用户名: 密码: 验证码:
“三下”条带开采局部化灾害监测基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石的局部化变形是岩土材料变形失稳的一个重要特征和致灾前兆。在开采扰动作用下,其局部化变形直接导致了岩石整体强度的降低,使工程岩体的承载能力下降。准确预测局部化失稳是实现安全开采的关键技术之一。要从本质上解决这一技术难题,就需要研究开采扰动区围岩和煤柱局部化破坏规律以及开采引起的局部化失稳与发展过程;利用先进监测方法,合理确定局部化失稳的多元指标信息,寻找条带开采局部化灾害预报与控制方法,这是煤炭安全开采中面临的一个重大的科学问题。本论文基于理论分析、煤柱体介质的物理力学性态声发射测试、物理相似模拟、三维数值模拟、现场监测等方法和手段,系统分析了由于局部自然和技术条件发生异常性的变化而导致局部化灾害,建立了监测体系,指导了生产实践,保证了安全开采。
     (1)现场工程调查表明,典型矿区条带开采区域煤层的赋存环境与顶板结构存在空间变异性。自然或工程的某些条件的局部变化可能导致保护工程的局部区域变形、局部位置强度劣化诱发工程失稳进而演化为灾害。
     (2)利用煤岩局部化损伤与破裂声发射实验,分析了煤样在不同加载与破裂阶段声发射特征统计规律。同时完成了黄土的物理指标与湿陷特征参数实验以及固结不排水条件下的三轴实验,得出了黄土物理指标统计规律,进一步揭示了岩(土)体具有局部化失稳并导致局部性灾害的可能性。
     (3)通过物理相似模拟和数值计算,深入分析了煤柱局部化变形导致局部区域破坏过程及演化规律。研究表明,由于个别缺陷煤柱的破坏,而导致的局部化灾害过程主要包括3个阶段,即缺陷煤柱的破坏阶段、煤柱破坏发展阶段和局部区域突发塌陷阶段。随着煤柱破坏发展,当冒落发展到基岩厚度不足以承担松散覆盖层重量时,在松散覆盖层作用下发生切顶灾害。地表和第四系水体破坏,就会造成矿井水灾。同时,相似材料模拟实验表明,由于存在个别的“缺陷煤柱”,造成应变软化导致局部化灾害的演化过程,可以认识到一些相关的关键技术问题。及早发现“缺陷煤柱”是防止局部化灾害的首要任务;层状围岩体的构成特征,是判断煤柱破坏发展阶段冒落高度的基础;顶板覆盖层含水体赋存层位及富水性,是判断煤柱破坏发展阶段是否发生水灾的依据;控制局部化灾害是优化条带开采设计的技术基础之一;松散层厚度决定局部化灾害的突发性阶段。
     (4)深入分析了条带开采局部化诱发灾害监测的基本内涵以及可监测性,系统地阐述了各个指标信息的监测与信息获取方法,构建了条带开采局部化灾害监测系统。
     (5)基于条带开采的煤柱局部化变形规律的物理相似模拟实验和三维有限差分数值计算,综合对比分析了围岩变形规律,覆岩与煤柱强度劣化特征,确定了合理的条带开采方案及其相关参数。
     (6)利用煤柱局部化松动变形与失稳范围的声波检测方法,定量确定了现场煤柱稳定参数范围。同时对现场地表变形进行监测与分析,为工程防灾减灾预警信息识别提供了可靠依据,最终确保了安全开采。
     本研究对同类矿区的安全开采具有积极有效的指导与借鉴意义。
The deformation localization of the coal/rock is both an important characteristics of coal and destabilization precursor, which directly leads to reduce in its overall strength in the loading process and so as to deteriorate bearing-capacity of the project. It is one of a vital technology for safe mining to accurately predict localization destabilization of coal/rock. Essentially, in order to solve the technical difficulty, the localization destruction regularity of both coal pillars and the mining-induced localization destabilization would have been researched inevitably and development process of the excavation disturbance zone(EDZ) using trip mining in three underground. With the use of advanced monitoring methods, the multi-indicator information about localization destabilization had been reasonably determine and ultimately formed a valid method for localization hazard prediction and control in strip mining. This is a fundamental scientific problem in coal safe mining. Applied to theoretical analysis, characteristics upon acoustic emission(AE) testing of the physical and mechanical properties for coal/rock, AE-base physical simulation experiment, numerical simulation and field monitoring, the systematically analysis localization disasters caused due to the change of localization natural and disturbance conditions. Finally, a system of monitoring had been constructed and applied. Those will guide the practical production and ensures the safety in mining.
