用户名: 密码: 验证码:
钢筋混凝土拱肋稳定极限承载力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土拱肋的稳定极限承载力分析问题是大跨径钢筋混凝土拱桥设计和施工中的一个重要问题。针对大跨径钢筋混凝土拱肋的稳定极限承载力分析中存在的问题,本文在总结和吸收前人研究成果的基础上,对大跨径钢筋混凝土拱桥的稳定极限承载力分析问题进行了系统的研究,着重探讨了以下几个方面的问题:
     系统地归纳和剖析了混凝土的破坏理论以及相关破坏试验结果。结合大跨径钢筋混凝土拱肋稳定极限承载力分析过程中结构的行为特点,确定了大跨径钢筋混凝土拱肋压溃分析中混凝土破坏状态的基本参量和破坏模型。
     详细分析了现有钢筋和混凝土本构模型的特点和适用范围。确定了大跨径钢筋混凝土拱式结构稳定极限承载力数值仿真分析中钢筋和混凝土的本构模型。
     剖析了各种钢筋混凝土裂缝模型的特点和适用范围。结合大跨径钢筋混凝土拱肋压溃分析的实际需要,确定了用于模拟压溃分析中钢筋混凝土拱肋力学行为的钢筋混凝土数值模型。
     归纳分析了桥梁结构极限承载力分析中常用的数值单元模式。论述了在大跨径钢筋混凝土拱肋的稳定极限承载力数值分析中采用具有特殊功能的混凝土实体单元模式的必要性。并对大型通用软件ANSYS中钢筋混凝土实体单元的力学原理进行了剖析。
     系统地分析了结构分析中各类非线性方程组的求解方法。结合相关的数值计算,确定了大跨径钢筋混凝土拱式结构稳定极限承载力数值仿真分析中结构非线性平衡路径的跟踪策略。
     将钢筋混凝土拱肋的模型试验结果与文中所采用的基于压溃理论的数值分析结果进行了对比,二者吻合良好。从而验证了本文所采用的基于压溃理论的数值分析方法的可靠性。
     探讨了大跨径钢筋混凝土拱肋稳定极限承载力分析中一些主要参数的取值问题;借助于大型通用软件ANSYS为大跨径钢筋混凝土拱肋的稳定极限承载力分析创建了与工程实际基本吻合的压溃分析数值模型。
     以大量系统的数值仿真模型实验为基础,利用数理统计原理,创立了大跨径钢筋混凝土拱肋的稳定极限承载力的参数影响效应方程。这些影响效应方程包含了拱肋的初始几何缺陷、计算跨径、矢跨比、拱轴系数以及荷载作用形式等影响钢筋混凝土拱肋稳定极限承载力的主要因素。
     提出了一套适用于大跨径钢筋混凝土拱肋稳定极限承载力分析的满足土木工程精度要求的实用计算方法。该实用计算方法考虑了拱肋的初始几何缺陷、计算跨径、矢跨比、拱轴系数以及荷载作用形式等重要参数对钢筋混凝土拱肋稳定极限承载力的影响效应。
     分别采用本文提出的实用算法、ANSYS有限元法和现行桥梁结构设计规范法对两座实桥进行了对比性计算。得出了一些可供设计、施工和相关研究参考的结论。
The evaluation of the ultimate bearing capacity of reinforced concrete arch ribs is a significant issue in the design and construction of long-span reinforced concrete arch bridges. Aiming at the issue of the evaluation of the ultimate bearing capacity of long-span reinforced concrete arch ribs, this dissertation investigated the ultimate bearing capacity of reinforced concrete arch ribs on the basis of summarizing and absorbing the achievements in the pioneer works. The main research work is as follows:
     The failure criteria and tests of concrete were systematically summarized and dissected. According to the characteristics of the behavior of long-span reinforced concrete arch ribs, the basic parameters and failure models were determined for the collapse analysis of long-span reinforced concrete arch ribs.
     The characteristics and suitable scope of the constitutional relationship of concrete and reinforcement were analyzed in detail, then, the constitutional relationship of concrete and reinforcement were determined for the simulation analysis of long-span reinforced concrete arch ribs.
     The characteristics and suitable scope of the cracking models of reinforced concrete were dissected. With the applied demands for the collapse analysis of long-span reinforced concrete arch ribs, the cracking models of reinforced concrete were determined to imitate the behaviour of reinforced concrete arch ribs.
