用户名: 密码: 验证码:
水泥基材料高温微细观劣化与损伤过程的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以多种配比的水泥基材料为研究对象,运用试验量测和理论分析相结合的方法对水泥基材料高温微细观劣化与损伤过程进行了研究。根据持续温升条件下水泥基材料表面微细观结构的演化规律与力学性能的劣化规律,得出了水泥基材料高温微细观结构的劣化规律,并从水泥基材料微细观形貌、孔隙结构、孔隙分形特征等三个方面对温度影响下水泥基材料微细观结构的劣化规律进行了系统研究,揭示了水泥基材料高温微细观劣化的机理和粉煤灰抗高温的作用机理,得出了不同配比材料抗高温性能的优劣。研究表明,水泥基材料表面微细观结构的劣化在50℃左右开始,100℃是水泥砂浆微细观结构劣化加剧的起始温度,300℃是水泥净浆微细观结构劣化加剧的转折温度,水泥砂浆的劣化程度比水泥净浆严重;温度影响下水泥基材料所发生的一系列物理化学变化是导致材料微细观结构劣化的本质原因,其中水化硅酸钙凝胶的劣化是关键因素;粉煤灰抗高温的有效温度范围在100-400℃之间,在300℃左右抗高温效果最明显。
Microstructure and damage process of cement-based materials exposed to high temperatures are investigated with test measurement and theoretical analysis. Based on the evolution of microstructure on the surface of cement-based materials and the degradation of mechanical properties under the continuous temperature rising, the microstructure deterioration of cement-based materials is derived. And a detailed research is carried out about the deterioration of cement-based materials under high temperatures from the three aspects of the micro-morphology, pore structure and pore fractal characteristics. The deterioration mechanisms of cement-based materials and the mechanism of fly ash resistance to high temperatures are revealed. The performance resisting high temperatures of different ratio materials are discussing. Studies have shown that deterioration of microstructure on the surface of the cement-based materials starts at 50℃around, and 100℃is the starting temperature of mortar increased deterioration, and the threshold temperature of deterioration of microstructure of cement paste is 300℃. Effects of high temperatures on the deterioration of microstructure of mortar were more serious than that of cement paste. A series of physical and chemical changes which happened because of high temperatures in the cement-based materials leads to the deterioration of microstructure. And C-S-H gel is the key factor of the deterioration. The effective temperature range of fly ash resistance to high temperatures is 100-400℃, which works best at 300℃.
引文
1. Leitner A., The fire catastrophe in the Tauern Tunnel:experience and conclusions for the Austrian guidelines [J]. Tunnelling and Underground Space Technology,2001,16:217-223
    2. Tan GL., Fire fighting in tunnels [J]. Tunnelling and Underground Space Technology,2002,17:179-180
    3. Aitcin P. C. The durability characteristics of high performance concrete:a review [J]. Cement and Concrete Composites,2003,25(4):409-420
    4. Kirkland CJ., The fire in the Channel Tunnel [J]. Tunnelling and Underground Space Technology, 2002,17:129-132
    5.钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2002
    6. Brite Euram Ⅲ BRPR-CT95-0065 HITECO, Understanding and industrial application of high performance concrete in high temperature environment [J]. Final Report,1999
    7. Schneider U. Concrete at high temperatures-a general review. Fire Safety J 1988;13(1):55-68
    8. Phan LT, Carino NJ. Review of mechanical properties of HSC at elevated temperature. J Mater Civil Eng ASCE 1998; 10(1):58-64