     (1) By investigation in field engineering, it indicates that both coal strip mining region and roof structure space variability exists in special coal region coal region. Certain natural or engineering conditions would lead to localization changes in the protective project and strength deterioration in localization areas, thus the evolution of project disaster induced by the project destabilization.
     (2) Applied acoustic emission experiment on localization damage and fracture in coal/rock, statistical analysis regularity of acoustic emission characteristics were finished at different stages of loading and breakdown in coal samples. At the same time, the loess's physical indicators and collapsibility characteristic parameters experiments as well as the tri-axial test under the condition of consolidated/un-drained have been accomplished and obtained the loess's statistical law of physical indicators, so as to further revealed the possibilities of localization instability and leading to localization disasters of rock mass and soil.
     (3) According to physical simulation and numerical calculation, the localization deformation process and evolution process induced by localization deformation in coal pillars in-depth were analyzed. Experimental result have shown that the process of the localization disaster caused by the destruction of individual coal pillars with defects mainly include three stages, i.e., the destruction stage of the coal pillar with defects., the stage of development of destruction in coal pillars, the stage of the sudden collapse. With the development of destruction in coal pillars, in case bedrock thickness is insufficient to support loose overburden weight, the roof fall or mine flood disaster may happen under the action of loose overburden. In addition, physical simulation experimental result shown that the strain soften process would reduce localization hazard due to individual disfigurement pillar. The principal assignment of prevention localization hazard is early discrimination to individual disfigurement pillar. Characterization of sandwich rock-mass is foundation to judge the pillar damage and development and caving height. The aquifer and its position in roof overburden is a evidence to estimate water hazard prone or not in the process of pillar damage.The one of the technical foundation is to optimize trip mining design so as to control localization hazard. The thickness of loose overburden rock-mass is crucial factor of sudden localization hazard.
     (4) Analysis of the content and the possibility of hazard induced by localization in strip mining at various depth, the methods of monitoring and acquisition information about various indicators have systematically formulated and built a local hazard monitoring system in strip mining.
