超.水、旱栽培条件下稻米主要品质性状的比较研究.作物学报,2005,31(11):1443-1448.
    郭振飞等.不同耐旱性水稻幼苗对氧化胁迫的反应.植物学报,1997,39(8):748-752.
    何代元.水稻地膜覆盖增产原因及主要栽培技术.中国稻米,1997,(3):21.
    胡锋,梁永超,李辉信.覆膜旱作稻田土壤肥力演变与土壤管理问题.中国土壤学会编,迈向21世纪的土壤科学(综合卷),河海大学出版社,1999,265.
    胡锋,杨茂成,梁永超,刘满强,陈小云.地膜覆盖旱作稻田土壤肥力特征研究.中国土壤学会编,迈向21世纪的土壤科学(江苏卷),河海大学出版社,1999.
    黄绍敏,皇甫湘荣,宝德俊,张鸿程等.土壤中硝态氮含量的影响因素研究.农业环境保护,2001,20(5):351-354.
    黄文江,黄义德,陶汉之.水稻旱作条件下的生理特性和经济性状的研究.安徽农学通报,1999,5(4):22-25.
    黄文江,白善军,黄义德,王永久,张玉.水稻旱作条件下灌浆特性的研究.安徽农学通报,2000,6(1):35-37.
    黄文江,王纪华,黄义德,赵春江,陶庆会,陶汉之.旱作水稻幼穗发育期若干生理特性及节水机理的研究.作物学报,2002,28(3):411-416.
    黄文江,黄义德,王纪华,李金才.水稻旱作对其生长量和经济产量的影响.干旱地区农业研究,2003,21(4):15-19.
    黄新宇,徐阳春,沈其荣,周春霖,K Dittert.水作与地表覆盖旱作水稻的生长和水分利用效率.南京农业大学学报,2004,27(1):32-35.
    黄修桥,高峰,王宪杰.节水灌溉与21世纪水资源的持续利用.灌溉排水,2001,20(3):1-5.
    黄义德,李金才,张自立,丁克坚,杨其光,左震东.水稻地膜覆盖旱作技术研究初报.安徽农业科学,1997,25(3):208-210.
    黄义德,魏凤珍,李金才.浅谈水稻覆膜旱作技术和间作技术.耕作与栽培.1998,(3):16-18.
    黄义德,张自立,魏凤珍,李金才.水稻覆膜旱作的生态生理效应.应用生态学报,1999,10(3):305-308.
    贾锐鱼,赵晓光.我国发展节水灌溉的必要性及其现状与前景.西北林学院学报,1998,13(2):46-50.
    蒋廷惠,胡霭堂,秦怀英.土壤锌铜铁锰形态区分方法的选择.环境科学学报,1990,10(3):280-286.
    金千瑜,欧阳由男,张国平.覆膜旱栽水稻的产量与生育表现研究.浙江大学学报(农业与生命科学版),2002,28(4):362-368.
    景蕊莲.作物抗旱研究的现状于思考.干旱地区农业研究,1999,17(2):79-85.
    康绍忠.新的农业科技革命与21世纪我国节水农业的发展.干旱地区农业研究,1998,16(1):11-17.
    李长明等.水稻抗旱机理研究.西南农业大学学报,1993,15(5):409-413.
    李春俭译.高等植物的矿质营养.北京:中国农业大学,2001.
    李德福,李全才,魏凤珍.拔节长穗期水分胁迫对旱作水稻若干生理特性和经济产量的影响.安徽农业科学,2005,33(7):1166-1167,1169.
    李东坡,武志杰,陈利军,杨杰,朱平,任军,彭畅,高红军.长期培肥黑土脲酶活性动态 变化及其影响因子.应用生态学报,2003,14(12):2208-2212.
    李东坡,武志杰,陈利军,朱平,任军,梁成华,彭畅,高红军.长期培肥黑土微生物量磷动态变化及影响因素.应用生态学报,2004,15(10):1897-1902.
    李东坡,武志杰,陈利军,朱平,任军,彭畅,梁成华.长期培肥黑土生物量碳动态变化及影响因素.应用生态学报,2004,15(8):1334-1338.
    李锦树,王洪春,王文英,朱亚芳.干旱对玉米叶片细胞膜透性及膜脂的影响.植物生理学报,1983,9(3):223-229.
    李克武,易杰忠,董全才.覆膜旱作稻米品质的初步研究.中国农学通报,2000,16(5):4-6.
