用户名: 密码: 验证码:
哀牢山木果石栎林林冠腐殖质养分状况及微生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在热带、亚热带和温带高海拔潮湿生境的山地森林林冠层中,积累有较为丰富的林冠腐殖质(Canopy humus),是构成山地森林生态系统景观结构的重要组分,为丰富的附生植物生长繁衍提供了重要的生长基质和营养物质。通过对云南哀牢山山地湿性常绿阔叶林林冠腐殖质和其相应林下地表腐殖质的取样分析测定结果表明,由于林冠和林下地表腐殖质的来源、组成和空间分布的不同,它们之间的理化特性、微生物量、酶活性等存在较大的差异,结果如下:
     1.哀牢山山地湿性常绿阔叶林中积累有较为丰富、养分含量较高林冠腐殖质,是本区潮湿生境山地森林生态系统重要的养分库,其中林冠腐殖质的pH值低于其林地土壤腐殖质,而它的有机C、全N、全Ca的含量、C/N和阳离子交换量则显著高于林下腐殖质,分别是后者的4.1倍、2.9倍、5.5倍、1.4倍和2.6倍,但全K、全Mg的含量则明显低于林下地表腐殖质,全P的含量在两类腐殖质之间差异不大。
     2.哀牢山山地湿性常绿阔叶林林冠腐殖质具有比林下地表腐殖质更高的微生物活性,其微生物量C、N含量及呼吸强度均显著比林下地表腐殖质的高,其中干季(2006年4月)的微生物量C、N分别是后者的2.4倍、2.1倍,在20天的培养过程中,林冠腐殖质的呼吸强度一直高于林下地表腐殖质,表现出其微生物活性具有较强的可持续性。
     3.哀牢山林冠腐殖质不仅具有林下土壤所具有各种酶活性,而且酶活性还比较高,其蔗糖酶、脲酶和蛋白酶活性均显著高于林下地表腐殖质,分别是林下地表腐殖质的7.1倍、1.8倍和4.7倍,可以用土壤学的测定方法对其进行研究。
     以上研究结果说明林冠腐殖质是一种具有较高生物活性的有机土类物质,在山地森林生态系统养分循环、林冠附生植物多样性格局形成及其维持方面具有重要的作用。
There are considerable amounts of canopy humus within the crowns of trees in tropical, subtropical and temperate montane moist forests. As an important structural component, the canopy humus provides essential substrates and nutrients for the growth of abundant epiphytes. In this study, the physical and chemical properties, microbial biomass and enzyme activities of humus from both canopy and forest floor were analyzed in a subtropical montane moist evergreen broad-leaved forest in Ailao Mts., Yunnan. The significant differences in the physical and chemical properties and microbial activities were found between the canopy humus and humus from forest floor, due to differences in origins, composition of humus and spatial distribution patterns.
     1. The canopy humus is an important nutrients pool in subtropical montane moist evergreen broad-leaved forest in Ailao Mts., Yunnan. It had lower pH value, and higher concentration of organic C, total N, total Ca, as well as C/N ratio and cation exchange capacity than humus under the forest floor. The concentrations of total K and total Mg were lower in the former than the latter. There was no significant difference in total P concentration between two humus types.
     2. The microbial biomass C and N, respiration rate were significantly higher in canopy humus than the humus under forest floor. The microbial biomass C and N in the canopy humus had 2.4 and 2.1 times more contents than humus under the forest floor, during 20 days incubation, respiration rate of canopy humus was always higher than humus under forest floor and showed stronger sustainable microbial activity.
     3. Activities of sucrase, urease and protease were significantly greater in the canopy humus than its terrestrial counterpart. So we can study canopy humus using soil method.
     These results above indicated that the canopy humus belong to a category of organic histosol with high nutrients content and microbial activities, and thus it could play important roles in nutrients cycling, maintenance of species diversity pattern of epiphytes in the montane moist evergreen broad-leaved forest ecosystems.
引文
Anderson J.P.E., 1982. Soil respiration. In: Page A.L., ed. Methods of Soil Analisis: Chemical and microbiological properties, Part 2. Madison :American Society of Agronomy, 831–871.