     (5) Based on the physical simulation and numerical calculation according to three-dimensional finite-difference equation with the use of the law of localization deformation in coal pillars by strip mining, comprehensive contrast and analysis of the deformation laws of surrounding rock, strength deterioration characteristics in overburden and coal pillar, the reasonable program by strip-mining and its related parameters have been determined.
     (6) The utilization of acoustic detection method on localization loosen deformation and destabilization scope in coal pillars, the scale of stability parameters in coal pillars were defined quantitatively. At the same time, surface deformation monitoring and analysis on-site provided a valid basis for identifying the early warning information in project so as to ensure the safety mining ultimately.
     The research provides some attestation and reference to other safe mining.
引文
[1]董建国,袁聚云.局部变形及基坑围护理论的探讨[J].地下空间与工程学报,2005,1(4):1-4
    [2]尹光志,鲜学福,王宏图.岩石在平面应变条件下剪切带的分叉分析[J].煤炭学报,1999,24(4):364-367
    [3]张东明.岩石变形局部化及失稳破坏的理论与实验研究[D].重庆大学博士学位论文.2004
    [4]Fang Z,Harrison J P.Numerical analysis of progressive fracture and associated behaviour of mine pillars by use of a local degradation model.Trans.Inst.Min.Metall,2002,111(1):59-72
    [5]王学滨,潘一山.地质灾害中应变局部化现象[J].地质灾害与环境保护,2001,12(4):1-5
    [6]范立民.论保水采煤问题[J].煤田地质与勘探,2005,33(5):50-54
    [7]Kim J.M,Parizek R R.,Elsworth D,etal.Evaluation of folly-coupled strata deformation and groundwater flow in response to longwall mining[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1187-1199
    [8]R.N.Singh,M.Jakeman.Strata monitoring investigations around long-wall panels beneath the cataract reservoir.Mine Water and the Environment,2001,20:55-64
    [9]Abdullah Karaman.Type-curve analysis of water-level changes induced by a long-wall mine.Environment Geology,2001,40:897-901
    [10]F.G.Bell,T.R.Stacey.Mining subsidence and its effect on the environment:some differing examples.Environmental Geology,2000,40(1-2):135-152
    [11]C.J.Booth.Positive and negative impacts of long-wall mine subsidence on a sandstone aquifer.Environmental Geology,1998,34(2-3):223-233
    [12]S.E.T Bullock,EG.bell.Some problems associated with past mining at a mine in the Witbank Coalfield,South Africa.Environmental Geology,1997,33(1):61-71
    [13]Helmut K.Mining subsidence engineering[M].Berlin Springer,1983
    [14]榆林沙炭湾煤矿采煤方法论证[R],西安科技大学,2005
    [15]榆林市鑫源煤矿采煤方法论证[R],西安科技大学,2006
    [16]榆卜界煤矿采煤方法及优化参数研究研究[R],西安科技大学,2008
    [17]榆林市榆阳区三台界煤矿采煤方法及优化参数研究研究[R],西安科技大学,2008;
    [18]榆林市榆阳区金牛煤矿采煤方法及优化参数研究研究[R],西安科技大学,2008
    [19]榆林市榆阳区二墩煤矿采煤方法及优化参数研究[R],西安科技大学,2008
    [20]Mokni M,Desrues J.Strain localization measurements in undrained plane-strain biaxial tests on Hostun RF sand[J].Mechanics of Cohesive-frictional Materials and Structures,1998,(4):419-441
    [21]徐永波,白以龙.动态载荷下剪切变形局部化、微结构演化与剪切断裂研究进展[J].力学进展,2007,37(4):496-516
    [22]鲁晓兵,王曙云,矫滨田,等.岩土介质中局部化变形研究的一些新进展[J].力学进展,2006,36(5):265-269
