用户名: 密码: 验证码:
岩石受力过程多种物理场耦合关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构造活动及岩石受力灾变过程中会引起许多物理变化,如应力增加、变形、出现声发射、电磁辐射、红外辐射变化等。这些物理量在时空上存在变化规律,相互间存在着必然的联系。如何对这些物理量进行有效、协同、集成监测,以达到不同监测手段的优势互补,是固体地球灾害(包括地质灾害、地震灾害与矿山灾害等)监测预警的关键。
     选择拐折非连通断层和岩石隧道(矿山巷道)工程作为研究对象,利用物理模拟实验和数值模拟手段,开展了构造活动与岩石受力灾变过程中的应力场、应变场、红外辐射温度场、声发射场等多种物理场的时、空演化规律及耦合关系研究,主要取得了以下成果:
     拐折非连通断层在受力过程中应力场、应变场、声发射场以及红外辐射温度场出现规律性变化,不同阶段、不同空间区域的变化特征不同,失稳前沿断层及岩桥部位出现“三点高温”和“交替演化”的红外辐射异常特征。红外辐射温度场的变化与应力场、形变场、声发射等存在密切关系。
     含圆孔结构岩石试件在加载过程中拉、压应力集中区沿圆孔对称出现。弹性阶段,圆孔上下的拉应力集中区,表现降温现象;圆孔左右两侧的压应力集中区,表现为升温现象。
     实验结果表明,岩石在受力与灾变过程中,应力场、应变场、声发射场以及红外辐射温度场之间呈现很好的耦合关系,通过对多种物理场的联合、协同观测可望达到断层活动以及岩石工程灾变的有效监测预警。
     研究成果对于岩石受力过程多种物理现象的理解,以及实际构造活动及岩石工程灾变的监测预警具有重要的理论意义和潜在的应用价值。
The tectonic activity and rock cataclysm induced by loading will cause many physical changes, such as the stress increase, rock distortion, acoustic emission (AE), electromagnetic radiation, infrared radiation (IR) change and so on. These physical variables have space-time evolutive rules and certain relation. How to monitor these physical variables in coordination, integration, complementary and validity is the key for early warning of solid Earth disaster (including geological disasters, earthquake disaster and mine disasters and so on).
     In this paper the evolutive pattern and relation of several physical fields, including stress field, strain field, IR temperature field and AE field of tortuously non-connected fault and the rock tunnel (or mine tunnel) project models, are studied by using of the physical simulation experiment and numerical simulation method. The main study results including:
     The stress field, strain field, IR temperature field and AE field of tortuously non-connected fault model present regular change in the loading process. The change patterns of different period and different spatial region is different. When the fault is close to cataclysm a characteristic pattern“three high-temperatures point”and“evolving alternately”appear in the fault and the rock bridge regions. There physical fields exist close relations between them.
     The hole-rock samples appear symmetrically tensive and compressing strain area along the round hole in the load process. The temperatures of the tensive-strain regions which are located up or under the hole are high and the temperatures of the compressing strain areas along the left or right of hole are low in elasticity period.
     The experimental result indicated that a good coupling relation between stress field, strain field, AE field and IR temperature field exists in the stress and the cataclysm process. It is hopeful to monitor fault activity and the rock project cataclysm successfully by the union of many kinds of physical methods and the coordination observation of physical fields.
     The paper research results is beneficial to the comprehension of many kinds of physical phenomena in the rock stress process as well as the early warning of tectonic activity and the rock project cataclysms.
引文
[1] THOMSON W. Trans. R. Soc [J]. Materials Evaluation, 1953, 20(8): 83-261.
    [2] MOUNATINDS, WEBBER JMB. Stresspattern analysis by thermalmission(SPATE)[J]. Engineering Fracture Mechanics, 1978, 164(9): 189-196.
    [3] MASAKIS, TOSHIROM, AKISISAM. Realtimestress analysisbya scanning IR camera[J]. Japan Theoretics, 1986, 52(478): 1553-1558.
    [4] LUONG M P. Infrared observation of failure processes in plain concrete[J]. Durability of Building Materials and Component, 1987, 2(11): 870-878.
    [5] LUONG M P. Infrared thermovision of damage processes in concrete and rock[J]. Engineering Fracture Mechanics, 1992, 35 (3): 127-135.
    [6] GORNY, V.I, SALMAN, A.G, TRONIN, A.A. The earth outgoing IR radiation as an indicator of seismic activity. Proc[J]. Materials Evaluation, 1988, 301(8): 67-69.
    [7]耿乃光.岩石破裂实验中的遥感观测与遥感岩石力学的开端[J].地震学报,1992,14(增):645-652.
    [8]刘善军.岩石受力及灾变过程红外辐射规律的实验研究[D].北京:中国矿业大学,2003.
    [9]耿乃光,邓明德.热红外震兆成因的模拟实验研究[J].地震学报,1998,18(1):83-88.
    [10]夏源明.红外瞬态测温装置及其在冲击拉伸试验中的应用[J].实验力学,1990,5(2):170-177.
    [11]顾绍德.热辐射应力图像分析确定应力强度因子K和断裂尖端塑性区[J].同济大学学报,1993(4):469-474.
    [12]崔承禹,邓明德,耿乃光.在不同压力下岩石光谱辐射特征研究[J].科学通报,1993,38(6):538-541.
    [13]邓明德,耿乃光,崔承禹,等.岩石力学状态改变引起岩石热状态改变的研究[J].中国地震, 1997,13(2):179-185.
    [14]邓明德,房宗绯,刘晓红,等.水在岩石红外辐射中的作用研究[J].中国地震,1997,13(3):288-296.
    [15] WU L X, WANG J Z. Infrared radiation features of coal and rocks under loading[J]. Rock Mech. & Min, 1998, 35(7): 969-976.