    Andersson M., Kj?ller A., Struwe S., 2004. Microbial enzyme activities in leaf litter, humus and mineral soil layers of European forests. Soil Biology & Biochemistry, 36:1527–1537.
    Aweto A.O., 1981. Secondary succession and soil fertility restoration in south western Nigeria. II. Soil fertility restoration. Journal of Ecology, 69:609–614.
    Badalucco L., Cesare F., Grego S., Landi L., Nannipieri P., 1997. Do physical properties of soil affect chloroform efficiency in lysing microbial biomass? Soil Boilogical Biochemistry, 29(7):1135–1142.
    Badiane N.N.Y., Chotte J.L., Pate E., Masse D., Rouland C., 2001. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions. Applied Soil Ecology, 18:229–238.
    Baileya V.L., Peacock A.D., Smith J.L., Bolton Jr.H., 2002. Relationships between soil microbial biomass determined by chloroform fumigation–extraction, substrate-induced respiration, and phospholipid fatty acid analysis. Soil Biology & Biochemistry, 34:1385–1389.
    Balestrini R. & Tagliaferri A., 2001. Atmospheric deposition and canopy exchange processes in alpine forest ecosystems (northern Italy). Atmospheric Environment, 35:6421–6433.
    Barajas-Guzmán G. & Alvarez-Sánchez J., 2003. The relationships between litter fauna and rates of litterdecomposition in a tropical rain forest. Applied Soil Ecology, 24:91–100.
    Barbhuiya A.R., Arunachalam A., Pandey H.N., Arunachalam K., Khan M.L., Nath P.C., 2004. Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest. European Journal of Soil Biology, 40:113–121.
    Behan-Pelletier V.M. & Winchester N.N., 1998. Arboreal oribatid mite diversity: colonizing the canopy. Applied Soil Ecology, 9:45–51.
    Bennett B.C., 1986. Patchiness, diversity and abundance relationships of vascularepiphytes. Selbyana, 9:70–75.
    Bermudes D. & Benzing D.H., 1989. Fungi in neotropical epiphyte roots. Biosystems, 23(1):65–73.
    Bohlman S.A., Matelson T.J., Nadkarni N.M., 1995. Moisture and temperature patterns of canopy humus and forest floor soil of a Montane Cloud Forest, Costa Rica. Biotropica, 27(1):13–19.
    Bolton Jr.H., Smith J.L., Link S.O., 1993. Soil microbial biomass and. activity of a disturbed and undisturbed shrub-steppe ecosystem. Soil Biology & Biochemistry, 25: 545–552.
    Brookes P.C., 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Soil Biology & Biochemistry, 19:269–279.
    Brookes P.C., Kragt J.F., Powlson D.S., Jenkinson D.S., 1985a. Chloroform fumigation and the release of soil nitrogen: The effects of fumigation time and temperature. Soil Biology & Biochemistry, 17(6):831–835.
    Brookes P.C., Landman A., Pruden G., Jenkinson D.S., 1985b. Chloroform fumigation and release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17:837–842.
    Bruce A.C., 2005. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia, 49(6):637–644.
    Clark K.L., Nadkarni N.M., Gholz H.L., 1998. Growth, net production, litter decomposition, and net nitrogen accumulation by epiphyte bryophytes in a tropical montane forest. Bitropica, 30:12–23.
    Clark K.L., Nadkarni N.M., Schaefer D., Gholz H.L., 1997. Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. Journal of Tropical Ecology, 14:1–19.
    Coleman D.C., 1973a. Soil carbon balance in a successional grassland. Oikos, 24:195–199.
    Coleman D.C., 1973b. Compartmental analysis of total soil respiration: an exploratory study. Oikos, 24:361–366.
    Deschaseaux A. & Ponge J.F., 2001. Changes in the composition of humus profiles near the trunk base of an oak tree (Quercus petraea (Mattus.) Liebl.). Soil Biology, 37:9–16.
    Díaz-Ravi?a M., Acea M.J., Carballas T., 1993. Microbial biomass and its contribution to nutrient concentrations in forest soils. Soil Biology &Biochemistry, 25(1):25–31.