    [23]唐洪祥,李锡夔.基于Cosserat连续体的CAP弹塑性模型与应变局部化有限元模拟[J].岩石力学与工程学报,2008,27(5):960-970
    [24]栾茂田,王忠昶,杨庆.考虑损伤效应的岩石类材料局部化特性分析[J].岩土力学,2007,28(1):1-6
    [25]韩素平.岩体特性尺度效应与长细比效应的研究[D].太原理工大学博士学位论文,2007
    [26]王学滨.应变软化材料变形、破坏、稳定性的理论及数值分析[D].辽宁工程技术大学博士学位论文,2006
    [27]潘一山,杨小彬,马少鹏,等.岩土材料变形局部化的实验研究[J].煤炭学报,2002,27(3):281-284
    [28]赵冰,李宁,盛国刚.软化岩土介质的应变局部化研究进展[J].岩土力学,2005,26(3):494-498
    [29]伍永平.巷道支架设计中的非对称荷载效应[J].西安矿业学院学报,1997,17(1):1-4
    [30]伍永平.巷(隧)道支护中的非对称荷载效应[J].西安公路交通大学学报,2001,21(4):55-57
    [31]伍永平,柴敬.回采巷道内岩体结构与支护体相互作用分析[J].阜新矿业学院学报,1997,16(1):55-59
    [32]杨更社,张长庆.岩体损伤及检测[M].西安:陕西科学技术出版社,1998
    [33]马少鹏,赵永红,金观昌,等.光测方法在岩石力学实验观测中的应用[J].岩石力学与工程学报,2005,24(10):1794-1799
    [34]黄滚,尹光志,李东伟,等.一种岩石平面应变装置的研制和应用[J].重庆大学学报,2006,29(5):92-95
    [35]T.Szwedzicki.Geotechnical precursors to large-scale ground collapse in mines.International Journal of Rock Mechanics & Mining Sciences,2001,38(7):957-965
    [36]林韵梅.实验岩石力学[M].北京:煤炭工业出版社,1984
    [37]柴敬,邱标,魏世明,等.岩层变形检测的植入式光纤Bragg光栅应变传递分析与应用[J].岩石力学与工程学报,2008,27(12):2551-2556
    [38]王怀文,亢一澜,谢和平.数字散斑相关方法与应用研究进展[J].力学进展,2005,35(2):195-203
    [39]Bieniawski,Z.T.Stability concept of brittle fracture propagation in rock,Engineering and Geology,1967,2(3):149-162
    [40]T.Szwedzicki.Pre-and post-failure ground behaviour:case studies of surface crown pillar collapse.International Journal of Rock Mechanics and Mining Sciences,1999,36:351-359
    [41]蔡美峰,来兴平.岩石基复合材料支护采空区动力失稳声发射特征统计分析[J].岩土工程学报,2003,25(1):51-54
    [42]X.P.Lai,M.F.Cai,M.W.Xie,etal.In situ monitoring and analysis of rock mass behavior prior to collapse of the main transport roadway in Linglong mine,China.International Journal of Rock mechanics & Mining Science,2006,34(4):647-655
    [43]Lai Xingping,Cai Meifeng.Assessment of rock mass characteristics and excavation disturbed zone in the Linxin coal mine beneath the Xitian fiver,China.International Journal of Rock mechanics & Mining Science,2006,34(4):640-647
    [44]腾山邦久(编著),冯夏庭(译).声发射(AE)技术的应用[M].北京:冶金工业出版社,1996
    [45]来兴平.基于非线性动力学采空区稳定性集成监测分析与预报系统研究及应用[D].北京科技大学博士学位论文,北京科技大学,2002
    [46]卫晓君,邹磊,来兴平.基于AE采空区覆岩介质局部化变形特征分析[J].煤炭学报,2008,33(4):382-386
    [47]王怀文,周宏伟,左建平,等.光测方法在岩层移动相似模拟实验中的应用[J].煤炭学报,2006,31(3):278-231
    [48]钱鸣高.岩层控制中的关键层理论[J].煤炭学报,1996,21(3):225-230.
    [49]谢和平.深部高应力下的资源开采与地下工程-挑战与机遇[A].北京:香山科学会议第175次学术讨论会交流材料,2001
    [50]谢和平.矿山岩体力学及工程的研究进展与展望[J].中国工程科学,2003,5(3):31-38
    [51]伍永平.大倾角煤层开采"R-F-S"系统动力学控制基础研究[M].陕西科学技术出版社,2006
    [52]石平五.矿山围岩灾变源及监测系统.陕西省教育厅重点产业化培育项目课题研究总结报告,2005
    [53]朱旺喜,王来贵,王建国.资源枯竭城市灾害形成机理与控制战略研讨[M].北京:地质出版社,2003
    [54]石平五,侯忠杰.浅理煤层矿压显现与岩层控制的研究[R].西安:西安矿业学院,1996
    [55]石平五,侯忠杰.神府浅埋煤层顶板破断规律研究[J].西安矿业学院学报, 1996,16(3):203-207
    [56]黄庆享.浅埋煤层长壁开采顶板结构及岩层控制研究[M].徐州:中国矿业大学出版社,2000
    [57]侯忠杰.浅埋煤层关键层研究[J].煤炭学报,1999,24(4):359-363.
    [58]黄庆享.厚沙土层下采场顶板关键层上的载荷分布[J].中国矿业大学学报,2005,34(3):289-293
    [59]陈祥恩,李德海,勾攀峰.巨厚松散层下开采及地表移动[M]徐州:中国矿业大学出版社,2001
    [60]刘宝琛,廖国华.地表移动的基本规律[M].北京:中国工业出版社,1965
    [61]余学义,张恩强.开采损害学[M].北京:煤炭工业出版社,2004.
