用户名: 密码: 验证码:
裂隙岩体渗流—损伤—断裂耦合理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渗流场中裂隙岩体的力学特性及水岩作用机理一直是岩石力学领域关注的前沿方向。渗流场的存在和改变是导致裂隙岩体工程失稳,甚至导致大规模地质灾害的重要原因之一。裂隙渗透压加剧了岩体裂隙的起裂、扩展、贯通,导致岩体渐进失稳破坏,在宏观上,这一过程也是渗流导致岩体强度劣化损伤和围岩应力场变化的过程,另一方面岩体应力的改变和岩体裂隙的损伤扩展,导致裂隙岩体渗透特性变化,将改变渗流场分布。岩体应力的损伤演化与渗流之间的耦合作用可称为裂隙岩体渗流—损伤—断裂耦合,裂隙岩体渗流—损伤—断裂耦合理论在水利水电工程、采矿工程、边坡工程、隧道工程等领域有广泛的应用前景。
     本文研究课题依托国家自然科学基金资助项目(50774093):水岩作用下裂隙岩体流变—损伤—断裂耦合理论及应用。研究渗透压作用下裂隙岩体断裂力学特性,采用断裂损伤力学理论研究渗流—应力共同作用下裂隙岩体的损伤变形和断裂破坏,从实验研究、理论分析和数值模拟多方面对裂隙岩体渗流—损伤—断裂之间的耦合机理进行了深入系统研究。重点研究了渗透压对裂隙岩体宏细观结构的改造作用及其宏观损伤力学响应;围绕裂隙岩体渗流—损伤—断裂耦合机理和应用研究这一课题,开展以下方面的研究工作:
     (1)研究渗流—应力作用下岩石裂纹的压剪起裂、翼形裂纹扩展、贯通规律;首次建立了渗流—应力作用下的压剪翼形裂纹模型并对模型进行有限元数值验证;建立了渗流—压剪应力作用下岩石多裂纹体的损伤断裂力学模型和裂纹贯通的破坏准则,从理论上揭示了岩体水力致裂裂缝扩展行为规律。
     (2)类岩材料多裂纹体断裂破坏实验与岩石断裂韧度测试。用白水泥砂浆作为相似材料,采用预埋抽条法制作不同空间展布的类岩石裂隙模型试样,对单轴加载下裂隙扩展、贯通方式及强度损伤随裂隙空间展布和裂隙数量变化规律进行了探索;对多系列岩石试件断裂韧度进行双扭实验测试,发现岩石断裂度与杨氏模量存在线性关系。
     (3)采用细观力学方法研究渗流—应力共同作用下裂隙岩体的损伤变形,综合岩体初始损伤和损伤演化特性,建立了裂隙岩体渗流—损伤—断裂耦合本构模型及裂隙岩体渗透张量演化方程;研制了含水裂隙岩体峰前应力—应变的细观损伤力学的计算程序WFRD~2D。
     (4)从岩体结构力学出发,在建立孔隙—裂隙岩体介质的流固耦合精细模型的基础上,提出了基于双重介质裂隙岩体渗流—损伤—断裂耦合的数学模型,该模型中渗流场对损伤场的耦合效应不仅体现在水力梯度以体积力或面力形式作用在应力计算单元上,还体现在渗透压对裂隙岩体刚度矩阵的削弱上。损伤应力场对渗流场的耦合作用体现在岩体和裂隙的渗透系数是应力、翼形裂纹扩展长度和裂隙张开度的函数上,该耦合模型中主干裂隙渗流采用离散介质渗流模型;断续裂隙网络渗流采用拟连续介质渗流模型。
     (5)研制了双重介质渗流—损伤—断裂耦合模型的有限元程序DSDFC.for。提出离散裂隙介质在进行应力分析时采用空间节理单元,在进行渗流分析时采用平面四节点等参单元或三角形单元的离散方法:保证了不同介质之间的水量交换和两类模型接触处结点水头,位移相等。
     (6)在FLAC~3D现有计算模块的基础上,通过FISH研制裂隙岩体渗流—损伤—断裂耦合计算程序(扩展FLAC~3D模型)。开发的计算程序具有强大数值功能,包含了损伤力学计算模块、渗流计算模块及双场耦合分析模块。
     (7)将裂隙岩体渗流—损伤—断裂耦合模型应用于水库蓄水裂隙岸坡的稳定性分析和不衬砌压力隧洞工程中,分析不同蓄水时期,裂隙岸坡渗流场分布、损伤场的演化,探讨了水库蓄水过程中岸坡山体变形机制。耦合分析认为:山体变形是增量渗透力和增量浮托力共同作用于岸坡的结果;对蓄水相对高程较大的裂隙岸坡而言,库水位上升,裂隙渗透水压增加导致岩体裂纹起裂扩展,岩体损伤区增大且向岸坡深部扩展。高渗透压诱发岸坡不利断层带损伤区扩展,甚至贯通可能是导致岸坡失稳的重要原因。研究了不衬砌水工压力隧洞在运行期间的水力劈裂情况、渗流场分布和内水外渗情况,首次提出陡倾地表下不衬砌压力隧洞与裂纹几何特性、力学特性和岩石断裂韧度高度相关的水力劈裂系数的概念。
     (8)高压预注水致裂软化煤层的工业实验和数值研究。潞安矿务局王庄煤矿3#煤层4309工作面煤层进行高压预注水致裂软化煤层的工业实验,提出了该煤层注水软化顶煤方案。注水方案的实施使王庄矿中硬煤综放面顶煤放出率提高17%,粉尘浓度降低56%,产量提高45%,创造了显著经济效益。采用渗流—损伤—断裂耦合理论从渗流力学和岩石力学的角度对煤层注水过程中煤体的润湿过程、煤岩的变形及煤岩损伤区等进行了系统的数值研究;得出高渗透水压作用下煤岩裂隙结构的断裂损伤演化是高压预注水软化煤层的基本力学原理。
The mechanical properties of fractured rock masses in the seepage field and mechanism of water-rock interaction have become one of front direction concerned with rock mechanics field.The exist and change of seepage field is one of important reasons for the instability of rock masses engineering,even leads to large-scale geological disasters.With aggravating the branch cracks seeding,propagation and coalescence,seepage pressure in fractures leads to progressive failure of rock engineering.In the macro level,this process is also the process that seepage lead to the damage of rock mass strength,on the other hand,the change of rock mass stress field and the damage propagation of rock fractures cause the change of seepage properties and accordingly change seepage field distribution.Coupling effect of damage evolution of rock mass stress and seepage can be called coupling of seepage-damage-fracture in fractured rock masses.Coupling theory of seepage-damage-fracture in fractured rock masses has a good prospect of engineering application in the field of hydropower engineering,mining engineering slope engineering and tunnel engineering.