     The element models which had been used commonly to analyse the ultimate bearing capacity of bridge structures were summarized. The necessity of using special concrete solid element to the numerial analysis of ultimate bearing capacity of long-span reinforced concrete arch ribs was discussed; furthermore, the principles of the reinforced concrete solid element in ANSYS were dissected.
     The solution procedures for nonlinear equilibrium equations in structural analysis were systematically summarized. With some numerical examples, the policy on tracing the nonlinear equilibrium paths was determined, which was used for evaluating the ultimate bearing capacity of long-span reinforced concrete arch ribs.
     Comparing the experiment data of the reinforced concrete arch rib model and its numerical anlysis results on the basis of collapse theory, it was found that the numerical anlysis results are very close to the experimental data, and consequently the reliability of the numerical analysis procedures on the basis of collapse theory for evaluating the ultimate bearing capacity of reinforced concrete arch ribs was certified.
     The values of dominant parameters of long-span reinforced concrete arch rib were discussed. By means of the large-scale general software ANS YS, the collapse analysis models which were similar to the practical arch bridges were built to evaluate the ultimate bearing capacity of reinforced concrete arch ribs.
     Based on a large number of systematic simulating numerical experiments, this dissertation deduced a series of expressions to describe the effects of the dominant parameters on the ultimate bearing capacity of reinforced concrete arch ribs by means of mathematical statistic theory. The initial geometric imperfection, calculated span, rise span ratio, coefficient of arch axis and load types were included in these expressions.
     The applied evaluation methods, which are able to meet the precision request of civil engineering, were deduced to evaluate the ultimate bearing capacity of long-span reinforced concrete arch ribs. The initial geometric imperfection, calculated span, rise span ratio, coefficient of arch axis and load types were taken into account in the applied evaluation methods.
     This dissertation evaluated the ultimate bearing capacity of two practical bridges by means of the evaluation method, the finite element method and the design codes method, and consequenly some conclusions were reached by comparing with these evaluating results. The conclusions herewith can serve as reference to the design, construction and study of the ultimate bearing capacity of long-span reinforced concrete arch bridges.
引文
[1]卫星.钢筋混凝土肋拱二阶设计方法研究[D].成都:西南交通大学土木工程学院,2005:3-10.
    [2]强士中.桥梁工程(下册)[M].北京:高等教育出版社,2004:67-162.
    [3]刘龄嘉.桥梁工程[M].北京:人民交通出版社,2006:101-167.
    [4]陈宝健,许有胜,陈宝春编译.日本钢筋混凝土拱桥调查与分析[J].中外公路,2005;25(4):96-101.
    [5]周长晓.大跨径钢筋混凝土拱桥承载力分析方法的现状[J].公路交通技术,1998;(3):1-5.
    [6]奉龙成,罗小华.钢筋混凝土拱桥面内极限承载能力的非线性分析[J].土木工程学报,2002;35(3):20-24.
    [7]刘来君,王东阳.大跨径拱桥极限承载力[J].长安大学学报,2004;24(2):48-52.
    [8]金伟良.钢筋混凝土拱桥的极限承载力[J].浙江大学学报(自然科学版),1997:31(4):449-461.
    [9]李国豪.桥梁结构稳定与振动(修订版)[M].北京:中国铁道出版社,1996.
    [10]S. P. Timoshenko, J. M. Gere. Theory of Elastic Stability (second edition) [M].McGraw-Hill.1961.
    [11]陈克济.钢筋混凝土拱面内稳定性研究[D].成都:西南交通大学土木工程学院,1982.
    [12]项海帆,刘光栋.拱结构的稳定与振动[M].北京:人民交通出版杜,1991.
    [13]Gaber E. uber die Kineksicherheit Vollvandiger Bogen. Bautechnik, Nov.,1934.
    [14]Stiissi F. Aktuelle Baustatische Probleme der Konstruktionspraxis. Schweiz Bauztg,Vol.106,No.12,Sept.,1935.
    [15]Kollbrunner C. F. Versuche uber die kinicksicherheitund die grundschwingungszahl vollwandiger bogen. Bauetchnik. Mar.,1936.
    [16]Bush B. Knicksicherheit vollwandiger bogen. Bauingenieur.1937.
    [17]Deutch E. Das knicken von bogentragern bei unsymmetrischer belastung.Bauingenieur. Dec.,1940.