    [62]郭文兵,邓喀中概率积分法预计参数选取的神经网络模型[J].中国矿业大学学报,2004,33(3):322-326
    [63]张杰,侯忠杰,石平五.地下工程渗流场与应力场耦合的相似材料模拟[J],辽宁工程技术大学学报,2005,24(5):639-642
    [64]王金庄.开采沉陷若干理论与技术问题研究[J].矿山测量,2003,(3):1-5
    [65]何国清,杨伦,凌赓娣,等.矿山开采沉陷学[M].北京:中国矿业大学出版社,1991
    [66]丁德馨,毕忠伟.开采地面沉陷预测的神经网络方法研究[J].华南大学学报,2002,16(3):1-5
    [67]李凤明,耿德庸.我国村庄下采煤的研究现状,存在问题及发展趋势[J].煤炭科学技术,1999,27(1):10-13
    [68]李文平,叶贵钧,张莱,等.陕北榆神府矿区保水采煤工程地质条件研究[J].煤炭学报,2000,25(5):449-455
    [69]吴侃,王悦汉,邓咯中.采空区上覆岩层移动破坏动态力学模型的应用[J].中国矿业大学学报,2000,29(1):34-36
    [70]谭志祥,卫建清,邓咯.房式开采地表沉陷规律实验研究[J].焦作工学院学报,2003,22(4):255-258
    [71]戴华阳.非充分开采原理与跳采全采技术的应用研究[R],北京科技大学博士后研究报告,2002
    [72]戴华阳,王金庄,蔡美峰.岩层与地表移动的矢量预计方法[J].煤炭学报,2002,20(5):473-478
    [73]韩保民,欧吉坤,柴艳菊.矿区开采沉陷GPS快速观测数据预处理方法[[J].中国有色金属学报,2002,12(5):1035-1038
    [74]隋惠权,范学理.矿区塌陷控制与灾害防治技术研究[J].中国地质灾害与防治学报,2002,13(3):42-47
    [75]戴华阳.基于倾角变化的开采沉陷模型及其GIS可视化应用研究[D].中国矿业大学博士学位论文,2000
    [76]王旭春,黄福昌,张怀新.A.H.威尔逊煤柱设计公式探讨及改进[J].煤炭学报,2002,27(6):604-608
    [77]李凤明.厚煤层不同开采方法地表移动特点及对建(构)筑物的影响[J].煤矿开采,2000,(4):17-19
    [78]谢飞鸿,王锦山.开挖沉陷地表变形可视化计算分析系统研究[J].岩石力学与工程学报,2005,24(7):1202-1206
    [79]赵国旭,谢和平,马伟民.宽厚煤层的稳定性研究[J].辽宁工程技术大学学报,2004,23(1):38-40
    [80]李东升,李德海,宋常胜.条带煤柱设计中极限平衡理论的修正应用[J].辽宁工程大学学报,2003,22(1):7-9
    [81]郭文兵,邓喀中,邹友峰.我国条带开采的研究现状与主要问题[J].煤炭科学技术,2004,32(8):7-11.
    [82]吴立新,王金庄,刘延安等.建(构))筑物下压煤条带开采理论与实践[M].徐州:中国矿业大学出版社,1994
    [83]刘玉德.浅基型浅埋煤层保水开采技术及其适用条件分类[D].中国矿业大学博士学位论文,2008
    [84]Lixin Wu,Chengyu Cui,Naiguang Geng,etal.Remote sensing rock mechanics and associated experimental studies.International Journal of Rock Mechanics and Mining Sciences,2000,37:879-888
    [85]王金庄,张瑜.矿区开采地表下沉率及采动程度关系研究[J].矿山测量,1996,(1):10-13
    [86]郭增长,王金庄,戴华阳.极不充分开采地表移动与变形预计方法[J].矿山测量,2000,27(3):35-37
    [87]郭增长,殷作如,王金庄.随机介质碎块体移动概率与地表下沉[J].煤炭学报,2000,25(3):264-267
    [88]郭增长.条带开采时地面沉陷的基本规律[J].焦作矿业学院学报,1993,12(3):70-77
    [89]郭增长.极不充分开采地表移动预计方法及建筑物压煤开采技术的研究[D].北京:中国矿业大学北京校区,2000
    [90]郑更生,高西林,郭文兵.坤城煤矿村庄下压煤条带开采技术研究[J].煤矿开采,2004,9(3):27-30
    [91]郭广礼,王悦汉,马占国.煤矿开采沉陷有效控制的新途径[J].中国矿业大学学报,2004,33(2):150-153.