     The studied title is come from National Science Foundation Project (grant number:50774093):Coupling theory of rheology-damage -fracture in fractured rock masses and application under water-rock interaction.Using fracture and damage mechanism theory,the paper has researched the fracture mechanic property of fractured rock masses,and damage deformation of fractured rock masses under the action of seepage-stress.The paper has systematic studied seepage-damage-fracture coupling mechanism with the method of experimental study, theoretical analysis and numerical simulation,the research has focused on the subject of transformation effect of micro-macro analysis structure of fractured rock masses and macroscopic damage mechanical response of fractured rock masses under the action of seepage pressure.Around coupling theory of seepage-damage-fracture in fractured rock masses and application,the paper has carried out the research work involving several aspects as follows:
     (1)Study the rules of compression shear fracture of rock cracks,the wing cracks propagation and the rock bridge coalescence.The.wing cracks model subjected to compression-shear stress under the action of seepage-stress has been established firstly and the FEM numerical validation is aslo demonstrated.The damage fracture mechanics model and the fracture failure criterion of rock multi-crack body has been established.theoretically,the crack propagation subjected to rock mass hydraulic fracture has been revealed.
     (2)The macro-mechanical experiments on regular cracks body in rock-like materials and the test on rock fracture toughness have been made.Using white cement as the similar materials,the rock-like specimens in which the cracks were arranged in different echelon design through pre-installed steel slice were produced,the research on the models of fracture propagation and coalescence,as well as the law of strength variation with the cracks collocation and crack numbers under uniaxial loading were summarized systematically.The fracture toughness of multi-series rock specimens were measured by using the double torsional method,The results showed that there was a linear relation between rock fracture toughness and young modulus.
     (3)Using micromechanics theory,the paper has studied the laws of damage deformation of fractured rock masses subjected to the action of seepage-stress.Synthetically considering initial damage and damage evolution of rock mass,the constitutive model of seepage-damage-fracture coupling in fractured rock masses and permeability tensor evolution equation have been established,the meso-damage mechanics calculation program WFRD~(2D) for the stress-strain behavior of water-bearing fractured rock masses at the pre-peak has been developed.
     (4)From the aspect of rocks structure mechanics.based on the fluid-solid coupling model of fine pore-fissure rock media,the dual mida model for seepage-damage-fracture coupling in fractured rock masses has been put forworded.The coupling effect of seepage field on damage field not only is embodied by the fact that hydraulic gradient acts on stress calculation unit as body force or face force,but also the fact that the seepage pressure weakens element stiffness matrix.The coupling effect of damage field on seepage field is embodied by the fact that the permeability coefficients of the rocks and fractures depend on the stress,the wing cracks length.In coupling model,the discrete hydromechanical model is used to simulate fracture seepage,the equivalent-continuum model of seepage is used to simulate fracture network seepage in rock masses.
     (5)Finite element program DSDFC.FOR for the dual mida model for seepage-damage-fracture coupling in fractured rock masses has been developed,the 3D jointed elements are used to simulate discrete jointed rock mass during the stress analysis of discontinuities and 2D isoparametric elements are used to simulate discontinuities during seepage analysis of discontinuities,So the different media can exchange water,and water head,displacement of nodes which are in the interface between two models are equal.
     (6)Baesd on FLAC~(3D) existing computation modules,the programs of seepage-damage-fracture coupling(extended FLAC~(3D) model) in fractured rock masses has been developed.The developed calculation program has powerful numerical calculation function,including damage mechanics calculation module,seepage calculation module and double-field coupled calculation module.
     (7) The theory of seepage-damage-fracture coupling was applied to the fractured rock bank slope during the rising of water level in reservoir and unlined pressure tunnels.The laws of the distribution of the seepage field and damage field evolution in the fractured rock bank slope are obtained during the impoundment process of the reservoir.A preliminary study on deformation of bank slope during the rising of water level in reservoir also is made.Coupling Analysis holds that deformation of bank slope is due to the interaction of increment seepage force and increment uplift force.For the fractured bank slope with the hight relative elevation of water storage,the increase of seepage pressure in fractures lead to damage zone growth with starting-crack and fracture propagation occuring.High seepage pressure leads to damage zone growth in unfavorable fault zone and even transfixion may be the important reasons which result in bank slope instability.the paper also has studied the hydraulic splitting state,the distribution of the seepage field and the inner water leaking in unlined pressure tunnels.The hydraulic splitting safety factor of pressure tunnel under inclined ground is proposed firstly.The hydraulic splitting safety factor is in high correlation with geometric characteristics and mechanical characteristics of rock cracks and rock fracture toughness.