    9. Jianzhuang Xiao, Gert Konig. Study on concrete at high temperature in China-an overview[J]. Fire safety journal.2004(39):89-103
    10. Chinese specification on heat-resistance design of RC structures in metallurgical industry buildings Chinese. Ministry of Metallurgical Industry. Beijing,1975
    11.姚亚雄,朱伯龙.钢筋混凝土框架结构火灾反应分析[J],同济大学学报,1997,25(3):255~261
    12.肖建庄,王平,朱伯龙.我国钢筋混凝土材料抗火性能研究回顾与分析[J].建筑材料学报,2003,6(2):182~189
    13.过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].清华大学出版社,北京,2003
    14.吴波.火灾后钢筋混凝土结构底力学性能[M].科学出版社,北京,2003
    15.胡海涛,董毓利.高温时高强混凝土强度和变形的试验研究[J].土木工程学报,2002,35(6):44~47
    16.孙伟,罗欣,Chan YN..高性能混凝土的高温性能研究[J].建筑材料学报,2000,3(1):27~32
    17.朋改非,李斌,马强等.火灾高温下高性能混凝土的裂纹扩展与爆裂的关系[J].混凝土,2001,1:15~18
    18.安然,王清远,阎慧群等.高温后混凝土力学性能研究[J].工程结构,2005,25(6):69~70
    19.陈丽红,孟宏睿,林友军.高温作用后混凝土性能试验研究[J].新型建筑材料,2006(9):12~13
    20. Sanjayan G., Stocks L.J.. Spalling of high strength silica fume concrete in fire [J]. ACI Materials Journal, 1993,90(2):170-173
    21. Chan Y. N., Luo X., Sun W.. Compressive strength and pore structure of high performance concrete after exposure to high temperature up to 800 ℃ [J]. Cement and Concrete Research,2000,30 (2):247-251
    22. Wu B, Yuan J, Wang GY. Experimental study on the mechanical properties of HSC after high emperature [J]. Civil Engineering,2000,33(2):8-15
    23. Pierre Kalifa, Francois-Dominique Menneteau, Daniel Quenard. Spalling and pore pressure in HPC at high temperatures. Cement and Concrete Research,2000(30):1915-1927
    24.杜红秀,张雄.HSC/HPC的火灾(高温)性能研究进展[J].建筑材料学报,2003,6(4):391~396
    25. Niu H., Ma Y.F., Yao Y.X.. Fire-resistance research on lightweight aggregate elements [J]. China Building Structure,1996,26(7):29-33
    26. Shen R., Feng L. Y., Rong K.. Assessment of mechanical properties of steel bars after high temperature [J]. Building Science Research Sichuan,1991,17(2):5-9
    27. Lv TG. Experimental investigation on strength and deformation of steel bars at elevated temperature [D]. Beijing:Tsinghua University,1996
    28. Zhou X. G., Wu J. L.. Tests and analysis on bond performance between bars and concrete after high temperature [J]. China Indusrial Constructure,1995,25(5):37-40
    29.过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003
    30. ASTM Designation E119-97, Standard Test Methods for Fire Tests of Building Construction and Materials [S], ASTM Committee E-5,1998
    31. Y. N. Chan, G. F. Peng, M. Anson. Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures [J]. Cement and Concrete Composites,1999, (21):23-27
    32. R. M. Lawson. Fire engineering design of steel and composite buildings [J]. Journal of Constructional Steel Research,2001, (57):1233-1247
    33.李卫,过镇海.高温下混凝土的强度和变形性能的试验研究[J].建筑结构学报,1993,14(1):8~16
    34.时旭东,过镇海.高温下钢筋混凝土受力性能的试验研究[J].土木工程学报,2000,33(6):6~16
    35.陈礼刚,董毓利,李晓东.钢筋混凝土三跨连续板边跨受火性能试验研究[J].工业建筑,2004,34(1):66~68
    36.金贤玉,钱在兹,金南国.混凝土受火时温度分布的试验研究[J].浙江大学学报,1996,30(3):286~293