    [92]郭文兵,邓喀中,邹友峰.条带煤柱的突变破坏失稳理论研究[J].中国矿业大学学 报,2005,34(1):77-81
    [93]唐又弛,曹再学,朱建军.有限元法在开采沉陷中的应用[J].辽宁工程技术大学学报,2003,22(2):196-198
    [94]郭增长,谢和平,王金庄.条带开采保留煤柱宽度和采出宽度与地表变形的关系[J].湘潭矿业学院学报,2003,18(2):13-17
    [95]邹友峰,胡友建,郭增长.条带开采尺寸设计的弹塑性方法[J].焦作矿业学院学报,1995,14(2):1-9
    [96]杨伟峰,黄治灿.条带开采煤柱稳定性的实验模拟与数值分析-以山东省济宁市太平煤矿为例[[J].中国煤田地质,2005,17(2):29-31
    [97]郭文兵,邓喀中,邹友峰.条带开采地表移动参数研究[J].煤炭学报,2005,30(2):182-186
    [98]张华兴,赵有星.条带开采研究现状及发展趋势[J].煤矿开采,2000,(3):5-7
    [99]胡炳南.条带开采中煤柱稳定性分析[J].煤炭学报,1995,20(2):205-210
    [100]高玮,姜学云.条带开采中条带煤柱塑性区宽度分析[J].山西矿业学院学报,1997,15(2):142-147
    [101]P.R.Sheorey,J.P.Loui,K.B.Singh.Ground subsidence observations and a modified influence function method for complete subsidence prediction.International Journal of Rock Mechanics and Mining Science,2000,37(4):801-818
    [102]刘洋.长壁留煤柱支撑法开采煤柱优化设计及破坏的可监测性研究.[硕士学位论文],西安科技大学,2006
    [103]王学滨.煤岩两体模型变形破坏数值模拟[J].岩土力学,2006,27(7):1066-1071
    [104]王学滨.岩样单轴压缩轴向及侧向变形耗散能量及稳定性分析[J].岩石力学与工程学报,2005,24(5):846-850
    [105]周维垣.高等岩石力学[M].北京:水利电力出版社,1990
    [106]S.S.Peng.Longwall Ming(Second Eidtion).2006.ZSBNZ:978-0-9789383-0-7
    [107]赵纪生,陶夏新.饱和多孔介质中骨架的应变局部化萌生条件[J].应用数学和力学,2005,26(11):1337-1344
    [108]戴福洪,张博明,杜善义.复合材料非对称正交薄层板的固化变形[J].复合材料学报,2006,23(4):560-761
    [109]谢定义.试论我国黄土力学研究中的若干新趋向[J],岩土工程学报,2001,23(1):3-13
    [110]李宁,程国栋,谢定义.西部大开发中的岩土力学问题[J],岩土工程学报,2001,23(3):268-272
    [111]中华人民共和国国家标准-湿陷性黄土地区建筑规范[M].北京:中国建筑工业出版社,2004
    [112]石平五,来兴平,伍永平.复合岩体巷道破坏规律的试验系统研制与应用[J],北京科技大学学报,2002,24(3):231-234
    [113]谭罗荣,孔令伟.特殊岩土工程土质学[M].北京:科学出版社,2006
    [114]刘祖典.黄土力学与工程[M].西安:陕西省科学技术出版社,1996
    [115]王家鼎,张倬元,李保雄.黄土自重湿陷变形的脉动液化机理[J].地理科学,1999,19(3):272-276
    [116]沈珠江.广义吸力和非饱和土统一变形理论[J].岩土工程学报,1996,18(2):1-9
    [117]马立强,张东升,刘玉德,等.薄基岩浅埋煤层保水开采技术研究[J].湖南科技大学学报,2008,23(1):1-5
    [118]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003
    [119]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002
    [120]Xing-ping Lai,Fen-hua Ren,Yong-ping Wu,etal.Comprehensive assessment on dynamic roof instability under fractured rock mass conditions in the excavation disturbed zone.International Journal of Minerals,Metallurgy and Materials,2009,16(1):12-18
    [121]魏世明.岩体变形光纤光栅传感检测的理论与方法研究[D].西安科技大学博士学位论文,西安科技大学,2008
    [122]赵纪生,陶夏新,欧进萍,等.弹塑性介质内的波速变化[J].岩土力学,2008,29(1):149-154
    [123]张洪武,张盛,秦建敏.材料应变局部化分析中不同内尺度律参数间相互作用问题的讨论[J].岩石力学与工程学报,2004,23(19):3245-3251
    [124]Manual of FLAC~(3D)-Fast Lagrangian Analysis of Continua in 3-Dimensions.Itasca Consulting Group Inc.2002
    [125]Xie Heping,Zhonghui Chen,Jiachen Wang.Three-dimensional numerical analysis of deformation and failure during top coal caving,International Journal of Rock Mechanics and Mining Science,1999,36(2):651-658
    [126]谢和平,周宏伟.FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学工程学报,1999,18(4):397-401
    [127]王金安,谢和平.建筑物下厚煤层特殊开采的三维数值分析[J].岩石力学与工程学报,1999,18(1):12-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700