     (8) Industrial experiment on pressure water injection into coal to fracturing and weakening top coal and numerical study of the progress of coal seam water infusion were developed.Industrial experiment of pressure water injection into coal on the working face 4309 of fully mechanized sublevel caving mining in Lu'an Wangzhuang Mine were developed.The plan of weakening top coal by using water pre-infusion were put forward.The implementation of weakening top coal by using water pre-infusion made the coal face recovery impove 17%,dust concentration decrease 56%,production increase 45%,increased economical benefits of enterprise.The theory of seepage-damage-fracture coupling was applied to pressure water injection into coal,the laws of the coal seam water infusion course,coal mass deformation and damage field evolution in coal rock have systematic studyied form the aspects of seepage mechanics and rock mechanics.The mechanical principle in pressure water injection into coal to fracturing and weakening top coal lies in fracture damage evolution of fissure structure of coal rock subjected to high seepage pressure.
引文
[1]仵彦卿,张悼元.岩体水力学导论[M].重庆:西南交通大学出版社,1995:20-25.
    [2]何翔,冯夏庭,张东晓。岩体渗流-应力耦合有限元计算的精细积分方法[J].岩石力学与工程学报,2006,25(10):2003-2008.
    [3]李宁,陈波,党发宁.裂隙岩体介质温度、渗流、变形耦合模型与有限元解析[J].自然科学进展,2000,10(8):722-728.
    [4]Oda M.An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock mass[J].Water Resources Research,1986,22(13):1845-1856.
    [5]Dvestorp B,Andersson J.Application of the discrete fracture network concept with field data possibilities of model calibration and validation[J].Water Resources Research,1989,25(3)..540-550.
    [6]王兰生,金德濂,骆诗栋.江垭大坝山体抬升的形成机制与趋势分析[J].岩石力学与工程学报,2007,26(6):1107-1115.
    [7]孙可明,潘一山,梁冰.流固耦合作用下深部煤层气井群开采数值模拟[J].岩石力学与工程学报,2007,26(5):994-1001.
    [8]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000,19(9):573-576.
    [9]Jing L,Tsang C F,Stephansson O.DCOVALEX—aninternational cooperative research project on mathematical models ofcoupled THM progresses for safety analysis of radioactive waste repositories[J].Int.J.Rock Mech.Min.Sci.and Geomech.Abstr,1995,32(5):389-398.
    [10]赵阳升,王瑞凤,胡耀青,等.高温岩体地热开发的块裂介质固流热耦合三维数值模拟[J].岩石力学与工程学报,2002,21(12):1751-1755.
    [11]郑少河.裂隙岩体渗流场—损伤场耦合理论研究及应用[D].武汉:中国科学院武汉岩土力学研究所,2000:56-74.
    [12]杨天鸿.岩石破裂过程渗透性质及其与应力耦合作用研究[D].沈阳:东北大学,2000:32-56.
    [13]陈卫忠,朱维申.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报,1999,(12):33-37.
    [14]剡公瑞.岩石混凝土类断裂损伤模型及工程应用[D].北京:清华大学,1994:56-78.
    [15]陈卫忠,朱维申,李术才.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报,1999,12:33-37.
    [16]Homand Etienne,Hoxha D,Shao J F.A continuum damage law for brittle rocks[J].Comput.Geotech.,1998,22(2):135-151.
    [17]Ju J.W,Lee X.Micromechanical damage model for brittle solids,part 1:tensile loadings[J].Joural of Engineering Mechanics.,1991,117(7):1495-1514.
    [18]易顺民,朱海珍.裂隙岩体损伤力学导论[M].北京:科学出版社.2003:55-67.
    [19]Bai M,Meng F,Elsworth D,et al.Analysis of stress-dependant permeability in nonorthogonal flow and deformation field[J].Rock Mechanics and Rock Engineering,1999,32(3):195-219.
    [20]Wang J A,Park H D.Fluid permeability of sedimentary rocks in a complete stress-strain process[J].Engineering Geology,2002,63:291-300.
    [21]Charlez P A.Rock mechanics Ⅱ petroleum applications[M].Paris:Technical Publisher,1991:11-24.
    [22]Yale D P,Lyons S L and Qin G.Coupled geomechanics-fluid flow modeling in petroleum reservoirs coupled versus uncoupled response[C]//Pacific Rocks 2000,Girard:Rotterdam,2000:137-144.
    [23]赵延林,曹平,文有道,等.渗透压作用下压剪岩石裂纹损伤断裂机制研究[J].中南大学学报(自然科学版),2008,39(4):838-844.
    [24]周创兵,陈益峰,姜清辉,等.论岩体多场广义耦合及其工程应用[J].岩石力学与工程学报,2008,27(7):1329-1340.
    [25]Noorishad J,Ayatojjahi M S,Witherspoon P A.Afinite element method for stress and fluid flow analysis in fracturedrock masses[J].Int.J.Rock Mech.Min.Sci.and Geomech.Abstr,1982,19(1):185-193.
    [26]Barton N,Bandis S C.Strength deformation and conductivitycoupling of rock joints[J].Int.J.Rock Mech.Min.Sci.and Geomech.Abstr,1985,22(3):121-140.
    [27]Jing L,Tsang C F,Stephansson O,DCOVALEX—an international cooperative research project on mathematical models of coupled THM progresses for safety analysis of radioactive wasterepositories[J].Int.J.Rock Mech.Min.Sci.and Geomech.Abstr,1995,32(5):389-398.
    [28]Iepabmues C H Z.水在裂隙网络中的运动[M].盛志浩.北京:地质出版社, 1987:12-46.