    Díaz-Ravi?a M., Prieto A., Acea M.J., Carballas T., 1992. Fumigation-extraction method to estimate microbial biomass in heated soils. Soil Biology & Biochemistry, 24(3):259–264.
    Dilly O. & Munch J., 1996. Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a black alder (Alnus glutinosa(L.) Gaertn) forest. Soil Biology & Biochemistry, 28:1073–1081.
    Eaton W.D., 2001. Microbial and nutrient activity in soils from three different subtropical forest habitats in Belize, Central America before and during the transition from dry to wet season. Applied Soil Ecology, 16:219–227.
    Edwards P.J. & Grubb P.J., 1977. Studies of mineral cycling in a montane rain forest in New Guinea.Ⅳ.The distribution of organic matter in the vegetation and soil. Journal of ecology, 65:943–969.
    Fernandes D.N. & Sanford Jr.R.L., 1995. Effects of recent land-use practices on soil nutrients and succession under tropical wet forest in Costa Rica. Conservation Biology, 9:915–922.
    Fox R.L., 1982. Some highly weathered soils of Puerto Rico, 3. Chemical properties. Geoderma, 27:139–176.
    Franzluebbers A.J., Haney R.L., Hons F.M., 1999. Relationships of chloroform fumigation-incubation to soil organicmatter pools. Soil Biology & Biochemistry, 31:395–405.
    Freiberg M., 2000. Epiphyte diversity and biomass in the canopy of lowland and montane forests in Ecuador. Journal of Tropical Ecology, 16:673–688.
    Freiberg M., 2001. The influence of epiphytes cover on branch temperature in a tropical tree. Plant Ecology, 153:241–250.
    Gentry A. & Dodson C., 1987. The contribution of non-trees to tropical forest species richness. Biotropica, 19:145–156.
    Ghosal S., Muruganandam A.V., Chauhan S.R., Centre D., Kawanishi K., Saiki K., Nadkarni N.M., 1999. Crown humus:Part I—The chemistry of the canopy organic matter of rain forests in Costa Rica. Indian Journal of Chemistry, 38B:67–75.
    Gregorich E.G., Wen G., Voroney R.P., Kachanoski R.G., 1990. Calibration of rapid direct chloroform extraction method for measuring soil microbial biomass C. SoilBiology & Biochemistry, 22(7):1009–1011.
    Groffman P.M., McDowell W.H., Myers J.C., Merriam J.L., 2001. Soil microbial biomass and activity in tropical riparian forests. Soil Biology & Biochemistry, 33:1339–1348.
    Grubb P.J., 1977. Control of forest distribution and growth and distribution on wet tropical montanes: with special reference to mineral nutrition. Annual Review of Ecology and Systematics, 8:83–107.
    Guggenberger G. & Zech W., 1999. Soil organic matter composition under primary forest, pasture, and secondary forest succession,Region Huetar Norte, Costa Rica. Forest Ecology and Management, 124:93–104.
    Haron K., Brookes P.C., Anderson J.M., Zakaria Z.Z., 1997. Microbial biomass and soil organic matter dynamics in Oil Palm (Elaeis guineensis jacq.) plantations, West Malaysia. Soil Biology & Biochemistry, 30(5):547–552.
    Hofman J. & Du?ek L., 2003. Biochemical analysis of soil organic matter and microbial biomass composition—a pilot study. European Journal of Soil Biology, 39:217–224.
    Hofman J., Du?ek L., KlánováJ., BezchlebováJ., Holoubek I., 2004. Monitoring microbial biomass and respiration in different soils from the Czech Republic—summary of results. Environmental Int., 30:19–30.
    Ingram S.W. & Nadkarni N.M., 1993. Composition and distribution of epiphytic organic matter in a Neotropical Cloud Forest, Costa Rica. Biotropica, 25(4):370–383.
    Insam H., Parkinson D., Domsch K.H., 1989. The influence of microclimate on soil microbial biomass level. Soil Biology & Biochemistry,21:211–221.
    Jeník J., 1973. Root systems of tropical trees. 8. Stilt-roots and allied adaptations. Preslia, 45:250–264.