    37.陈礼刚,董毓利,李晓东.钢筋混凝土三跨连续板中跨受火试验研究[J].建筑结构,2004,34(4):39~41
    38.陆洲导,朱伯龙,周跃华.钢筋混凝土简支梁对火灾反应的试验研究[J].土木工程学报,1993,26(3):47-53
    39.陆洲导,朱伯龙.用有限元法分析预测混凝土梁的耐火性能[J].工程力学,1996(A02):19~23
    40.贺军利.钢筋混凝土简支梁耐火数值计算的新方法[J].哈尔滨建筑大学学报,1998,31(2):14~19
    41.时旭东,过镇海.钢筋混凝土结构的温度场[J].工程力学,1996,13(1):35~43
    42. Khoury GA., Compressive strength of concrete at high temperature:a reassessment [J]. Magazine of Concrete Research,1992,44(161):291-309
    43. Long T. Phan, Nicholas J. Carino. Review of mechanical properties of HSC at elevated temperature[J]. Journal of materials in civil engineering,2008(2):58-64
    44. Hu B.L., Song Y.P., Zhao G.F.. Test on strength and deformation of concrete under complex stress at elevated temperature [J]. Building Science Research Sichuan,1994,20(1):47-50
    45. Nan J.L., Guo Z.H., Shi X.D.. Temperature-stress coupling constitutive relationship of concrete [J]. Journal of Tsinghua University,1997,37(6):87-90
    46. Wu B., Yuan J., Wang G. Y.. Experimental study on the mechanical properties of HSC after high temperature [J]. Journal of Civil Engineering,2000,33(2):8-15
    47. Li W., Guo Z.H.. Experimental investigation on strength and deformation of concrete under high temperature [J]. Journal of Building Structure.1993,14(1):8-16
    48.阎慧群.高温(火灾)作用后混凝土材料力学性能研究[D].四川大学,2004
    49.阎继红.高温作用下混凝土材料性能试验研究及框架结构性能分析[D].天津大学,2000年12月
    50. Xie G. M., Qian Z. Z.. Research on bond and tension behaviour of concrete after high temperature. Journal of Zhejiang University,1998,32(5):597-602
    51.董香军,丁一宁,王岳华.高温条件下混凝土的力学性能与抗爆裂[J].工业建筑,2005,35:703~705
    52.傅宇方,黄玉龙,潘智升,唐春安.高温条件下混凝土爆裂机理研究进展[J].建筑材料学报,2006,9(3):323-329
    53.柳献,袁勇,叶光,Geert De Schutter..聚丙烯纤维高温阻裂机理[J].同济大学(自然科学版),2007,35(7):959~964
    54. Bentz D. P. CEMHYD3D:A three-dimensional cement hydration and microstructure development modeling pachage, Version 2.0 [M]. NISTIR6485. Washington, DC:US Department of Commerce 2000
    55. Breugel K. Simulation of hydration and formation of strcture in hardening cement-based materials [D]. Delft: Delft University of Technology,1991
    56. Sun Z, Ye G, Shah S. P. Microstructure and early-age properties of Portland cement paste-effects of connectivity of solid phases [J]. Materials Journal, ACI,2005,102(2):123-136
    57. Raymond A. Cook, Kenneth C. Hover. Mercury porosity of cement-based materials and associated correction factors [J]. ACI Materials Journal,1993(3-4):152-161
    58. W. C. Hansen. Porosity of hardened Portland cement paste [J]. Journal of the American Concrete Institute, 1963(1):141-156
    59. L. E. Copeland, J. C. Hayes. Porosity of Hardened Portland Cement Pastes [J]. Journal of the American Concrete Institute,1956(1):633-640
    60.钱在兹,吴慧.混凝土高温后的扫描电镜实验研究[J].福州大学学报(自然科学版),24(增版),1996:34-38
    61.吴波,袁杰,杨成山.高温后高强混凝土的微观结构分析[J].哈尔滨建筑大学学报,32(3),1999:8~12
    62.吕天启,赵国藩,林志伸等.高温后静置混凝土的微观分析[J].建筑材料学报,2003,6(2),135~141
    63. Piasta J., Heat deformations of cement phases and microstructures of cement paste [J]. Materials and Structures:research and testing, RILEM,1984,17(102):415-420