    [29]Louis C.Rock hydraulics in rock mechanics[M].New York:Verlay Wien,1974:254-325.
    [30]Snow D T.Rock Fracture spacing,openings and porosities[J].J.Soil Mech.,1968,94(11):73-91.
    [31]Jones F O.A Laboratory study of the effects of confining pressure flow and storage capacity in carbonate rocks[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1975,12(4):55-56.
    [32]Gale J E.The effects of fracture type(indeed versus natural) on the stress-fracture closure permeabity relationships[C]//Berkeley.Proc.23th Symp.on Rock Mech.California:Berkeley,1982:21-78.
    [33]Tsang Y W,Witherspoon P A.Hydromechanical behavior of a deformable rock fracture subject to normal stress[J].J.Geophys.Res.,1981,86(b10):9187-9198.
    [34]王媛,徐志英,等.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报,2000,19(2):177-181.
    [35]仵彦卿.裂隙岩体应力与渗流关系研究[J].水文地质工程地质,1995,12(2):30-35.
    [36]陈祖安,伍向阳等.岩渗透率随静水压力变化的关系研究[J].岩石力学与工程学报,1995,14(2):155-159.
    [37]Walsh J B.New model for analyzing the effect of fracture on compressibility[J].J.Geophs.Res,1979,84(B7):3532-3536.
    [38]刘继山.单裂隙受正应力作用时的渗流公式[J]。水文地质工程地质,1987(4):22-28.
    [39]Barton N.Strength deformationed conductivity coupling of rock joints[J].Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.,1985,22(3):121-140.
    [40]周创宾,熊文林.岩体节理的渗流广义立方定律[J].岩土力学,1996,17(4):1-7.
    [41]Walsh J B.Effect of pore pressure and confining pressure on fracture premeability[J].J.Rock Mech.Min Sci&Geomech.Abstr.,1981,18(5):429-435.
    [42]常宗旭,赵阳升,胡耀青,等.三维应力作用下单一裂缝渗流规律的理论与试验研究[J].岩石力学与工程学报,2004,23(4):620-624.
    [43]郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报,1999,18(2):133-136.
    [44]柴军瑞,仵彦卿.岩体渗流与应力相互作用关系综述[C]//中国岩石力学学会. 第六届岩石力学与工程会议论文集.北京:科学出版社,1996:134-139.
    [45]Esaki J.Shear-flow coupling test on rock joints[C]//ISRM.Proc.7th.Int.Conf.ISRM,1992:145-167.
    [46]耿克勤.岩体裂隙渗流水力特性的实验研究[J].清华大学学报,1996,36(1):102-106.
    [47]夏才初,王伟,王筱柔.岩石节理剪切—渗流耦合试验系统的研制[J].岩石力学与工程学报,2008,27(6):1285-1291.
    [48]Jing L,Tsang C F,Stephansson O,DCOVALEX—an international cooperative research project on mathematical models of coupled THM progresses for safety analysis of radioactive wasterepositories[J].Int.J.Rock Mech.Min.Sci.and Geomech.Abstr,1995,32(5):389-398.
    [49]Snow D T.Rock fracture specings,openings,and porosities[J].J.Soil Mech.,1968(4):73-79.
    [50]J.Bear,多孔介质流体动力学[M].李竞生,陈崇希译.北京:中国建筑工业出版社,1983.
    [51]肖裕行,王泳嘉,卢世宗等.裂隙岩体水力等效连续介质存在性的评价[[J].岩石力学与工程学报,1999,18(1):75-80.
    [52]Kulatilake P H,Fellow S W,Bibhuti B.,Panda.Effect of block size and joingeometry on jointed rock hydraulics and REV[J].ASCE Journal of Engineering Mechanics,2000,126(8):850-858.
    [53]La Pointe P L,Wallmann P C,Follin S.Continuum modeling of fractured rock masses:Is it Useful[C]//Barla,Eurock 96,Rotterdam,Balkema,1996:343-350.
    [54]Oda M.An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J].Water Resources Research,1986,22(13):1845-1856.
    [55]周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J]。岩石力学与工程学报,1996,15(1996):338-344.
    [56]陶振宇,沈小莹.库区应力场的耦合分析[J].武汉水利电力学院学报,1988,21(1):8-13.
    [57]常小林.岩体稳定渗流与应力状态的耦合分析及其工程应用初探[C]//中国岩石力学学会.第一届全国计算岩土力学研讨会论文集.成都:西南交通大学出版社.1987,335-343.
    [58]王媛,徐志英,速宝玉.裂隙岩体渗流与应力耦合分析的四自由度全耦合法[J].水利学报,1998(7):55-59.
    [59]王媛,刘杰.裂隙岩体非恒定渗流场与弹性应力场动态全耦合分析[J].岩石力学与工程学报,2007,26(6):1150-1157.
    [60]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [61]赵阳升,万志军,张渊,等.20MN伺服控制高温高压岩体三轴试验机的研制[J].岩石力学与工程学报,2008,27(1):1-8.
    [62]康天合,张建平,白世伟.综放开采预注水弱化顶煤的理论研究及其工程应用[J].岩石力学与工程学报,2004,23(15):2615-2621.
    [63]胡耀青,严国超,石秀伟.承压水上采煤突水监测预测理论的物理与数值模拟研究[J].岩石力学与工程学报,2008,27(1):9-16.
    [64]梁卫国.盐类矿床水压致裂水溶开采的多场耦合理论及应用研究[D].太原:太原理工大学,2004:98-105.
    [65]张有天,陈平,王镭等.裂隙岩体中水的运动与水工建筑物相互作用研究报告[R].南京:南京水利科学研究院,1995.