    Jenkinson D.S., 1988. The determination of microbial biomass carbon and nitrogen in soil. In: Wilson, J.R. (Ed.), Advances in Nitrogen Cycling in Agri-cultural Ecosystems. CAB International, Wallingford, pp. 368–386.
    Jenkinson D.S. & Ladd J.N., 1981. Microbial biomass in soil: measurement and turnover. Soil Biochemistry, 5:415–471.
    Jenkinson D.S. & Powlson D.S., 1976. The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biology & Biochemistry, 8:209–213.
    Jia G.M., Cao J., Wang C.Y., Wang G., 2005. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China. Forest Ecology and Management, 217(1):117–125.
    Jordan D. & Beare M.H., 1991. Comparison of methods for estimating soil microbial biomass carbon. Agriculture, Ecosystem & Environment, 34(1-4):35–41.
    Kayang H., 2001. Fungal and bacterial enzyme activities in Alnus nepalensis D. Don. Soil Biology, 37:175–180.
    Kessler M., 2002. Species richness and ecophysiological types among Bolivian bromeliad communities. Biodiversity and Conservation, 11:987–1010.
    Killham K., 1986. Heterotrophic nitrilication. In Nirrificarion (J.I. Prosser, Ed.), 117–126.
    Klinge H., 1963.über Epiphytenhumus aus El Salvador, Zentralamerika. Pedobiologia, 2:102–107.
    Klose S. & Tabatabai M.A., 1999. Urease activity of microbial biomass in soils. Soil Biology & Biochemistry, 31:205–211.
    Leckie S.E., Prescott C.E., Grayston S.J., Neufeld J.D., Mohn W.W., 2004.
    Comparison of chloroform fumigation-extraction, phospholipid fatty acid, and DNA methods to determine microbial biomass in forest humus. Soil Biology & Biochemistry, 36:529–532.
    Lesica P. & Antibus R.K., 1990. The occurrence of mycorrhizal in vascular epiphytes of two Costa Rican forests. Biotropica, 22:250–258.
    Lesica P. & Antibus R.K., 1991. Canopy soils and epiphyte richness. Naturl Geographical Research, 7:156–165.
    Liu W.Y., Fox J.E.D., Xu Z.F., 2002. Nutrient fluxes in bulk precipitation, throughfall and stemflow in montane subtropical moist forest on Ailao Mountains in Yunnan, Southwest China. Journal of Tropical Ecology, 18:527–548.
    Liu Z.G. & Zou X.M., 2002. Exotic earthworms accelerate plant litter decomposition in a Puerto Rican pasture and a wet forest. Ecological Application, 12 (5):1406– 1417.
    Loescher H.W., Gholz H.L., Jacobs J.M., Oberbauer S.F., 2005. Energy dynamics and modeled evapotranspiration from a wet tropical forest in Costa Rica. Journal of Hydrology, xx:1–21.
    Lowman M.D. & Nadkarni N.M., 1995. Forest canopies. California: USA Academic Press.
    McClaugherty C.A. & Linkins A.E., 1990. Temperature responses of enzymes in two forest soils. Soil Biology & Biochemistry, 22(1):29–33.
    Mishra P.C. & Pradhan S.C., 1987. Seasonal variation in amylase, invertase, cellulase activity and carbon dioxide evolution in a tropical protected grassland of Orissa, India, sprayed with carbaryl insecticide. EnvironmentalPollution, 43(4):291–300.
    Mora A.P.D., Ortega-Calvo J.J., Cabrera F., Madejón E., 2005. Changes in enzyme activities and microbial biomass after‘‘in situ’’remediation of a heavy metal-contaminated soil. Applied Soil Ecology, 28:125–137.
    Morel C., Tiessen H., Stewart J.W.B., 1996. Correction for P-sorption in the measurement of soil microbial biomass P by CHCl3 fumigation. Soil Biology & Biochemistry, 28(12):1699–1706.
    Morrill L.G. & Dawson J.E., 1967. Patterns observed for the oxidation of ammonium to nitrate by soil organisms. Soil Science Society of America Proceedings, 31:757–760.
    Nadkarni N.M., 1984. Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica, 16:249–256.
    Nadkarni N.M., 1992. The conservation of epiphytes and their habitats: summary of a discussion at the international symposium on the biology and conserveation of epiphytes. Selbyana, 13:140–142.