    李曼莉等.旱作及水作条件下稻田CH_4和N_2O排放的观察研究.土壤学报,2003,40(6):864-869.
    李萍,徐雅梅.不同肥料措施对西藏东南地区酶活性影响.土壤肥料,2002,(5):33-41.
    李永和.试论水稻灌溉节水的途径.灌溉排水,1997,16(3):45-47.
    梁森,韩莉,李慧娴,连伟.水稻旱作栽培方式及调亏灌溉指标试验研究.干旱区农业研究,2002,20(2):13-19.
    梁永超,胡锋,朱遐亮,王广平,王永乐.水稻覆膜旱作高产节水机理研究.中国农业科学,1999,32(1):26-32.
    梁永超,胡锋,沈其荣,吕世华,吴良欢,张福锁.水稻覆膜旱作研究现状与展望.冯锋,张福锁,杨新良编著.植物营养研究--进展与展望.北京:中国农业大学出版社,2000,114-127.
    廖敏,谢晓梅,吴良欢.水稻覆膜旱作对稻田土壤微生物生态质量的影响.中国水稻科学,2002,16(3):243-246.
    凌祖铭,李自超,余荣,穆平.水旱栽培条件下水、陆稻品种产量和生理性状比较.中国农业大学学报,2002,7(3):13-18.
    刘芳,樊小林,李天安,汪强.覆盖旱种水稻稻田土壤剖面硝态氮和铵态氮的动态变化.西南农业学报,2004,17(增刊):262-267.
    刘芳,樊小林.覆盖旱种水稻的农学性状及产量变化.西北农林科技大学学报(自然科学版),2005,33(2):63-68.
    刘丽华,郭德金.旱稻旱种与水稻旱栽产量构成因素分析.种子,2005,24(6):68-70.
    刘铭,吴良欢,路兴花,张福锁.覆膜旱作对稻田土壤有效Fe、Mn、Zn、Cu含量的影响.浙江大学学报(农业与生命科学版),2004,30(6):646-649.
    刘铭,吴良欢.覆膜旱作稻田土壤肥力变化的研究.浙江农业学报,2003,15(1):8-12.
    刘铭,吴良欢.覆膜旱作稻田土壤有效N、P、K及盐分分层变化研究.土壤通报,2004,5(5):570-573.
    刘守龙,肖和艾,童成立,吴金水.亚热带稻田土壤微生物量碳、氮、磷状况及其对施肥的反映特点.农业现代化研究,2003,24(4):278-283.
    刘铮,吴兆明主编.中国科学院微量元素学术交流会汇刊.北京:科学出版社,1980,44.
    刘铮等编著.微量元素的农业化学.农业出版社.北京:1991
    刘铮.中国土壤微量元素.江苏科学技术出版,1996.
    鲁如坤.土壤一植物营养学原理与施肥.北京:化学工业出版社,1998
    鲁如坤主编.土壤农业化学分析方法.中国农业科技出版社,1999.
    陆建飞,丁艳锋,黄丕生.持续土壤水分胁迫对水稻生育和产量构成的影响.江苏农学院学报,1998,19(2):43-48.
    陆建飞,黄丕生,丁燕锋等.持续土壤水分胁迫对两个水稻品种干物质积累和转运的影响.江苏农业科学,1998,14(3):135-140.
    陆景陵主编.植物营养学(上册).北京:北京农业大学出版社,1994,9.
    路兴花,吴良欢,刘铭,杨联丰.覆膜旱作对水稻生长发育及某些生理特性的影响.浙江大学学报(农业与生命科学版),2002,28(6):609-614.
    路兴花,吴良欢.覆膜旱作稻N、P、K养分利用特征.土壤通报,2002,33(6):421-424.
    路兴花,吴良欢,郑寨生,孔向军等.不同生态稻区覆膜旱作稻氮营养生理及抗逆生理特性探讨.应用生态学报,2005,16(2):273-278.
    路兴花.旱作水稻水氮利用特征研究.浙江大学博士学位论文,2006.
    吕国安,李远华,沙宗尧等.节水灌溉对水稻磷营养的影响.灌溉排水,2000,19(4):10-12.
    吕世华,张福锁.水稻旱育秧苗铁、锰缺乏症状及其防治措施.中国农业大学学报,1997,
    2(3):90:99-101.
    罗利军,张启发.栽培水稻抗旱性研究的现状与策略.中国水稻科学,2001,15(3):209-214.
    欧伟,李琪,梁文举,姜勇,闻大中.不同水分管理方式对稻田土壤生物学特性的影响.生态学杂志,2004,23(5):53-56.
