用户名: 密码: 验证码:
煤矿通风瓦斯的蓄热氧化处理装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国每年通过煤矿通风瓦斯排入大气的甲烷约为130-170亿m3,煤矿通风瓦斯具有甲烷浓度低(<1%)、富集难、气量大等特点,传统的处理方式是直接排空,这造成了严重的能源浪费和温室气体排放。本文针对此现状,对煤矿通风瓦斯的蓄热式氧化过程进行了理论分析和数值模拟,在设计搭建的蓄热式氧化处理实验装置上,通过实验研究了装置的运行规律,并实现了装置结构进行了优化,并通过理论计算和分析,对实验数据进行比较验证。进行了放大装置的参数研究,分析选择了放大装置的热回收方式,并进行了技术经济性能分析。
     本文对蓄热体内的非稳态传热过程进行了理论分析,采用蓄热式换热理论进行了装置的自维持条件分析,得到了体积系数这一影响装置的自维持条件的关键参数。
     使用数值模拟的方法,建立耦合传热、流动、反应的周期性切换的简化物理模型,模拟通风瓦斯的蓄热热氧化过程,研究蓄热式氧化过程中的自维持特性。
     对最大处理量为1000Nm3/h的实验装置的蜂窝陶瓷蓄热室进行了设计计算和影响参数分析。在搭建的实验装置上,通过燃烧器产生高温烟气预热蓄热室的燃气启动方式,实现了装置在4小时内预热启动,使装置内温度场达到实验所需的理想温度场,并形成了装置常规的启动方式。
     通过热态调试,实现了装置单次自维持连续稳定运行超过200小时。对实验装置运行规律进行了研究,包括装置变工况运行性能、运行工况范围、各运行参数(风量、进气甲烷浓度、切换时间)的影响规律。实验结果显示,该装置可在入口气速1.23-0.62m/s、进气甲烷浓度0.45-0.9%范围内长期稳定运行,平均甲烷氧化率>95%。通过不同蓄热室结构的对比实验,实现了蓄热室结构的优化。
     结合实验数据,通过对实验装置能量平衡的计算分析,得到了装置理论运行的最低自维持甲烷浓度和通风量,并和实验结果进行了对比。进行了装置排烟温度、散热量、甲烷转化率对装置自维持最低甲烷浓度的敏感性分析。
     采用无量纲分析方法,计算了不同体积系数下装置的最低自维持甲烷浓度,与实验结果比较吻合。
     在实验研究的基础上,研究了大规模装置设计和运行的关键参数取值或取值范围。针对单台处理能力为10万Nm3/h的煤矿通风瓦斯处理装置,分析选择了热回收方式,并进行了技术经济性能分析。
Every year, about130-170billion m3methane is emited though the ventilation air of coal mines in our country. Ventilation air methane (VAM) has the characteristics of low methane concentration, huge volume flow and hard to concentrate. The conventional method to deal with it is discharging into the atomsphere directly. It is a great pollution and has a significant greenhouse effect to the environment. According to the above situation, in this paper a theoretical study and a numerical simulation of the VAM regenerative oxidation were carried out, a laboratory device for VAM oxidation is designed and constructed. The operating rules is explored by experimental study and the structure is optimize. By theoretical analysis and numerical simulation, the experimental data was analysed. The key parameters for the large-scale VAM oxidation device are determined. The heat extraction measure of a large-scale device is researched. The production and economy of the item is analysed.
     In this research, the theoretical analysis of the unsteady heat transfer process in the regenerative body was carried out, base on the regenerative heat exchanging theory, the self-sustained condition was analysed, and the volume factor as an important parameter of the self-maintenance performance was obtained.
     The calculation and design are made for a oxidation bed with a capacity of1000Nm3/h which consists of honeycomb ceramic. On the laboratory device, the certain temperature fields needed of oxidation bed is achieved within4hours by fuel gas heating system. The general starting mode of the experiment is also determined.
     Through the hot commissioning, the steady self-maintenance running of the device is realized which can persist more than200hours. The operating rules of the device are studied, including the performance on variable working condition, the working range and the influence of the parameters (inlet velocity, CH4concentration, switching time). Experimental results show that the device can keep steady self-maintenance running within inlet velocity from0.62to1.23m/s, CH4concentration from0.45%to0.9%. The average oxidation rate is more than95%. By the comparative experiment of regenerator's structures, the optimization of structures was attained.