    Nadkarni N.M., 1994. Factors affecting the initiation and growth of aboveground adventitious roots in a tropical cloud forest tree: an experimental approach. Oecologia, 100:94–97.
    Nadkarni N.M., 2000. Colonization of stipped branch surfaces by epiphyte in a lower montane cloud forest, Monteverde, Costa Rica. Biotropica, 32(2):358–363.
    Nadkarni N.M., 2001. Enhancement of forest canopy research, education, and conservation in the new millenninm. Plant ecology, 153:361–367.
    Nadkarni N.M., Lawton R.O., Clark K.L., Matelson T.J., Schaefer D., 2000. Ecosystem ecology and forest dynamics. In: Nadkarni N.M. & Wheelwright N.T. (Eds.). Monteverde: Ecology and Conservation of a Tropical Cloud Forest. New York: Oxford University Press, 303–350.
    Nadkarni N.M., Longino J.T., 1990. Invertebrates in canopy and ground organic matter in a Neotropical Montane Forest, Costa Rica. Biotropica, 22(3):286–289.
    Nadkarni N.M. & Matelson T.J., 1989. Bird use of epiphyte resources in Neotropical trees. The Cooper Ornithological Society, 91:891–907.
    Nadkarni N.M. & Matelson T.J., 1991. Fine litter dynamoics within the tree canopy of a tropical cloud forest. Ecology, 72(6):2071–2082.
    Nadkarni N.M. & Matelson T.J., 1992. Biomass and nutrient dynamics of epiphytic litterfall in a Neotropical Montane Forest, Costa Rica. Biotropica, 24(1):24–30.
    Nadkarni N.M., Schaefer D., Matelson T.J., Solano R., 2002. Comparison of arboreal and terrestrial soil characteristics in a lower montane forest, Monteverde, Costa Rica. Pedobiologia, 46:24–33.
    Nadkarni N.M., Schaefer D., Matelson T.J., Solano R., 2004. Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. Forest Ecology and Management, 198:223–236.
    Nadkarni N.M., Solano R., 2002. Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia, 131:580–586.
    Nadkarni N.M. & Wheelwright N.T., 2000. The ecology and conservation of a tropical cloud forest, Monteverde, Costa Rica. New York: Oxford University Press.
    Neill C., Piccolo M.C., Steudler P.A., Melillo J.M., Feigl G..J., Cerri C.C., 1995. Nitrogen dynamics in soils of forests and active pastures in the western Brazilian Amazon basin. Soil Biology & Biochemistry, 27:1167–1175.
    Niemi R.M., Veps?lainen M., Wallenius K., Simpanen S., Alakukku L., Pietola L., 2005. Temporal and soil depth-related variation in soil enzyme activities and in root growth of red clover (Trifolium pratense) and timothy (Phleum pratense) in the field. Applied Soil Ecology, 30:113–125.
    Nishiyama M., Sumikawa Y., Guan G., Marumoto T., 2001. Relationship between microbial biomass and extractable organic carbon content in volcanic and non-volcanic ash soil. Applied Soil Ecology, 17(2):183–187.
    Pankhurst C.E., Hawke B.G., McDonald H.J., Buckerfield J.C., Michellsen P., O’Brien K.A., Gupta V.V.S.R., Doube B.M., 1995. Evaluation of soil biological properties as potential bioindicators of soil health. Australian Jornal Experimental Agriculture, 35:1015–1028.
    Parsons W.F.J., Mitre M.E., Keller M., Reiners W.A., 1993. Nitrate limitation of N2O production and denitrification from tropical pasture and rain forest soils. Biogeochemistry, 2:179–193.
    Paul K.I., Polglase P.J., O’Connell A.M., Carlyle C.J., Smethurst P.J., Khanna P.K., Worledge D., 2003. Soil water under forests (SWUF): a model of water flow and soil water content under a range of forest types. Forest Ecology and Management, 182:195–211.
    Paul K.I., Polglase P.J., Smethurst P.J., O’Connell A.M., Carlyle C.J., Khanna P.K., 2004. Soil temperature under forests: a simple model for predicting soil temperature under a range of forest types. Agricultural and Forest Meteorology, 121:167–182.