    [66]宋晓晨,徐卫亚.裂隙岩体渗流模拟的三维离散裂隙网络数值模型Ⅰ-裂隙网络的随机生成[J].岩石力学与工程学报,2004,23(12):2015-2020.
    [67]Cacas M C,Ledoux E,Marsily G,et al.Modeling fracture flow with a stochastic discrete fracture network:calibration and validation Ⅰ:the flow model[J].Water Resour.Res,1990,26(3):479-489.
    [68]Cacas M C,Ledoux E,Marsily G,et al.Modeling fracture flow with a stochastic discrete fracture network:calibration and validation,2.the transport model[J].Water Resour.Res.,1990,26(3):491-500.
    [69]陈剑平,肖树芳,王清.随机不连续面三维网络计算机模拟原理[M].长春:东北师范大学出版社,1995.
    [70]Dershowitz W S,Einstein H H.Characterizing rock joint geometry with joint system models[J].Rock Mechanics and Rock Engineering,1988,21(1):21-51
    [71]Snow D T.The frequency and apertures of fractures in rock[J].Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.,1970,21(7):23-40.
    [72]宋晓晨.裂隙岩体渗流非连续介质数值模型研究及工程应用[D].南京:河海大学,2004:67-98.
    [73]Dverstorp B,Andersson J.Application of the discrete fracture network concept with field data:Possibilities ofmodel calibratin and validation[J].Water Resources Research,1989,25(3):540-550.
    [74]王恩志.岩体裂隙的网络分析及渗流模型[J].岩石力学与工程学报,1993,12(3):214-221.
    [75]张有天,刘中.降雨过程裂隙网络饱和—非饱和、非恒定渗流分析[J].岩石力学与工程学报,1997,16(2):104-111.
    [76]王洪涛,聂永丰,李雨松.耦合岩体主干裂隙和网络状裂隙渗流分析及应用[J].清华大学学报(自然科学版),1998,38(12):23-26.
    [77]杜广林,周维垣,赵吉东.裂隙介质中的多重裂隙网络渗流模型[J].岩石力学与工程学报,2000,19(6):1014-1018.
    [78]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005:68-99.
    [79]柴军瑞.大坝及其周围地质体中渗流场与应力场耦合分析[D].西安:西安理工大学,2000:54-87.
    [80]Jing Lanru,Feng Xiating.Numerical modeling for coupled thereto-hydro-mechanical andchemical processes(THMC) of geological media—international and Chinese experiences[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(10):1704-1715.
    [81]]Jing Lanru,Yue Ma,Zulie Fang.Modeling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis(DDA) method[J].Int.J.Rock Mech.Min.Sci.,2001,38(3):343-355.
    [82]]Jing L.Formulations of discontinuous deformation analysis for block systems[J].Engineering Geology,1998,49(3/4):371-381.
    [83]张国新,武晓峰.裂隙渗流对岩石边坡稳定的影响—渗流、变形耦合作用的DDA法[J].岩石力学与工程学报,2003,22(8):1269-1275.
    [84]Warren T E,Root P J.The behaviour of naturally fractured reservoirs[J].Soc.Pet.Engg.J.,1963,(3):234-255.
    [85]Ualliappan S,Khalili-Naghadeh N.Flow through fissured porous media with deformable matrix[J].Int.J.Number.Method Engg.Sci.,1990,29:1079-1094.
    [86]Bai M,Ma Q,Roegiers J.Dual-porosity behavior of naturally fractured reservoirs[J].International Journal for Numerical and Analytical Methods in Geomechanics,1994,18:359-376.
    [87]黎水泉,徐秉业.非线性双重空隙介质渗流[J].岩石力学与工程学报,2000,19(4):417-420.
    [88]杨栋,赵阳升,段康廉.广义双重介质岩体水力学模型及有限元模拟[J].岩石力学与工程学报,2000,19(2):182-185.
    [89]吉小明,白世伟,杨春和.裂隙岩体流固耦合双重介质模型的有限元计算[J].岩土力学,2003,24(5):748-754.
    [90]赵颖,陈勉,张广清.各向异性双重孔隙介质有效应力定律[J].科学通报, 2004,49(21):2252-2255.
    [91]刘晓丽,梁冰,王思敬,等.水气二相渗流与双重介质变形的流固耦合数学模型[J].水利学报,2005,36(4):405-412.
    [92]赵延林,曹平,赵阳升,等.双重介质温度场-渗流场-应力场耦合模型及三维数值研究[J].岩石力学与工程学报,2007,26(增2):4024-4031.
    [93]易顺民,朱海珍.裂隙岩体损伤力学导论[M].北京:科学出版社,2005:21-24.
    [94]唐春安,杨天鸿,李连崇,等.孔隙水压力对岩石裂纹扩展影响的数值模拟[J].岩土力学,2003,24(增):17-20.
    [95]江涛.基于细观力学的脆性岩石损伤—渗流耦合本构模型研究[D].南京:河海大学,2006:88-96.
    [96]庄宁。裂隙岩体渗流应力耦合状态下裂纹扩展机制及其模型研究[D]。上海:同济大学,2006:56-86.
    [97]Itasca Consulting Group Inc..FLAC3Dusers manual[R].Minneapolis:Itasca Consulting Group Inc.,2004.
    [98]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2004:79-90.
    [99]Xing Zhang,David J.Sanderson,Andrew J.Barker,Numerical study of fluid flow of deforming fractured rocks using dual permeability model[J].Geophys.J.Int.,2002,151:452-468.
    [100]Poston.T.and Stewart,I.Catastrophe Theory and Its Applications[M].London:SanFrancissco,Melbo,1978.
    [101]Lajtal E.Z.Brittle fracture in compression[J].Int.Frac.1977,10(4):12-15.