     According to the experimental data, a calculation is made to prove the working condition by energy balance. The calculation results are close to the experimental data. The sensitivity of exhaust temperature, heat loss and oxidation rate to the floor level of CH4concentration for self-maintenance running is analysised. By the analysis of experimental results, the range of key parameters for the design and operation of demonstration device is determined.
     By dimensionless analysis, the floor levels of CH4concentration for self-maintenance running in various volume factor were calculated which was in accordance with the experimental results.
     Base on the experimental study, the value or the bound of the key parameters for large-scale VAM oxidation device are determined. The heat extraction measure of the large-scale device is researched. The production and economy of the item is analysed.
引文
[1].宁成浩,陈贵峰.我国煤矿低浓度瓦斯排放及利用现状分析[J].能源环境保护.2005,19(4).
    [2]. Jianwei Yuan. Effects of Air Dilution on Highly Preheated Air Combustion in a Regenerative Furnace[J]. Energy&Fuels.1999,12.
    [3].周娴.煤矿乏风低浓度甲烷氧化处理实验研究.中国科学院研究生院.2009.
    [4].周娴,姜凡,吕元,徐祥,肖云汉.煤矿通风瓦斯处理技术的比较和应用前景[J].洁净煤技术,2009,15(4):91-94.
    [5]. Greenhouse Gases And Global Warming Potential Values-Excerpt from the Inventory of U.S. EPA, Greenhouse Emission and Sinks:1999-2000.2002.
    [6].刘文革.煤矿通风瓦斯利用技术现状及其潜力[J].中国煤炭.2003,29(11).
    [7].牛国庆.矿井回风流中低浓度瓦斯利用现状及前景[J].工业安全与环保.2002,28(3).
    [8]. Ventilation Air Methane Technical Overview:U.S. Environmental Protection Agency.2006, Oct.26th.
    [9]. Assessment of the Worldwide Market Potential for Oxidizing Coal Mine Ventilation Air Methane.2003.
    [10]. Yang DM. New Trends in Coalmine Methane Recovery and Utilization. In: New Trends in Coal Mine Methane Recovery and Utilization. Szczyrk,Poland.2008, February,27-29th, p7-8.
    [11]. Shi Su JA. Catalytic combustion of coal mine ventilation air methane[J]. Fuel. 2006,85.
    [12]. Carothers MP, Deo DM. Technical and Economic Assessment:Mitigation of Methane Emissions from Coal Mine Ventilation Air: Coalbed Methane Outreach Program Climate Protection Division U.S. Environmental Protection Agency. 2005.
    [13]. F.Peter Carpthers. Mitigation of Methane Emissions from Coal Mine Ventilation Air. In: New Trends in Coal Mine Methane Recovery and Utilization. Szczyrk, Poland.2008, February,27-29th.
    [14]. Using Ventilation Air Methane (VAM) As Combustion Air In Reciprocating Engines And Turbines: Environment Protection Agency, Coalbed Methane Outreach Program Technical Options Series.2004.
    [15].MEGTEC with VOCSIDIZER. In: The Guizhou CMM Workshop. Guizhou,China,2008.
    [16]. R. Mattus Converting VAM to Energy. In: New Trends in Coal Mine Methane Recovery and Utilization. Szczyrk,Poland; 2008.
    [17].R.Mattus逆流反应器矿井乏风瓦斯发电技术简介[J].中国煤层气.2004.
    [18]. R. Mattus The World's large scale VAM Power Plant. In: 2nd Annual Methane to Markets Partnership Meeting in Buenos Aires.2007.
    [19].R.Mattus In full operation-the world's first VAM Power Plant:MEGTEC Systems.2008.
    [20]. DA. Kosmack, RA. Winschel, P.Zak K. First U.S. Field Trial of Oxidation Technology for Ventilation Air Methane. In: 1st Annual US Coal Mine Methane Conference.2007.
    [21]. DA. Kosmack CAPTURE AND USE OF COAL MINE VENTILATION AIR METHANE.2003.