    Pearce D., Putz F.E., Vanclay J.K., 2003. Sustainable forestry in the tropics: panacea or folly? Forest Ecology and management, 172:229–247.
    Pócs T., 1980. The epiphytic biomass and its effect on the water balance of two rainforest types in the Uluguru Mountains. Acta Botanica Academiae Scientiarum Hungaricae, 26:143–167.
    Pypker T.G., Bond B.J., Link T.E., Marks D., Unsworth M.H., 2005. The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth Douglas-fir forest. Agricultural and Forest Meteorology, 130:113–129.
    Remsen J.V. & Parker T.A., 1984. Arboreal dead-leaf-searching birds of the Neotropics. The Condor, 86:36–41.
    Robertson G..P., 1984. Nitrification and nitrogen mineralization in a lowland rainforest succession in Costa Rica, Central America. Oecologia, 61:99–104.
    Robertson G.P. & Tiedje J.M., 1988. Deforestation alters denitrification in a lowland tropical rain forest. Nature, 336:756–759.
    Ross D.J., Sparling G.P., Burke C.M., Smith C.T., 1995. Microbial biomass C and N and mineralizable-N in litter and mineral soil under Pinus radiata on a coastal sand: influence of stand age and harvest management. Plant Soil, 175:167–177.
    Rutigliano F.A., Ascoli R.D., De Santo A.V., 2004. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biology & Biochemistry, 36:1719–1729.
    Sahrawat K.L., 1982. Nitrification in some tropical soils. Plant and Soil, 65:281-286.
    Schloter M., Dilly O., Munch J.C., 2003. Indicators for evaluating soil quality. Agriculture, Ecosystems and Environment, 98:255–262.
    Shi W., Yao H.Y., Bowman D., 2006. Soil microbial biomass, activity and nitrogen transformations in a turfgrass chronosequence. Soil Biology & Biochemistry,38(2): 311–319.
    Sillett T.S.,1994. Foraging ecology of epiphyte-searching insectivorous birds in Costa Rica. The Condor, 96:863–877.
    Singh A.N., Raghubanshi A.S., Singh J.S., 2004. Comparative performance and restoration potential of two Albizia species planted on mine spoil in a dry tropical region, Indian Ecological Eng., 22:123–140.
    Spehn E.M., Joshi J., Schmid B., Alphei J., K?rner C., 2000. Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Pant Soil, 224:217–230.
    Stenberg B., Johansson M., Pell M., Sj?dahl-Svensson K., Stenstr?m J., Torstensson L., 1998. Microbial biomass and activities in soil as affected by frozen and cold storage. Soil Biology & Biochemistry, 30(3):393–402.
    Taylor L.A., Arthur M.A., Yanai R.D., 1999. Forest floor microbial biomass across a northern hardwood successional sequence. Soil Biology & Biochemistry, 31:431–439.
    Torn M.S., Trumbore S.E., Chadwick O.E., Vitousek P.E., Hendricks D.E., 1997.
    Mineral control of soil organic carbon storage and turnover. Nature, 389:170–173.
    Trasar-Cepeda C., Leirós M.C., Seoane S., Gil-Sotres F., 2000. Limitations of soil enzymes as indicators of soil pollution. Soil Biology & Biochemistry, 32:1867–1875.
    Vance E.D., Brookes P.C., Jenkinson D.S., 1987a. Microbial biomass measurements in forest soil: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biology & Biochemistry, 19:697–702.
    Vance E.D., Brookes P.C., Jenkinson D.S., 1987b. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19:703–707.
    Vance E.D., Brookes P.C., Jenkinson D.S., 1987c. Microbial biomass measurements in forest soils: Determination of kc values and tests of hypotheses to explain the failure of the chloroform fumigation-incubation method in acid soils. Soil Biology & Biochemistry, 19(6):689–696.
    Vance E.D. & Nadkarni N.M., 1990. Microbial biomass and activity in canopy organic matter and the forest floor of a tropical cloud forest. Soil Biology & Biochemistry, 22:677–684.