    [102]刘东燕,严春风,陈彦峰.压剪应力条件下岩体裂纹扩展概率模型研究[J].岩土工程学报,1999,21(1):56-59.
    [103]周小平,王建华 等压剪应力作用下断续节理岩体的破坏分析[J].岩石力学与工程学报,2003,22(9):1437-1440.
    [104]黎立云,许凤光,高峰.岩桥贯通机理的断裂力学分析[J].岩石力学与工程学报,2005,24(23):4328-4334.
    [105]周家文,徐卫亚,石崇.基于破坏准则的岩石压剪断裂判据研究[J].岩石力学与工程学报,2007,26(6):1194-1201.
    [106]R.H.C.Wong,K.T.Chaua,C.A.Tang,et al.Analysis of crack coalescence in rock-like materials containing three flaws PartⅠ--experimental approach[J].International Journal of Rock Mechanics & Mining Sciences,2001,38(7):909-924.
    [107]C.A.Tang,P.Lina,R.H.C.Wong,et al.Analysis of crack coalescence in rock-like materials containing three flaws PartⅡ--numerical approach[J].International Journal of Rock Mechanics & Mining Sciences,2001,38(5):925-939.
    [108]R.H,C.Wong,C.A.Tang,K.T.Chau,et al.Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression[J].Engineering Fracture Mechanics,2002,69(17):1853-1871.
    [109]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J]。岩石力学与工程学报,2000,19(9):573-576.
    [110]Keivan N.Discrete versus smeared versus element-embedded crack models on ring problem[J].Journal of Engineering Mechanics,2000(4):307-314.
    [111]Vandamme M,Roegiers J C.Poroelasticity in hydraulic fracturing simulators[J].JPT,1990:1199-1203.
    [112]Dournary E,Mclennan.Poroelastic concepts explain some of the hydraulic fracturing mechanism[J].SPE,1990,152-162.
    [113]孙粤琳,沈振中,吴越健.考虑渗流-应力耦合作用的裂缝扩展追踪分析模型[J].岩土工程学报,2008,30(2):199-204.
    [114]汤连生,张鹏程,王洋.水作用下岩体断裂强度探讨[J].岩石力学与工程学报,2004,23(19):3337-334.
    [115]Lemaitre J.How to use damage mechanics[J].Nuclear Engineering and Design,1984,80:233-245.
    [116]Chaboche J L.Continum damage mechanics-Atool to describe phenomena before crack ignition[J].Nuclear Engineering and Design,1981,76:233-247.
    [117]Krajcinovic D,Fonseka G U.The continuous damage theory of brittle materials.Trans[J].J.Appl.Mechanics,1981,48:809-824.
    [118]Dougil J W,lau J C,Butt N J.Toward a theoretical model for progressive failure and softening in rock concrete and similar materials[J].Mech.In Engng.,1976:335-335.
    [119]Dragou Z,Mroz A.Continum model for plastic-brittle bechavior and concrete[J].Int.Engng.Sci.,1979,17:121-137.
    [120]Kawamoto T.Damage and fracturing of discontinous rock mass and jointed rockmass[J]Int.Symp.on Engng.In Complx Rock Formations,1985:506-513.
    [121]Cai M,Horri.H.A constitutive model and FEM analysis of joined rockmass[J].Int.Rock.Min.Sci.Gemech.Abstr.,1933,30(4):212-215.
    [122]Swoboda Q,Yang.Damage propagation model and its application to rock engineering problem[C]// Int.Cong.Rock Mechanics Proceeding,Tokyo,1995:
    159-163.
    
    [123]李广平,陶震宇.真三轴条件下的岩石细观损伤力学模型[J].岩土工程学报,1995,17(1):21-25.
    [124]徐靖南,朱维申,白世伟.压剪应力作用下多裂隙岩体的力学特性-断裂损伤演化方程及试验验证[J].岩土力学,1994,15(2):1-11.
    [125]李新平,朱瑞赓,朱维申.裂隙岩体的损伤断裂理论与应用[J].岩石力学与工程学报,1995,14(3):236-245.
    [126]周小平,卸荷岩体本构理论及其应用[M].北京:科学出版社,2007:21-75.
    [127]朱珍德,孙钧.裂隙岩体渗流场与损伤场耦合模型研究[J].长江科学院院报,1999,16(5):22-27.
    [128]韦立德,杨春和,徐卫亚.拉应力条件下岩石细观力学本构模型和渗透系数张量研究(Ⅰ):各向异性损伤本构模型[J].岩土力学,2005,26(5):779-783.
    [129]Nemat-Nasser S,Horii H.Compression-induced nonplanar crack extension with application to splitting,exfoliationand rockburst[J].J.Geophys Res.,1982,87(B8):6805-6821.
    [130]Ingraffea A R,Heuze F E.Finite element models for rock fracture mechanics[J].Int.J.Number Anal Meth Geomech,1980,4(4):25-43.
    [131]Huang J F,Chen G L,Zhao Y H,et al.An experimental study of the strain field development prior to failure of a marble plate under compression[J].Tectonoohvsics,1990,175:269-284.
    [132]Shen B,Stephansson O,Einstein H H,et al.Coalescence of fractures under shear stresses in experiments[J].J Geophys Res.,1995,100(84):5975-5990.
    [133]张平.裂隙介质静动应力条件下的破坏模式与局部化渐进破损模型研究[D].西安:西安理工大学,2004:66-94.
    [134]刘志军,胡耀青.承压水上采煤断层突水的固流耦合研究[J].煤炭学报,2007,32(10):1046-1050.
    [135]李宗翔,潘一山,题正义,等.木城涧矿煤层高压注水的数值模拟分析[J].岩石力学与工程学报,2005,24(11):1895-1899.