    [18]Walter J. Austin. In-Plane Bending and Buckling of Arches, Journal of the Structural Division (ASCE), Vol.97, No.5, May 1971, pp.1575-1592.
    [19]Stussi F. Lateral buckling and vibration of arches. Int. Assoc. of Bridges and Structural Engrs Pubs.,Vol.7,1943-1944.
    [20]Godden W. G, The lateral buckling of tied arches, Proc., Inst. Civil Eng., Vol.3, Aug.1954.
    [21]钱莲萍,项海帆.空间拱桥结构侧倾稳定性的实用计算[J].同济大学学报,1989.
    [22]向中富.中承式拱桥横向屈曲临界荷载实用计算[J].重庆交通学院学报,1995;14(1):27-31.
    [23]Ostlund L., Lateral Stability of Bridge Arches Braced with Transverse Bars, Trans., Roy, Inst. Of Tech., Stockholm, Swedon,1954
    [24]Wastlund G, Stability Problems of Compressed Steel Members and Arch Bridges, Proc. Of ASCE, Vol.86, Jun.1960.
    [25]P. Layrangues.由一系列水平横撑联结的两个竖直圆弧的侧向弹性稳定[M].同济大学译自《TRAVAUX》,1963.
    [26]吴恒立.拱式体系稳定计算[M].北京:人民交通出版社,1979.
    [27]李国豪,石洞,黄东洲.拱桁梁侧倾稳定分析的有限元法[J].同济大学学报,1983:1.
    [28]金伟良.大跨径拱桥的横向稳定性研究[D].大连:大连理工大学,1988.
    [29]贺栓海.拱桥挠度理论[M].北京:人民交通出版社,1997.
    [30]Chatterjee P. N. On the Deflection Theory of Ribbed Two-hinged Elastic Arches. Thesis, Ph.D., the University of Illinois,1948.
    [31]Rowe R. S. Amplification of Stress in Flexible Steel Arches. Transactions of ASCE, Paper NO.2704,1954.
    [32]S. O. Asplund. Deflection Theory of Arches. Transactions, ASCE, Vol.128, Part Ⅱ,307-341,1963.
    [33]Huddlester J., Finite Deflections and Snap-through of High Circular Arches, Journal of Applied Mechanics, Dec.1968
    [34]WempnerG. A., and Patrick G. E., Finite Deflections, Buckling and Post-buckling of an Arch, Proceedings,11th Midwestern Mechanics Conference, Vol.15, Iowa State University,Aug.1969
    [35]Da Deppo D., and SSchmidt R., Nonlinear Analysis of Buckling and Post-buckling Behavior of Circular Arches, Journal of Applied Mathematics and Physics, Vol.20,1969
    [36]Da Deppo D., and SSchmidt R., Large Deflections and Stability of Hingeless Circular Arches under Interacting Loads, J. Appl. Mech., Trans. ASME, 1974.
    [37]Dawe D. J., Curved Finite Elements for the Analysis of Shallow and Deep Circular Arches, Computer & Structures, Vol.4,1974
    [38]Amode M. V.Hudeleston, Three-dimension stability of prestressed arches. J Eng. Mech. ASCE,1977,103 (5),855-867
    [39]Wen R. K. and Rahimzadeh J., Nonlinear Elastic Frame Analysis by Finite Element.1981.
    [40]杨永清.钢管混泥土拱桥横向稳定性研究[D].成都:西南交通大学土木工程学院,1998.
    [41]赵雷,卜一之.钢管混凝土系杆拱桥施工过程结构行为非线性分析[J].西南交通大学学报,2000;35(4):352-356.
    [42]张建民.大跨度钢管混凝土拱桥承载能力与施工控制研究[D].华南理工大学,2001.
    [43]颜全胜,徐升桥.大跨度钢管混凝土拱桥的稳定承载力分析[J].铁道标准设计,2003;(7):16-18.
    [44]陈宝春,秦泽豹.钢管混凝土(单圆管)肋拱面内极限承载力的参数分析[J].铁道学报,2004;26(4):87-92.
    [45]陈宝春,韦建刚,林英.管拱面内两点非对称加载试验研究[J].土木工程学报,2006;39(1):43-49.
    [46]李松,唐英,彭友松等.钢管混凝土拱桥极限承载力的参数效应[J].桥梁建设,2006;(6):69-72.