    潘腊青,吴良欢.水稻覆膜旱作栽培方式对稻田地下水水质的影响.农业环境保护,2000,19(5):260-262.
    彭世彰,郝树荣,刘庆等.节水灌溉水稻需水新特点.农田水利与小水电.1992,11:7-11.
    钱晓晴,沈其荣,王娟娟,柏颜超等.模拟水分胁迫条件下水稻的氮素营养特征.南京农业大学学报,2003,26(4):9-12.
    钱晓睛,沈其荣,王娟娟,柏彦超,周明耀,杨建昌.不同水分供应及氮素形态对旱作水稻铁素营养特征的影响.中国农业科学,2003,36(10):1184-1190.
    钱晓晴,沈其荣,徐勇,王娟娟,沈辉.不同水分管理方式下水稻水分利用效率与产量.应用生态学报,2003,14(3):399-404.
    秦怀等译,土壤的本质与性状.北京:科学出版社,1982,93-95,231-232.
    秦俊法,李增禧.中国微量元素研究二十年.广东微量元素科学.2004,11(12):1-20.
    丘华昌,刘鹏程,李学垣,王启发,徐风琳.稻草还田与土壤有机无机复合状况.植物营养与肥料学报,1998,4(1):92-96.
    邱福林,郑伟平.水分胁迫对水稻生长影响的研究进展.垦殖与稻作,2000,2:7-8,13.
    任天志.土壤生物指标在可持续农业发展中的作用.中国农业科学,2000,33(1):68-75.
    任文涛,辛明金,林静等.稻纸膜覆盖种植技术节水控草效果的试验研究.农业工程学报,2003,19(6):60-63.
    沈菊培,陈振华,陈利军.草甸棕壤水稻田磷酸酶活性及对施肥措施的响应.应用生态学报,2005,16(3):583-585.
    沈康荣,罗显树.水稻全程地膜覆盖湿润栽培法增产因子及关键栽培技术的研究.华中农业大学学报,1997,16(6):547-551.
    沈康荣,汪晓春,刘军等.水稻地膜湿润栽培试验示范.湖北农业科学,1997,(5):18-22.
    沈康荣,汪晓春,罗显树.水稻地膜覆盖湿润栽培效果初报.湖北农业科学.1997,1:6-8.
    沈其荣.土壤生物态氮研究进展.土壤资源的特性与应用.北京农业大学出版社:北京,1992,285-291.
    沈其荣,王岩,史瑞和.土壤微生物量和土壤固定态铵的变化及水稻对残留N的利用.土壤学报,2000,37(3):330-338.
    盛海君,沈其荣,周春霖.旱作水稻产量和品质的研究.南京农业大学学报,2003,26(4):13-16.
    盛海君,沈其荣,封克.覆盖旱作水稻群体发育特征分析.应用生态学报,2004,15(1):59-62.
    施积炎,袁小凤,丁贵杰.作物水分亏缺补偿与超补偿效应的研究.山地农业生物学报,2000,19(3):226-233.
    石春海,何慈信,朱军.稻米碾磨品质性状遗传主效应及其与环境互作的遗传分析.遗传学报,1998,25(1):46-53.
    石英,松进,沈其荣,徐国华,李伟.覆膜旱作水稻的生物效应及吸氮特征.农村生态环境,2001,17(2):22-25.
    石英,冉炜,沈其荣,李伟.不同施氮水平下旱作水稻土壤无机氮的动态变化及其吸氮特征. 南京农业大学学报,2001,24(2):61-65.
    石英,沈其荣,茆泽圣,李伟等.旱作条件下水稻的生物效应及表层覆盖的影响.植物营养与肥料学报,2001,7(3):271-277.
    石英,沈其荣,茆泽圣,徐国华.旱作水稻根际土壤铵态氮和硝态氮的时空变异.中国农业科学,2002,35(5):520-524.
    史延丽,王坚,刘炜,马洪文.水、陆稻品种在旱作时主要农艺性状与其抗旱性.宁夏农林科技,2005,(3):22-24.
    宋秋华,李凤民,王俊等.覆膜对春小麦农田微生物数量和土壤养分的影响.生态学报,2002,22(12):2125-2132.
    宋秋华,李凤民,刘洪升等.覆膜对半干旱黄土区春小麦田土壤微生物量的影响.应用生态学报,2003,14(9):1512-1516.