    [136]申晋,赵阳升,段康廉.低渗透煤岩体水力压裂的数值模拟[J].煤炭学报,1997,22(6):580-584.
    [137]杨延毅,周维垣.裂隙岩体的渗流.损伤耦合分析模型及其工程应用[J].水利学报,1991,5:19-27.
    [138]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学 报,1994,13(4):299-308.
    [139]耿克勤,吴永平.拱坝和坝肩岩体的力学与渗流耦合分析实例[J].岩石力学与工程学报,1997,16(2):125-131.
    [140]顾冲时,吴中如.渗流影响下坝体和岩基应力场的分析模型研究[J].水电能源科学,1999,17(1):1-4.
    [141]王媛,速宝玉,徐志英.等效连续裂隙岩体渗流与应力全耦合分析[J].河海大学学报,1998,26(2):26-30.
    [142]赵延林,曹平,汪亦显,等.裂隙岩体渗流—损伤—断裂耦合模型及应用[J].岩石力学与工程学报,2008,27(8):477-486.
    [143]杨天鸿,唐春安,朱万成等.岩石破裂过程渗流与应力耦合分析[J].岩土工程学报,2001,23(4):489-493.
    [144]Weijers L,Pater C J,Hagoort J.A new mechanism for hydraulicinitiation[C]//Aubertin,Hassani Mitri ed.Rock Mechanics.Rotterdam:Balkeman,1996,1253-1260.
    [145]Sartori M,Baillifard F,Jaboyedoff M,Rouiller JD.Kinematics of the 1991Randa rockslides(Valais,Swizerland)[J].Nat.Hazards Earth Syst.Sci.,2003,28(3):423-33.
    [146]Cappa F,Guglielmi Y,Fenart P,etal.Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic and mechanical measurements[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(2):287-306.
    [147]梁冰,薛强,王起新.边坡失稳系统的岩体与水固流耦合作用机理研究[J].中国地质灾害与防治学报,2001,12(1):18-21.
    [148]蔡美峰,冯锦艳,王金安.露天高陡边坡三维固流棍合稳定性[J].北京科技大学学报,2006,28(1):6-11.
    [149]刘新喜.库水位下降对滑坡稳定性的影响及工程应用研究[博士论文][D].北京:中国地质大学,2003.
    [150]张有天,张武功。隧洞水荷载的静力计算[J].水利学报,1980,6:52-62
    [151]Kelsall P C,Case J B,Chabannes C R.Evaluation ofexcavation-induced changes in rock permeability[J].Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.,1984,21(3):37-46.
    [152]杨林德,丁文其。渗水高压引水隧道衬砌的设计研究[J].岩石力学与工程学报,1997,16(2):112-117.
    [153]李廷春,李术才,陈卫忠.厦门海底隧道的流固耦合分析[J].岩土工程学 报,2004,26(3):397-401.
    [154]赵延林、曹平,汪亦显.双重介质固气耦合模型及在含夹层盐穴储气中的应用[C]//中国岩石力学学会.第十次全国岩石力学和工程学术大会议论文集.北京:科学出版社,2008:268-274.
    [155]郭少华,孙宗颀,谢晓晴.压缩条件下岩石断裂模式与断裂判据的研究[J].岩土工程学报,2002,24(3):304-308.
    [156]黄明利.岩石多裂纹相互作用破坏机制的研究[D].沈阳:东北大学,2000.
    [157]孙宗硕,饶秋华,工桂尧.剪切断裂韧度(KII)确定的研究[J].岩石力学与工程学报,2002,.21(2):199-203.
    [158]周群力.岩石压剪判据及其应用[J].岩土工程学报,1987,9(6):67-73.
    [159]Ashby M F,Hallam S D.The failure of brittle solids containing small cracks under compressive stress states[J].Acta Metall,1986,34(3):497-510.
    [160]Horii H,Nemat-Nasser S.Compression-induced microcrack growth in brittle solids.,axial splitting and shear failure[J].J.Geophys.Res.,1985,90:3105-3125.
    [161]Horii H,Nemat-Nasser S.Brittle failure in compression.,splitting,faulting and brittle-ductile transition[J].Phil.Trans.R.Soc.Lond,1986,139(A):337-374.
    [162]Steif P S.Crack extension under compressive loading[J].Engng.Fract.Mech.,1984,20(3):463-473.
    [163]Ashby M F,Hallam S D.The failure of brittle solids containing small cracks under compressive stress states[J].Acta Metall,1986,34:497-510.
    [164]Lehner F,Kachanov M.On modeling of “winged” cracks forming under compression[J].Int.J.Fract.,1996,77:65-75.
    [165]Baud P,Reuschle T,Charlez P.An improved wing crack model for the deformation and failure of rock in compression[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1996,33(5):539-542.
    [166]王元汉,徐钺,谭国焕,等.改进的翼形裂纹分析计算模型[J].岩土工程学报,2000,22(5):612-615.
    [167]Kemeny,J M.A model for nonlinear rock deformation under compression due to subcritical crack growth[J].Int.J.Rock Mech.And Min.Sci.,1991,28(6):459-467.
    [168]Kemeny J M.,Cook N G W.Crack models for the failure of rocks in compression,Constitutive laws for engineering materials:Theory and Applications[J].vol.Ⅱ,Elsevier,New York,1987,879-887.
    [169]袁海平.诱导条件下节理岩体断裂理论与应用研究[D].长沙:中南大学资源与安全工程学院,2006.
    [170]Shen B,Stephansson O.Coalescence of fractures under shear stresses in experiments[J].Journal of Geophysical Research,1995,100(B4):5975-5990.