    [47]川口昌夫,新泽远大.钢筋混凝土拱桥面内承载力[J],国外公路,1980.
    [48]谢幼藩,陈克济.拱桥面内稳定性计算探讨[J].西南交通大学学报,1982.
    [49]胡大琳,陈祥宝.拱式拱上结构钢筋混凝土拱桥极限承载力分析[J].西安公路学院学报,1994:14(4):19-27.
    [50]顾安邦,刘忠,周水兴.万县长江大桥混凝土时效和几何、材料等非 线性因素影响分析[J].重庆交通学院学报,1999;18(4):1-7.
    [51]袁红茵.大跨度钢筋混凝土拱桥的复合非线性稳定性分析[J].湖南交通科技,2001:27(3):43-44.
    [52]陈克济.钢筋混凝土拱桥面内承载力的非线性分析[J].桥梁建设,1983:(1).
    [53]Yang Y B, Kuo. C S. Nonlinear theory and analysis of frame structure. Simon & Schuster(Asian) Pie.Ltd,1994.
    [54]赵华.钢筋混凝土拱的承载能力研究[J].中南公路工程,2004:29(1):24-27.
    [55]王传志,藤智明.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1985.
    [56]邓志华.大跨度钢筋混凝土箱形板拱的力学性能分析[D].成都:西南交通大学土木工程学院,2005.
    [57]程进,江见鲸,肖汝诚等.拱桥结构极限承载力的研究现状与发展[J].公路交通科技,2002;19(4):57-59.
    [58]赵雷,杜正国.大跨径钢筋混凝土拱桥钢管混凝土劲性骨架施工阶段稳定性分析[J].西南交通大学学报,1994;29(4):446-449.
    [59]谢幼藩,赵雷等.万县长江大桥420m钢筋混凝土箱形拱的施工稳定分析研究[J].桥梁建设,1995.
    [60]赵雷,张金平.大跨径拱桥施工阶段非线性稳定分析若干问题的探讨[J].铁道学报,1995:17(1):76-84.
    [61]谢尚英,钱冬生.混凝土拱桥在施工阶段的非线性稳定分析[J].西南交通大学学报,1999:34(1):32-35.
    [62]Zhong Liu, Fang Li, W. M. Kim Roddis. Analytic Model of Long-span Self-Shored Arch Bridge[J]. Journal of Bridge Engineering,2002;7 (1):14-21.
    [63]中华人民共和国交通部.JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.
    [64]中华人民共和国交通部.JTJ022-85公路砖石及混凝土桥涵设计规范[S].北京:人民交通出版社,1985.
    [65]李运生,张彦玲,王慧东.拱桥稳定分析的规范方法与建议[J].石家庄铁道学院学报,2002;15(3):60-64.
    [66]中华人民共和国铁道部.TB10002.1-2005铁路桥涵设计基本规范[S].北京:中国铁道出版社,2005.
    [67]中华人民共和国铁道部.TB10002.3-2005铁路桥涵钢筋混凝土和预应力混凝土结构设计规范[S].北京:中国铁道出版社,2005.
    [68]A.H.金尼克著,吕子华译.拱的稳定性[M].北京:建筑工程出版社,1958.
    [69]谢幼藩,车惠民,何广汉等.铁路钢筋混凝土桥[M].北京:中国铁道出版社,1984.
    [70]辛济平,万国朝,张文等译.美国公路桥梁设计规范[S].北京:人民交通出版社,1997.
    [71]李松,强士中,唐英.钢筋混凝土拱桥极限承载力的参数研究[J].西南交通大学学报,2007:42(3):293-298.
    [72]李松,强士中,唐英等.悬臂施工阶段大跨径刚构桥稳定性的参数分析[J].中国铁道科学,2007:28(2):32-38.
    [73]武守信.开裂钢筋混凝土本构模型研究[D].成都:西南交通大学土木工程学院,1996.
    [74]沈世钊,陈昕.网壳结构稳定性[M].北京:科学出版社,1999.
    [75]潘家英,张国政,程庆国.大跨径桥梁极限承载力的几何与材料非线性藕合分析[J].土木工程学报,2000;33(1):5-8.
    [76]程进,江见鲸,肖汝诚,项海帆.大跨径拱桥极限承载力的参数研究[J].中国公路学报,2003;16(2).