    64. Dias WPS., Time dependent deformations of hardened cement paste from 20℃ to 725℃ [D]. Uniwesity of London,1986
    65. Lin WM., Lin TD., Powers-Couche LJ., Microstructure of fire-damaged concrete [J]. ACI Materials Journal, 1996,93(3):199-205
    66. Handoo SK., Agarwal S., Agarwal SK., Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures [J]. Cement and Concrete Research,2002,32(7):1009-1018
    67. Yu-Fang Fu, Yuk-Lung Wong, Chi-Sun Poon, Chun-An Tang, Peng Lin. Experimental study of micro/marco crack development and stress-strain relation of cement-based composite materials at elevated temperatures [J]. Cement and concrete research.2004(34):789-797
    68. Fasseu P.. Eurotunnel-Fire:Analysis of the effect of the fire on the concrete quality [J]. Res. Rep. (No. 96.6002532), Laboratoire Regional des Ponts et Chausse es de Lille, Lille, France,1997
    69. Bouguerra A., Ledhem F. de Barquim RM., Dheilly M., Qu e neudec. Effect of microstructure on the mechanical and thermal properties of lightweight concrete prepared from clay, cement, and wood aggregate [J]. Cement and Concrete Research,1998,28(8):1179-1190
    70. Chan YN., Luo X., Sun W. Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800℃ [J]. Cement and Concrete Research,2000,30:247-251
    71. Wang KJ., Jansen DC., Shah SP. Permeability study of cracked concrete [J]. Cement and Concrete Research, 1997,27(3):381-393
    72. Khoury GA., Majorana CE., Pesavento F., Schrefler BA. Modeling of heated concrete [J]. Magazine of Concrete Research,2002,54(2):77-101
    73. Cheng FP., Kodur VKR., Wang TC. Stress-strain curves for high strength concrete at elevated temperatures[J]. Journal of Materials in Civil Engineering,2004,16(1):84-90
    74.柳献,袁勇,叶光,Geert De Schutter.高性能混凝土高温爆裂的机理探讨[J].土木工程学报,2008,41(6):61~68
    75.柳献,袁勇,叶光,Geert De Schutter.高性能混凝土高温微细观结构演化研究[J].同济大学学报(自然科学版),2008,36(11):1473~147
    76. B.Georgali, P. E. Tsakiridis. Microstructure of fire-damaged concrete. A case study. Cement& Concrete Composites.2005(27):255-259
    77.杨静,覃维祖,粉煤灰对高性能混凝土的影响,混凝土与水泥制品[J].1998(10):14
    78. Caijun Shi, Pozzolanic Reaction and Microstructure of Chemical Activated Lime-fly Ash Pastes [J]. ACI Materials Journal,1998(10):537-545
    79. Yan Peiyu, Yang Wenyan, Mechanical properties and microstructure of composite binders containing shale ash and fly ash [J], Journal of Wuhan University of Technology,1998 (12):1-8
    80. Ivan Janotka, Terezia Nurnbergerova. Effect of temperature on structural quality of high-strength concrete with silica fume. Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology
    81. Lucia Alarcon-Ruiz, Gerard Platret, Etienne Massieu, Alain Ehrlacher. The use of thermal analysis in assessing the effect of temperature on a cement paste [J]. Cement and concrete research,2005(35):609-613
    82. Deng-Fong Lin, Her-Yung Wang, Huan-Lin Luo. Assessment of Fire-Damaged Mortar Using Digital Image Process [J]. Journal of Materials in Civil Engineering,2004,16(4):383-386