    苏胜齐,王正银,董燕,叶学见.缓释复合肥条件下覆盖旱作对水稻氮素利用和稻米品质的影响.农业工程学报,2005,21(3):47-50.
    苏胜齐,王正银,张敏,胡小凤.缓释复合肥与覆膜旱作对水稻氮素营养的效应研究.水土保持学报,2006,20(1):45-49.
    谈建康,张亚丽,沈其荣,张晓晓等.不同形态氮素对水稻水分利用效率及其生物效应的影响.南京农业大学学报,2002,25(3):56-62.
    谭长乐,张洪熙,夏广宏,刘晓斌,黄年生,徐卯林,李爱宏,戴正元,孔祥斗.水稻覆膜旱栽特性的研究与探讨.江苏农业科学,1999,(6):6-8.
    汤广民.水稻旱作的需水规律与土壤水分调控.中国农村水利水电,2001,(9):18-20,23.
    汤美玲,程旺大,姚海根,徐民.早稻直播覆膜旱作对灌浆成熟期根叶生理特性及产量的影响.中国水稻科学,2005,19(5):475-478.
    唐启义,冯明光.实用统计分析及DPS数据处理系统.北京:科学出版社,2002.
    唐玉霞,贾树龙,孟春香等.土壤微生物量氮综述.中国生态农业学报,2002,10(2):76-78.
    陶汉之,黄文江,张玉屏,胡焱,黄义德,方一平,蔡永萍.水稻对旱作环境的响应和适应性研究.干旱地区农业研究,2002,20(2):42-48.
    汪景宽,张继宏,须湘成,张旭东,祝凤春.地膜覆盖对土壤肥力影响的研究.沈阳农业大学学报,1992,23(专辑):32-37.
    汪景宽,须湘成,张旭东,张继宏,谷俊武.长期地膜覆盖对土壤磷素状况的影响.沈阳农业大学报,1994,25(3):311-315.
    汪景宽,彭涛,张旭东,朱冬梅,陈新芝.地膜覆盖对土壤酶活性的影响.沈阳农业大学学报,1997,28(3):210-213.
    汪晓春,刘军.水稻地膜覆盖栽培的抗旱节水效应.湖北农业科学,2001,1:8-11.
    王海候,沈明星,刘凤军.施氮量对杂交粳稻常优1号产量及氮肥吸收利用的影响.江苏农业科学,2007,(4):9-11,42.
    王继红,刘景双,于君宝,王金达.氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响.水土保持学报,2004,18(1):35-38.
    王加成,赵新华,高德友,段祥茂,于松溪,徐宗进,王绍华,黄丕生.覆膜旱管对水稻群体特征的影响.作物研究,2001,2:16-17.
    王甲辰,刘学军,张福锁,吕世华,曾祥忠,曹一平.不同土壤覆盖物对旱作水稻生长和产量的影响.生态学报,2002,22(6):922-929.
    王淑平,周广胜,孙长占等.土壤微生物量氮的动态及其生物有效性研究.植物营养肥料学报,2003,9(1):87-90.
    王玄德,石孝均,宋光煜.长期稻草还田对紫色水稻土壤肥力和生产力的影响.植物营养与肥料学报,2005,11(3):302-307.
    王寅初,宋巨明,张计柱.地膜旱作水稻初步研究.山西农业科学,1985,(3):14-15.
    王友贞,许浒,曹秀清,袁先江.水稻旱作覆膜节水效果与提高降雨利用率的研究.中国农村水利水电,2001,4-5.
    王友贞,袁先江,汤广民等.水稻旱作覆膜土壤水分控制指标的试验研究.灌溉排水,2001,20(3):62-64.
    王友贞,袁先江,许浒,曹秀清.水稻旱作覆膜的增温保墒效果及其对生育性状影响研究.农业工程学报,2002,18(2):29-31.
    王志琴,杨建昌,朱庆森.土壤水分对水稻光合作用和干物质积累的影响.中国水稻科学,1996,10(4):235-240.
    魏永胜,梁宗锁.钾与提高作物抗旱性的关系.植物生理学通讯,2001,37(6):576-580.
    巫伯舜,谢秀先编.水稻的旱种技术.农业出版社,1985,1-79.
    吴金水,肖和艾,陈桂秋.中国旱地土壤微生物量P测定方法.土壤学报,2003,40(1):77-78.
    吴景贵,姜岩,姜亦梅等.非腐解有机物培肥对水田土壤生物量态碳、氮的影响.土壤通报,1998,29(4):158-160.