    [16] WU L X, CUI C Y, GENG N G. Remote sensing rock mechanics (RSRM) and associated experimental studies[J]. Rock Mech. & Min, 2000, 37(6): 879-888.
    [17]吴立新.遥感岩石力学及其新近进展与未来发展[J].岩石力学与工程学报,2001,20(2):139-146.
    [18]尹京苑,房宗绯,钱家栋等.红外遥感用于地震预测及其物理机理[J].中国地震. 2003,16(2):140-148.
    [19]刘善军,吴立新,吴焕萍等.多暗色矿物类岩石单轴加载过程中红外辐射定量研究[J].岩石力学与工程学报,2002,21(11):1585-1589.
    [20]吴立新,刘善军.遥感-岩石力学(Ⅰ)——非连续组合断层破裂的热红外辐射规律及其构造地震前兆意义[J].岩石力学与工程学报,2004,23(1):24-30.
    [21]吴立新,刘善军.遥感-岩石力学(Ⅱ)——断层双剪粘滑的热红外辐射规律及其构造地震前兆意义[J].岩石力学与工程学报,2004,23(2):192-198.
    [22]刘善军,吴立新.遥感-岩石力学(Ⅴ)——岩石粘滑过程中红外辐射的影响因素分析[J].岩石力学与工程学报,2004,23(5):730-735.
    [23]吴立新,刘善军.遥感-岩石力学(Ⅲ)——交汇断层粘滑的热红外辐射与声发射规律及其构造地震前兆意义[J].岩石力学与工程学报,2004,23(3):401-407.
    [24]吴立新,刘善军.遥感-岩石力学(Ⅳ)——岩石压剪破裂的热红外辐射规律及其地震前兆意义[J].岩石力学与工程学报,2004,23(4):539-544.
    [25]张东胜.红外辐射等温区与光弹性等差线对应关系的研究[D].北京:中国矿业大学,2000.
    [26]吴立新,刘善军.地震红外遥感实验的热像处理系统与关键技术[J].红外技术,2002,24(4):27-30.
    [27]刘善军,吴立新.岩石受力的红外辐射效应[M].北京:冶金工业出版社. 2005.
    [28] WU L. X, LIU S. J. Changes in IR with rock deformation [J]. Rock Mech. & Min, 2002, 39(6): 825-831.
    [29]马少鹏,刘善军.数字图像灰度相关性用以描述相关试件损伤演化的研究[J].岩石力学与工程学报,2006,25(3):590-595.
    [30]刘培洵,刘力强,马瑾,等.地表岩石变形引起热红外辐射的实验研究[J].地震地质, 2004,26(3):502-511.
    [31]刘培洵,马瑾,刘力强,等.压性雁列构造变形过程中热场演化的实验研究[J].自然科学进展,2007,17(4):454-459.
    [32]马瑾,刘力强,刘培洵,等.断层失稳错动热场前兆模式:雁列断层的实验研究[J].地球物理学报,2007,50(4):1141-1149.
    [33] WEBER W. Quantitative stress analysis by means of the thermoelastic effect[J]. Materials Science, 1980, 20(13): 177-213.
    [34] THOMSON W. The thermoelastic effect in PMMA[J]. Engineering Fracture Mechanics, 1983, 20(8): 83-261.
    [35]吴宗凡.现代科学仪器[M].北京:教育出版社,1997,28-40.
    [36] PETERS W H, RANSON W F. Digital imaging techniques in experimental stress analysis[J]. Remote Sensing, 1982, 2(3): 427-431.
    [37] SUTTON M A, WOLTERS W J. Determination of displacements using an improved digital corrslation method[J]. Image and Vision Computing, 1983, 1(3): 133-139.
    [38] PETERS W H, RANSON W F, SUTTON M A. Application of digital correlation methods to rigid body mechanics[J]. Materials Science, 1983, 22(6): 738-742.
    [39]马少鹏,金观昌,潘一山.岩石材料基于天然散斑场的变形观测方法研究[J].岩石力学与工程学报,2003,21(6):792-796.
    [40]金观昌,孟利波.数字散斑相关技术进展及应用[J].实验力学,2006,21(6):689-702.
    [41] GORNY V I, SALMAN A G. The earth outgoing IR radiation as an indicator of seismic activity[J]. Remote Sensing, 1988, 301: 67-69.
    [42]强祖基,孔令昌,王弋平等.地球放气,热红外异常与地震活动[J].科学通报,1992,37(24):2259-2262.
    [43] TRONIN A A. Satellite thermal survey: A new tool for the study of seismoactive regions[J]. Remote Sensing, 1996, 17(8): 1439-1455.
    [44]孔令昌,强祖基.台湾海峡7.3级强震前的热红外增温异常[J].地震学刊,1997(3):34-37.
    [45]刘德富,罗灼礼,彭克银.强烈地震前的OLR异常现象[J].地震,1997,17(2):126-132.
    [46]吕琪琦,丁鉴海,崔承禹,等.张北6.2级地震前的卫星热红外异常地震[J].地震,1998,18(3):240-244.
    [47]徐秀登,徐向民,王煜.台湾南投7.6级地震前卫星红外异常[J].地震学报,2003,22(6):666-669.
    [48] OUZOUNOY D, BRYANT N, LOGAN T. Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003[J]. Physics and Chemistry of the Earth, 2006, 31(19): 154 -163.
    [49]刘善军,吴立新,王川婴,等.遥感-岩石力学(Ⅷ)——论岩石破裂的热红外前兆[J].岩石力学与工程学报,2004,23(10):1621-1627.
    [50]刘向峰,王来贵.含孔洞试件破坏过程的红外实验与数值实验对比分析[J].岩石力学与工程学报,2005,24(1):5173-5177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700