    [22]. Inc. Biothermica Technology. The VAMOXTM System. In:2008 U.S. CMM Conference, Pittsburgh.2008,October,28th.
    [23].Hristo Sapoundjie. CH4MIN Technology and Its Potential in China[J]. CHINA COAIBED METHANE.2004,1(1).
    [24]. H. Sapoundjie A Sustainable Solution for Coal Mine Methane Mitigation and Energy Production: CANMET Energy Technology Centre.2005.
    [25].吴存宽,吴彬林.高温空气燃烧技术的发展与应用[J].工业炉.2003,25(2),13-18。
    [26].王华等.高性能复合相变蓄热材料的制备与蓄热燃烧技术.北京:冶金工业 出版社,2006
    [27].萧泽强,蒋绍坚等.高温低氧空气燃烧过程实验研究和数值计算.北京:高温空气燃烧新技术讲座,
    [28].蒋绍坚,彭好义等.高温空气燃烧新型锅炉及特性分析.热能动力工程,2000,7,348-351
    [29]. A.K.Gupta, S.Bolz, T.Hasegawa, Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission.J.of Energy Rec\sources Technology,1999,9:209-216
    [30].Toshiaki Hasegawa, Ryoichi Tanaka, Takashi Niioka, High Temperature Air Combustion Contributiing to Enegy Saving and Pollutant Reduction in Industrial Furnace.高温空气燃烧新技术讲座,北京,10,1999,101-114
    [31].曹晓华,曹小玲等.高温空气发生器系统中换热器的研制.1002—3364(2003)11—0061—04
    [32].曹小玲.高温空气发生器中分流装置的研制.华东电力.2004,32(8)
    [33].曹小玲,苏明等.高温空气发生器实验台的研制[J].太阳能学报.2004,26(3).
    [34].曹小玲,蒋绍坚等.高温空气发生器热态实验研究[J].中国电机工程学报.2005,25(2).
    [35].钟水库等.蜂窝型陶瓷蓄热体换热器的热动态特性实验研究.工业加热.35(4),2006
    [36].王皆腾,祁海鹰等.蜂巢蓄热体换热性能的实验研究[J].工程热物理学报,2003,24(5):897-899.
    [37]. K. YoshikawaGasification and Power Generation from Solid Fuels Using High Temperature Air[A]. In:Proceeding of High Temperature Air Combustion Sympositm[C]. Beijing:1999.48-68
    [38].Krzysztof Gosiewski, Anna Pawlaczyk, Krzysztof Warmuzinski, and Manfred Jaschik. A study on thermal combustion of lean methane-air mixtures: Simplified reaction mechanism and kinetic equations. Chemical Engineering Journal,2009,154,9-16.
    [39]. P. Gregory Smith, M. David Golden, Michael Frenklach, W.Nigel Moriarty, Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman, K. Ronald Hanson, Soonho Song, C.William Gardiner, Jr., V.Vitali Lissianski, and Zhiwei Qin http://www.me.berkeley.edu/gri_mech/
    [40]. J. Warnatz. Combustion Chemistry, Springer Verlag, New York,1984.
    [41]. J. Warnatz. Hydrocarbon oxidation high-temperature chemistry. Pure Appl. Chem.,2000,72(11),2101-2110.
    [42]. W. Tsang, R. F. Hampson. Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds, J. Phys. Chem. Ref. Data 15 (1986)1087-1097
    [43]. S.C.Li and F.A.Williams. NOx Formation in Two-Stage Methane-Air Flames. Combustion and Flame.1999,118,399-414.
    [44]. J. C. Mackie, Partial oxidation of methane:the role of the gas-phase reactions, Catalysis Reviews,1991,33,169-240.
    [45]. N. Peters, Numerical simulation of combustion phenomena, Lect. Notes Phys. 1985,241,90-109.
    [46]. K. V. Dobrego, N. N. Gnesdilov, S. H. Lee, H. K. Choi, Overall chemical kinetics model for partial oxidation of methane in inert porous media, Chem. Eng. J.2008,144,117-129.
    [47].岳鹏涛.超燃冲压发动机燃烧室若干问题研究.中国科学技术大学,2002.