    吴良欢,祝增荣,梁永超,石伟勇,张立民.水稻覆膜旱作节水节肥高产栽培技术.浙江农业大学学报,1999,25(1):41-42.
    吴文革,陈周前,沈绪波.水稻旱作栽培技术及其节本效益探讨.安徽农业科学,1998,(1):8-9.
    吴文革,徐秀娟,陈周前等.旱作条件下水稻生长特性及其栽培技术研究.安徽农业科学,1998,26(3):227-230.
    吴文革,陈周前,张效忠等.水稻覆草保墒旱作技术研究.中国农学通报,2000,16(4):18-20.
    吴文革,张四海,赵决建等.氮肥运筹模式对双季稻北缘水稻氮素吸收利用及产量的影响.植物营养与肥料学报,2007,13(5):757-764.
    吴宪章,张矢.陆稻地膜覆盖栽培的技术效应.黑龙江农业科学,1983,(5):1-5.
    吴一才,宋嵩山.地膜覆盖旱种水稻试验情况简报.辽宁农业科学,1982,(4):28-30.
    吴一才,宋嵩山,邹积斌.水稻覆膜旱作展望.辽宁农业科学,1987(1):13-15.
    吴一才,宋嵩山,王玉山,邹积彬.水稻覆膜旱作研究.过益先主编,稻田生产的结构改革与发展,知识出版社,1993,149-165.
    夏自强,蒋洪庚,李琼芳等.地膜覆盖对土壤温度、水分的影响及节水效益.河海大学学报,1997,25(2):39.
    肖玉江.水稻旱作技术.长春:吉林科技出版社,1985.
    徐国郎,王寿岷,张少康等.节水型农业灌溉技术.北京:气象出版社,1990,80-147.
    徐国伟,吴长付,刘辉,王志琴,张敏,杨建昌.麦秸还田及氮肥管理技术对水稻产量的影响.作物学报,2007,33(2):284-291.
    徐琪.水稻土的研究进展.土壤,1989,21:192-195.
    杨安中,牟筱玲,李孟良等.氮肥运筹方式对旱作水稻衰老及产量的影响.南京农业大学学报,2004,27(4):126-129.
    杨安中,陈红霞.生长调节剂类物质对地膜早作水稻灌浆速度及产量的影响.安徽技术师范学院学报,2005,19(4):8-10.
    杨安中,牟筱玲,李孟良,余海兵.喷施细胞分裂素类物质对地膜旱作水稻防衰及增产效应.水土保持学报,2005,19(2):199-200.
    杨长明,杨林章,颜廷梅.不同养分和水分管理模式对土壤生态环境的影响.农村生态环境,2002,18(3):11-15.
    杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究.中国农业科学,1996,29(4):58-66.
    杨建昌,王志琴,陈义芳等.旱种水稻产量与米质的初步研究.江苏农业研究,2000,21(3): 1-5.
    杨建昌,王志琴,刘立军,郎有忠,朱庆森.旱种水稻生育特性与产量形成的研究.作物学报,2002,28(1):11-17.
    杨建昌,王国忠,王志琴,刘立军,朱庆森.旱种水稻灌浆特性与灌浆期籽粒中激素含量的变化.作物学报,2002,28(5):615-621.
    杨林章,徐琪,熊毅.水分状况对红壤母质中物质移动及稻麦生物量的影响.土壤学报,1987,24:199-209.
    杨青华,韩锦峰,贺德先.液体地膜覆盖对棉田土壤微生物和酶活性的影响.生态学报,2005,25(6):1312-1317.
    杨艳敏,刘小京,孙宏勇,李伟强.旱稻夏季地膜覆盖栽培的生态学效应.干旱地区农业研究,2000,18(3):50-53.
    姚建国,於忠祥.地膜覆盖的土壤养分变化研究.安徽农学通报,1998,4(1):36-37.
    殷晓燕,徐阳春,沈其荣,周春霖,黄新宇,李曼莉,尹金来,K Dittert.直播旱作水稻和水作水稻的氮素吸收利用特征研究.土壤学报,2004,41(6):983-986.
    尹金来,周春霖,沈其荣,洪立洲,王凯,王茂文,丁金海.水稻水作与旱作条件下土壤和植物磷素有效性的研究.南京农业大学学报,2002,25(4):53-56.
    余叔文,陈景治,刘存德.水、陆稻的比较研究.水稻老来青和陆稻南通早的水分关系及抗旱性的比较.植物学报,1958,7(4):187-199.