    83. Mehmet Sait Culfik, Turan Ozturan. Effect of elevated temperatures on the residual mechanical properties of high-performance mortar [J]. Cement and Concrete Research,2002(32):809-816
    84. P.J. Sullivan, Mellor P. Poucher. The Influence of Temperature on the Physical Properties of Concrete and Mortar in the Range 20℃ to 400℃ [J]. Effect on Temperature on Concrete,2004(25):103-135
    85.董毓利.混凝土非线性力学基础[M].北京;中国建筑工业出版社,1997:173~181
    86. S. Diamond. Aspects of concrete porosity revisited [J]. Cement and Concrete Research.1999(1):1181-1188
    87.唐明.王甲春.李连君.压汞测孔评价混凝土材料孔隙分形特征研究[J].沈阳建筑工程学院学报,2001,17(4):272~275
    88.冯忠绪.水泥混凝土生产的强化技术[J].西安公路交通大学学报,1998,18(4):79~82
    89. P. K. Mehta. Durability-critical issues for the future[J]. Concrete International, July,1997
    90.[英]A.M.内维尔著,李国泮,马贞勇译.混凝土的性能.北京:中国建筑工业出版社,1983
    91.赵铁军.混凝土渗透性[M].北京:科学出版社,2006
    92.赵铁军,刘淑梅.活化掺合料混凝土的研究[J].青岛建筑工程学院学报,1996(1):25~31
    93.吴中伟.混凝土科学技术的反思[J].混凝土与水泥制品,1988(6):4~5
    94. Fasseu P., Eurotunnel-Fire:Analysis of the effect of the fire on the concrete quality, Res. Rep. (No. 96.6002532), Laboratoire Regional des Ponts et Chausse es de Lille, Lille, France,1997
    95.廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996
    96.赵建生.断裂力学及断裂物理[M].湖北武昌:华中科技大学出版社,2003,2
    97. Jianzhuang Xiao, Gert Konig. Study on concrete at high temperature in China-an overview[J]. Fire safety journal.2004(39):89-103
    98.安然,王清远,阎慧群等.高温后混凝土力学性能研究[J].工程结构,2005,25(6):69~72
    99.章熙民.传热学[M].北京:中国建筑工业出版社,2007
    100.李维特,黄保海,毕仲波.热应力理论分析及应用[M].北京:中国电力出版社,2004
    101.范文昭,宋岩丽.建筑材料[M].北京:中国建筑工业出版社,2007
    102. Guang Ye. Experimental sturdy and numeriacal simulation of the development of the microstructure and permeability of cementations materials [D]. The Netherlands:Delft university of technology,2003,11
    103. Mindess, S. And Young, J.F. Concrete, Prentice-Hall, Englewood Cliffs,1981
    104.张洪伟.浅析水泥矿物的水化原理[J].科技咨询导报,2007(2),122
    105.阎培渝,徐志全.水胶比和组成对补偿收缩胶凝材料的水化反应的影响[J].硅酸盐学报,2003,31(8):790~794
    106.阎培渝,韩志国.复合胶凝材料的初期水化产物和浆体结构[J].建筑材料学报,2004,7(2):202~206
    107. Wang A., Zhang C., Su W.. Fly ash effects Ⅲ the microaggregate effect of fly ash [J]. Cement and Concrete Research,2004,34(11):2061-2066
    108. Lawrence P., CYR M., Ringot E.. Mineral admixtures in mortars, effect of inert materials on short-term hydration [J]. Cement and Concrete Research,2003,33(12):1939-1947
    109.阎培渝,张庆欢.含有活性或惰性掺合料的复合胶凝材料硬化浆体的微观结构特征[J].硅酸盐学报,2006,34(12):1491-1496
    110. T. C. Powers. Structure and physical properties of hardened portland cement paste [J]. Am. Ceram. Soc.1985, 4(1):1-6
    111. S.K. Handoo, S. Agarwal, S.K. Agarwal. Physicochemical, mineralogical, and morphological characteristics of concrte exposed to elevated temperatures [J]. Cement and Concrete Research,2002,32:1009-1018
    112.李丽娟,谢伟锋,刘峰等.100MPa高强混凝土高温后性能研究[J].建筑材料学报,2008,11(3):100~104
    113. H. F. W. Taylor. Do Cement Pastes Contain Substituted C-S-H? in:Advances in Cement Manufacture and Use. E. Gartner. New York:Engineering Foundation,1988