    [48]. M. de Joannon, P. Sabia, A. Tregrossi, A. Cavaliere, Dynamic behavior of methane oxidation in premixed flow reactor, Combust. Sci. Technol.2004,176, 769-783.
    [49].王高峰.基于激波管实验平台的甲烷燃烧化学动力学机理研究.中国科学技术大学,2008.
    [50].H.Hausen, Heat Exchange in counterflow, Paralledl Flow and Cross Flow, McGraw Hill, New York,1983.
    [51]. W. Frank Schmidt and A. J. Willmott, Thermal Energy Storage and Regeneration. Hemisphere Publishing Corp., Washington,1981.
    [52]. G. D. Dragutinovic and B. S. Baclic, Operation of Counterflow Regenerators. Southampton,U K; Boston, USA-Computational Mechanics Publications,1998.
    [53]. H. Klein and G. Eigenberger, Approximate solutions for metallic regenerative heat exchangers.Int. J. Heat and Mass Transfer,2001,(44):3553-3563
    [54]. A. J. Willmott, Digital Computer Simulation of a Thermal Regenerator, Int. J. Heat Mass Transfer.7:1291-1302(1964).
    [55]. A. Hill and A. J. Willmott, A Robust Method for Regenerative Heat Exchanger Calculations, Int. J. Heat Mass Transfer,30:241-249(1987).
    [56]. C. M. Shen, W. M. Worek, The effect of wall conduction on the performance of regenerative heat exchangers. Energy,1992,(17):1199-1213
    [57]. Z. Ren, S. Wang, A theoretical and experimental investigation of heat exchangers, Heat Transfer Science and Technology. Conference Article, Hemisphere, Washington DC,1987.
    [58]. A. J. Willmot, C. Hinchcliffe, The effect of gas heat storage regenerator calculation, Int. J. Heat Mass Transfer,1976,(19):821-826.
    [59].艾元方,等.薄壁蓄热器最大相对温度和最佳切换时间.热能动力工程,2006,21(4):17-19
    [60].蒋绍坚,曹小玲,汪洋洋等.蜂窝陶瓷蓄热体传热数学模型及传热系数求解[J].工业炉.2001,23(3).
    [61].李伟,等.蜂窝陶瓷蓄热体传热性能的数值研究.工程热物理学报,2002,22(5):19-21
    [62].李德茂,等.高温空气燃烧系统中陶瓷蓄热体传热特性分析研究.热科学与技术,2004,3(3):255-260
    [63].李朝祥等.蜂窝状陶瓷蓄热体热交换过程的数值模拟.安徽工业大学学报,2004,21(3):183-185,192
    [64]. Jianwei Yuan and Ichiro Naruse, Effects of Air Dilution on Highly Preheated Air Combustion in a Regenerative Furnace, Energy&Fuels 1999,12,99-104
    [65]. T. Ishii, C. Zhang, S. Sugiyama, Numerical Simulations of Highly Preheated Air Combustion in an Industrial Furnace, Transactions of the ASME, Vol.120,1998, 276-284
    [66].张范斌.浅析蓄热和换热技术[J].工业炉.2003,25(4).
    [67]. Sheintuch M. Analysis of design sensitivity of flow-reversal reactors: Simulations, approximations and oxidation experiments[J]. Chemical Engineering Science. 2005.
    [68].王秉铨编著.工业炉设计手册.北京:机械工业出版社;2006.
    [69].T. Kuppan.换热器设计手册:中国石化出版社:2004.
    [70].杨世铭,陶文铨编著.传热学:高等教育出版社.2001.
    [71].郑彦民.高温空气发生器试验研究与高温空气气化器设计:中南大学;2004.
    [72].罗海兵.蓄热式热风炉流动传热与燃烧性能的数值模拟与实验研究:华中科技大学;2005.
    [73]. V.P. Zhukov, V.A. Sechenov, A.Yu.Starikovskii. Self-ignition of a lean mixture of n-pentane and air over a wide range of pressures. Combustion and Flame, 140(2005):196-203.
    [74].王关晴.往复式热循环多孔介质燃烧系统特性研究与数值模拟:浙江大学;2007.
    [75].毛莹,贾力.高温蓄热换热的实验研究[J].工业加热.2005,34(2).
    [76].朱立明,柯葵.流体力学[M].上海:同济大学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700