    余叔文,陈景治,龚烂霞.不同生长时期土壤干旱对水稻的影响.作物学报,1962,1(4):399-410.
    张成娥,梁银丽.不同氮磷施肥量对玉米生育期土壤微生物量的影响.中国生态农业学报,2001,9(2),72-74.
    张成娥,梁银丽,贺秀斌.地膜覆盖玉米对土壤微生物量的影响.生态学报,2002,22(4):508-512.
    张福锁主编.环境胁迫与植物营养.北京农业大学出版社,1993.
    张奇春,王光火,方斌.不同施肥处理对水稻养分吸收和稻田土壤微生物生态特性的影响.土壤学报,2005,42(1):116-120.
    张让康,刘本坤.旱种水稻不同品种类型产量及其性状的相关分析.湖南农学院学报,1989,15(2):7-11.
    张矢,吴宪章,蒋本福.水稻陆稻地膜覆盖栽培的技术效应.黑龙江农业科学,1983,(5):20-24.
    张亚丽,段英华,沈其荣.水稻对硝态氮响应的生理指标筛选.土壤学报,2004,41(4):571-576.
    张扬珠,刘学军.不同稻作制对红壤性水稻土铜的化学行为的影响.农业现代化研究,1999,20(2):120-124.
    张英,褚秋华,邱多生等.11年连续肥料处理对水稻土碳、氮及微生物量的影响.南京农业大学学报,2004,24(4):112-114.
    张永涛,汤天明,李增印等.地膜覆盖的水分生理生态效应研究.水土保持研究,2001,8(3):45-47.
    张玉屏,黄义德,李金才等.旱作条件下水稻根的生长发育及其产量研究.安徽农业科学,2000,28(5):605-606,637.
    张玉屏,朱德峰,林贤青,陈惠哲.不同时期水分胁迫对水稻生长特性和产量形成的影响.干旱地区农业研究,2005,23(2):48-53.
    张岳.中国水资源与可持续发展.中国农村水利水电,1998,(5):3-6.
    张竹青,李义纯.水稻覆膜旱作抑制稻田甲烷排放效应的研究.湖北农学院学报,2003,23(5):321-323.
    赵红挺.成都平原水稻土中铁的分异特点.土壤学报,1992,29:191-198.
    赵静,陈晓飞,席联敏,刘刚,赵小明,杨利,丁良师.水稻覆膜灌溉对生态环境的影响研究.灌溉排水学报,2005,24(3):8-11.
    赵其良,肖明贤.日本东北地区水稻早作地膜覆盖栽培技术.辽宁农业科学,1982,(3):52.56
    赵其良.日本水稻旱种地膜覆盖栽培技术.国外农学(水稻),1982(5):34-37.
    送秀芬,刘学军,吕世华,张福锁.水肥状况对土壤中铁的移动及水稻吸铁的影响.中国农业大学学报,2003,8(5):74-78.
    赵秀兰,郑绍建,王勤,胡蔼堂.氮素形态对营养液pH值及磷锌和磷铁间颉颃作用的影响.西南农业大学学报,1998,20(1):1-4.
    赵正宜,迟道才,刘宗琦等.水分胁迫对水稻生长发育影响的研究.沈阳农业大学学报,2000,31(2):214-217.
    郑超,谭中文,刘可星,廖宗文,刘月廉,廖愉朗.不同覆盖条件下甘蔗土壤微生物区系研究,华南农业大学学报(自然科学版),2004,25(2):5-9.
    郑寨生,吴良欢,孔向军,蒋梅巧,赵森荣,汤建忠,傅荣兴.水稻覆膜旱作高产栽培技术研究.上海农业学报,2000,16(3):55-60.
    中国土壤学会编.中国土壤科学的现状与前景.南京:江苏科技出版社,1991.
    周礼恺.土壤酶学.北京:科学出版社,1987,116-113.
    周文.水稻地膜覆盖栽培技术.耕作与栽培,1998,(2):31-32.
    朱剑钊,李启真.Mn及Mn/Fe比对水稻生长影响的病因研究.农业环境保护,1998,17(2):74-77.
    朱庆森,邱泽森等.水稻各生育期不同土壤水势对产量的影响.中国农业科学,1994,27(6):15-22.
    朱庭芸.水稻旱种、旱作的灌溉制度和灌溉技术.辽宁农业科学,1986,(6):21-25.
    祝增荣,吴良欢,吴国强,程家安.水稻覆膜旱作对病虫草害发生程度的影响.植物保护学报,2000,(4):295-301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700