    [77]过镇海.混凝土的强度和变形—试验基础和本构关系[M].北京:清华大学出版社,1997.
    [78]Chen W F. Plasticity in reinforced concrete[M]. New York: McGraw-Hill, Inc.1982.
    [79]宋玉普,赵国藩.多轴应力下混凝土的破坏准则[M].第五届岩石、混凝土断裂和强度学术会议论文集.长沙:国防科技大学出版社,1993.
    [80]宋玉普,赵国藩,彭放等.多轴应力下多种混凝土材料的通用破坏准则[J].土木工程学报,1996;29(1).
    [81]王传志,过镇海等.二轴和三轴受压混凝土的强度试验[J].土木工程学报,1987:20(1).
    [82]李建林.混凝土在三轴压—压—拉应力作用下的强度、变形和破坏[J].水利学报,1990:(5).
    [83]Kupfer H, Hilsdorf H K, Rusch H. Behavior of concrete under biaxial stresses. ACI Journal, Aug.1969.
    [84]Bresler B, Pister K S. Strength of concrete under combined stresses. ACI Journal, Sept 1958.
    [85]Willam,K.J.,and. Warnke,E.D. Constitutive Model for the Triaxial Behavior of Concrete. Proceedings, International Association for Bridge and Structural Engineering,1975,Vol.19,ISMES,Bergamo,Italy
    [86]董哲仁.钢筋混凝土非线性有限元法原理与应用[M].北京:中国水利电力出版社,2002.
    [87]N. S. Ottosen. A failure criterion for concrete[J]. Journal of Eng. Mech. Div.ASCE,1977,Vol.103,No.EM4,August.
    [88]韦未,李同春,姚纬明.建立在应变空间上的混凝土四参数破坏准则[J].水利水电科技进展,2004;24(5).
    [89]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1998.
    [90]闫东明,林皋,徐平.三向应力状态下混凝土动态强度和变形特性研究[J].工程力学,2007:24(3):58-64.
    [91]汪基伟,陈玉泉.平面应变混凝土强度变形试验与等效单轴应变本构模型[J].东南大学学报,2005;35(5):775-779.
    [92]李杰,任晓丹,杨卫忠.混凝土二维本构关系试验研究[J].土木工程学报,2007:40(4):6-12.
    [93]Lan S, Guo Z. Experimental investigation of multiaxial compressive strength of concrete under different stress paths [J]. ACI Materials Journal, 1997,94(5):427-434.
    [94]Candappa D C, Sanjayan J G, Setunge S. Complete triaxial stress-strain curves of high-strength concrete[J] Journal of Materials in Civil Engineering, 2001,13(3):209-215.
    [95]Sfer Domingo, Carol Ignacio, Gettu Ravindra,et al. Study of the behavior of concrete under triaxial compression[J]. Journal of Engineering Mechanics,2002,128(2):156-163.
    [96]Kupfer H, Hilsdore, Rush H. Behavior of concrete under biaxial stresses[J]. ACI, 1966,66(8):656-666.
    [97]N. S. Ottosen. Constitutive model for short-time loading of concrete [J]. Journal of Engineering Mechanics,1979,105(1).
    [98]江见鲸.关于钢筋混凝土数值分析中的本构关系[J].力学进 展,1994:24(1);117-123.
    [99]蔡四维,蔡敏.混凝土的损伤断裂[M].北京:人民交通出版社,1999.
    [100]张盛东.混凝土本构理论研究进展与评述[J].南京建筑工程学院学报,2002;62(3).
    [101]Valanis K C. A Theory of viscoplasticity without a yield Surface[J]. Archives of Mechanics; 1971,23:517-551.
    [102]J.Mazars,G.Pijaudier-cabot. Continuum damage theory-application to concrete[J]. Journal of Engineering Mechanics; 1989,115(2).
    [103]D. Ngo, A. C. Scordelis. Finite element analysis of reinforced concrete beams [J]. Journal of the American concrete institute; 1967,64(3):152-163.
    [104]A. H. Nilson. Nonlinear analysis of reinforced concrete by the finite element method [J]. Journal of the American concrete institute; 1968,65(9):757-766.
    [105]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.
    [106]巫昌海,汪基伟,夏颂佑.混凝土三维非正交弥散裂缝模型[J].河海大学学报,1999;27(5):17-20.