    Vance E.D. & Nadkarni N.M., 1992. Root biomass distribution in a moist tropicalmontane forest. Plant and Soil, 142:31–39.
    Veneklaaes E.J., Zagt R.J., Leerdam A.V., Ek R.V., Broekhoven A.J., Genderen M.V., 1990. Hydrological properties of the epiphyte mass of a montane tropical rain forest,Colombia. Vegetatio, 89:183–192.
    Voroney R.P. & Paul E.A., 1984. Determination of kc and kn in situ for calibration of the chloroform fumigation-incubation method. Soil Biology & Biochemistry, 16:9–14.
    Wood C.W., Mitchell R.J., Zutter B.R., Lin C.L., 1992. Lobiolly pine plant community effects on soil carbon and nitrogen. Soil Science, 154:410–419.
    Yanoviak S.P., Walker H., Nadkarni N.M., 2003. Arthropod assemblages in vegetative vs. humic portions of epiphyte mats in a neotropical cloud forest. Pedobiologia, 48:51–58.
    曹同,郭水良, 2000.长白山主要生态系统苔藓植物的多样性研究.生物多样性, 8(1):50–59.
    关松荫等编著, 1986.土壤酶及其研究法.北京:农业出版社, 274–304.
    何振立, 1994.土壤微生物量的测定方法:现状和展望.土壤学进展, 22(4):36–44.
    李景文主编, 1994.森林生态学(第2版).北京:中国林业出版社.
    李宁云,田昆,陆梅,王高升,何志宏, 2006.澜沧江上游典型退化山地土壤酶活性研究.西南林学院学报, 26(2):29–32.
    李延茂,胡江春,汪思龙,王书锦, 2004.森林生态系统中土壤微生物的作用与应用.应用生态学报, 15(10):1943–1946.
    刘文耀, 2000.林冠附生物在森林生态系统养分循环中的作用.生态学杂志, 19(2):30–35.
    邱学忠,谢寿昌, 1998.哀牢山森林生态系统研究.昆明:云南科技出版社.
    孙儒泳,李博,诸葛阳等编, 1993.普通生态学.北京:高等教育出版社.
    孙儒泳,李庆芬,牛翠娟,娄安如, 2002.基础生态学.北京:高等教育出版社.
    王高升,刘文耀,付昀,杨国平, 2008.哀牢山湿性常绿阔叶林林冠和林地腐殖质理化特性、微生物量及酶活性比较.生态学报, 28(3):1328–1336.
    汪庆,贺善安,吴鹏程, 1999.苔藓植物的多样性研究.生物多样性, 7(4):332–339.
    徐海清,刘文耀, 2005a.林冠附生物对水分的截留及对环境的监测.水土保持研究, 12(2):116–120.
    徐海清,刘文耀, 2005b.云南哀牢山山地湿性常绿阔叶林附生植物的多样性和分布. 生物多样性, 13(2):137–147.
    徐海清,刘文耀,沈有信,刘伦辉,李玉辉, 2006.云南石林喀斯特地区半湿润常绿
    阔叶林附生植物的初步研究.广西植物, 26(1):43–48.
    杨万勤,王开运, 2004.森林土壤酶的研究进展.林业科学, 40(2):152–159.
    杨玉盛,董彬,谢锦升,陈光水,高人,李灵,王小国,郭剑芬, 2000.森林土壤呼吸及其对全球变化的响应.中国科技论文在线, 1–11.
    张崇邦,金则新,柯世省, 2004.天台山不同林型土壤酶活性与土壤微生物、呼吸速率以及土壤理化特性关系研究.植物营养与肥料学报, 10 (1):51–56.
    张崇邦,金则新,施时迪, 2003.天台山不同林型土壤微生物区系及其商值(qMB,qCO2).生态学杂志, 22(2):28–31.
    张萍,郭辉军,刀志灵,龙碧云, 2000.高黎贡山土壤微生物生化活性的初步研究. 土壤学报, 37(2):275–279.
    中国科学院南京土壤研究所编著, 1978.土壤理化分析.上海:上海科学技术出版社.
    周礼恺编著, 1987.土壤酶学.北京:科学出版社.
    祖康祺, 1986.土壤.北京:科学普及出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700