    114. Felicetti. R., Gambarova, P.G.1998. Effects of high temperature on the residual compressive strength of high strength siliceous concrete [J]. ACI Materials Journal,1995(4):395-406
    115. Fu. Y.F.. Thermal stresses and associated damage in concrete at elevated temperatures[D]. The Hong Kong Polytechnic University,2003
    116. Harmathy, T.Z.. Thermal properties of concrete at elevated temperatures [J]. ASTM Journal of Materials 5(1): 47-74
    117.屈彦玲,杨茜,秦伟.混凝土细观损伤破坏机理的分析与研究[J].国防交通工程与技术,2008(1):6~9
    118.唐春安,朱万成.混凝土损伤与断裂-数值实验[M].北京:科学出版社,2003:157~159
    119.马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟[J].水利学报,2004(10):27-35
    120.马怀发,书贞,陈厚群.一种混凝土随机凸多边形骨料模拟生成方法[J].中国水利水电科学研究院学报,2006(3):196~201
    121. A R Mohamed, W Hansen. Micro-mechanical modeling of concrete response under static loading-Part 1: Model development and validation [J]. ACI Materials Journal,1999,96(2):196-203
    122. Carniglia S C. Reexamination of experimental Strength-vs-Grain size data for ceramics [J]. Journal of the American Ceramic Society,1972,55(5):243-249
    123. Richter D, Simmons G.Thermal expansion behavior of igneous rocks [J]. Int. J.Rock Mech. Min.Sci& Geomech.Abstr,1974 (11):403-411
    124.左建平,温度-应力耦合作用下砂岩破坏细观机制与强度的实验与理论研究[D].北京:中国矿业大学,2006
    125. Todd T., Simmons G., Baldridge W. S.. Acoustic double refraction in low porosity rocks [J]. Bull. Seismol. Soc. Am.,1973,63:2007-2020
    126. Chen Yong, Wang Chi-Yuen. Thermallly induced acoustic emission in westerly granite [J]. Geophysical Research Letters,1980,7(12):1089-1092
    127. Fineberg J., Marder M.. Instability in dynamic fracture [J]. Physical Reports,1999(313):1-108
    128. Elisabeth Bouchaud. Scaling properties of cracks [J]. Journal of Physics:Condensed Matter,1997(9):4319-4344
    129.李国栋.粉煤灰的结构、形态与活性特征[J].粉煤灰综合利用,1998,3:35~38
    130.沈旦申.粉煤灰混凝土[M].北京:中国铁道出版社,1989.151~153.
    131. Aiqin Wang, Chengzhi Zhang and Wei Sun. Fly ash effects:Ⅲ. The microaggregate effect of fly ash [J]. Cem. Concr. Res.,2004,34(11):2061-2066
    132. Diamond S., Ravina D. and Lovell J. The occurrence of duplex films on fly ash surface [J]. Cem. Concr. Res., 1980,10(2):297-300
    133.王培铭,陈志源.粉煤灰与水泥浆体间界面的形貌特征[J].硅酸盐学报,1997,25(4):475~479
    134.张庆欢.粉煤灰在复合胶凝材料水化过程中的作用机理[D].北京:清华大学
    135. T.C.Powers. Structure and physical properties of hardene Portland cement[J]. J.Am.Ceram.Soc.1985:4(1):1-6
    136. Halamickova P, Detwiler R J. Water Permeability and Chloride Ion Diffusion in Portland Cement Mortars: Relationship to Sand Content and Critical Pore Diameter [J]. Cem. Concr. Res.,1995:25(4):790-802
    137.谢友均,刘宝举,龙广成.水泥复合胶凝材料体系密实填充性能研究[J].硅酸盐学报,2001,29(6):512~517
    138. A.Xu, S.L.Sarkar and L.O.Nilsson. Effect of fly ash on the microstructure of cement mortar [J]. Materials and Structures,1993,26:414-424
    139.唐明.混凝土材料分形特征及应用研究[D].哈尔滨:哈尔滨工业大学材料科学与工程学院.2003:1~4
    140.谢和平.分形-岩石力学导论[M].北京:科学出版社,1997(1):26~27,148~149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700