    [107]徐镇凯,杨志华,刘瑶.钢筋混凝土结构三维非线性有限元裂缝追踪计算探讨[J].南昌大学学报,2007;29(2):171-174.
    [108]黄荣杰,杜太生,宋天霞.钢筋混凝土空间单元研究[J].华中科技大学学报(自然科学版),2002;30(5):78-80.
    [109]雷晓燕.钢筋混凝土有限元模型的研究[J].华东交通大学学报,1992;9(1):1-11.
    [110]J Meek,H S Tan. Geometrically nonlinear analysis of space frames by an incremental iterative technique[J]. Comp. Meth. Appl. Mech. Engrg.,1984;47: 261-282.
    [111]M Papdarkaksis. Post-buckling analysis of structures by vector iteration methods[J]. Computers & Structures,1981;14(5&6):393-402.
    [112]Bellini P X and Chulya A. An improved automatic; incremental algorithm for efficient solution of nonlinear finite element equation[J]. Computers & Structures,1987;26:99-100.
    [113]E Riks. An incremental approach to the solution of snapping and buckling problems[J]. Int. J. Solids Struct,1979; 15:529-551.
    [114]I M May, Y Duan. Local arc-length procedure for strain softening[J]. Computers and Structures,1997; 64(1):297-303.
    [115]陈务军,董石麟,付功义等.非线性分析广义增量法算法研究[J].工程力学,2001:18(3):28-33.
    [116]熊铁华.结构非线性分析中的可控制方向的弧长法[J].武汉大学学报(工学版),2001:34(1):53-55.
    [117]向天宇,赵人达,刘海波.混凝土结构全过程非线性分析的弧长法研究[J].铁道学报,2002:24(3):67-70.
    [118]Crisfield M A. A fast incremental/iterative solution procedure that handles "snap-through"[J]. Computers and Structures,1981; 13:55-62.
    [119]中华人民共和国交通部.JTG D60-2004公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
    [120]陈宝春,叶琳.我国混凝土拱桥现状调查与发展方向分析[J].中外公路,2008:28(2):89-96.
    [121]姜小明.大跨度钢筋混凝土拱桥的几何非线性对结构内力及变形的影响[J].中南公路工程,2003:28(1):35-41.
    [122]李皓月,周田朋,刘相新.ANSYS工程计算应用教程[M].北京:中国铁道出版社,2003.
    [123]郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [124]ANSYS, Inc. Theory manual. Twelfth edition. SAS IP,Inc.
    [125]何春林,邢静忠.ANSYS对钢筋混凝土结构弹塑性问题的仿真研究[J].煤炭工程,2007:4:80-82.
    [126]陆新征,江见鲸.利用ANSYS Solid65分析复杂应力状态下的混凝土结构[J].建筑结构,2003:33(6):22-24.
    [127]四川省交通厅公路规划勘察设计研究院,西南交通大学.拱桥偏心距增大系数研究——M1模型试验报告[R].成都:2007.
    [128]陈宝健,许有胜,陈宝春编译.日本钢筋混凝土拱桥调查与分析[J].中外公路,2005,25(4):96-101.
    [129]程翔云.世界大跨径钢筋混凝土拱桥[J].中南公路工程,1991,56(1):45-49.
    [130]程翔云.世界大跨径钢筋混凝土拱桥(续)[J].中南公路工程,1991,57(2):31-38.
    [131]顾懋清,石绍甫.拱桥[M].北京:人民交通出版社,1997.
    [132]罗如登.Ansys中混凝土单元Solid65的裂缝间剪力传递系数取值[J].江苏大学学报,2008;29(2):169-172.
    [133][苏]A.H拉耶夫斯基著,赵超燮等译.结构稳定计算原理[M].北京:高等教育出版社,1965.
    [134]中华人民共和国交通部.JTT041-2000公路桥涵施工技术规范[S].北京:人民交通出版社,2000:185-209.
    [135]中华人民共和国铁道部.TB10203-2002铁路桥涵施工技术规范[S].北京:中国铁道出版社,2002:148-159.
    [136]中华人民共和国铁道部.TB10415-98铁路桥涵工程质量检验评定标准[S].北京:中国铁道出版社,1999:98-104.
    [137]王学仁,温忠粪.应用回归分析[M].重庆:重庆大学出版社,1989.
    [138]邰淑彩.应用数理统计(第2版)[M].武汉:武汉水利电力大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700