    [171]徐靖南,朱维申.压剪应力作用下共线裂纹的强度判定[J].岩石力学与工程学报,1995,14(4):306-311.
    [172]郭少华,孙宗颀,谢晓晴.压缩条件下岩石断裂模式与断裂判据的研究[J].岩土工程学报,2002,24(3):304-308.
    [173]李贺.岩石断裂力学[M].重庆:重庆大学出版社,1987.
    [174]Ouchterlony F.Review of fracture toughness testing of rock[J].Svede of Report DS,1980(1):15-18.
    [175]孙训方编,材料力学[M].北京:人民教育出版社,1979.
    [176]Chevalier J,Saadaoui M,Olagnon C,et al.Double-torsion testing a 3Y-TZP ceramic[J].Ceramics International,1996,22(2):171-177.
    [177]Saadaouia M,Reynauda P,Fantozzia G et al.Slow crack growth study of plaster using the double torsion method[J].Ceramics International,2000,26(4):435-439.
    [178]Chevalier J,Olagnon C,Fantozzia G,et al.Subcritical crack growth and thresholds in a 3Y-TZP ceramin under static and cyclic loading conditions[J].Ceramics International,1997,23(3):263-266.
    [179]王学成,全志浩,李光新.双扭法及其在脆性材料力学性能评定中的应用[J].材料科学进展,1989,3(5):436-441.
    [180]于骁中.岩石和混凝土断裂力学[M]。长沙:中南工业大学出版社,1991.
    [181]赵晓明.岩石断裂韧度研究[D].长沙:中南工业大学.1987.
    [182]易小平.辉长岩和大理岩短棒试件测试中声发射(AE)特性[C]//全国第四届矿山岩石力学学术讨论会论文.1988.
    [183]罗平平,陈蕾,邹正盛.空间岩体裂隙网络灌浆数值模拟研究[J].岩土工程学报,2007,29(12):1844-1848.
    [184]Call R D.Estimation of jointed set characteristicas from surface mappings[C]//Proc.17th U.S.Symp Rock Mec,1976(2B):21-29.
    [185]Cruden D E.Describing the size of discontinuities[J].Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.,1977,14(3):133-137.
    [186]Priest S.D.,J.A.Hudson.Estimation of discontinuity spacing and trace length using scanline survey[J].Int.J.Rock Mech.Min.Sci.and Gromech.Abstr.,1981,18(3):183-197.
    [187]Baecher G..B.,N.A.Lanney,H.H.Einstein.Statistical description of rock properties andsampling[C]//Proc.18th US Symp.Rock Mechanics,1978(5c):1-8.
    [188]Barton N R,V.Choubey.The shear strength of jionts in theory and practice[J].Rock Mechanics,1977(10):1-54.
    [189]Lee Y H.The fractal dismension as a measure of the roughness of discontinuity profiles[J].Int.J.Rock Mech.Min,Sci.,1990,27(6):395-404.
    [190]Sakellariou M S.On the fractal character of rock surface[J].Int.J.Rock Mech.Sci.,1991,28(6):123-126.
    [191]谢和平.岩石节理粗糙系数(JRC)的分形估计[J].中国科学(B 辑),1994(5):123-128.
    [192]周创兵,熊文林.不连续面的形维数及其在渗流分析中的应用[J].水文地质与工程地质,1996(6):1-5.
    [193]Charlaix E.Percolation Threshold of a random array of disics:a Numerical Simulation[J].J.Phys.A.,1986,19(7):533-536.
    [194]Wittke W,Leonhards G A.Modified hypothesis for failure of Maplassrt Dam Engineering[J].GEOLOGY,1987(24):367-394.
    [195]Lomize G.M.Flow in Fractured Rocks[M].Moscow:Gesenergoizdat,1951.
    [196]Romm E.S.Flow characterietics of fractures rock[M].Moscow:Nedra,1966.
    [197]Louis.C Rock hydraulics in rock mechanics[M].New York:Verlay Wien,1974:254-325.
    [198]夏才初,王伟,王筱柔.岩石节理剪切—渗流耦合试验系统的研制[J].岩石力学与工程学报,2008,27(6):1285-1291.
    [199]蒋宇静,王刚,李博,等.岩石节理剪切渗流耦合试验及分析[J].岩石力学与工程学报,2007,26(11):2253-2259.
    [200]曾亿山,卢德唐,曾清红,等.单裂隙流.固耦合渗流的试验研究[J].实验力学,2005,20(1):10-16.
    [201]梁卫国,赵阳升.岩盐矿床群井水力压裂连通理论与实践[J].岩石力学与工程学报,2002,21(增2):2579-2582.
    [202]Cook N G W.Natural joints in rock mechanical,hydraulic and seismic behavior and properties under normal stress[J].Int.J,Rock Mech.Min.Sci.& Geomech.Abstr.,1992,29(3):198-223.
    [203]Rice J.R.Inelastic constitutive relations for solids:an internal-variable theory and its application to metal plasticity[J].Joural of the Mechanics and Physics of Solids,1971,19(6):433-455.
    [204]Caia M.,Kaisera P.K,Tasaka Y.,etal.Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J].International Journal of Rock Mechanics & Mining Sciences,2004,41(5):833-847.
    [205]杨永杰,楚俊,郇冬至,等.煤岩固液耦合应变-渗透率试验[J].煤炭学报,2008,33(7):760-764.
    [206]李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程[J].岩土工程学报,1995,17(2):13-19.
    [207]Song Li,E.Z.Lajtai.Modeling the stress-strain diagram for brittle rock loaded in compression[J].Mechanics of Materials,1998,30(3):243-251.
    [208]Kemeny,J.M.,Cook,N.G.W.Crack models for the failure of rocks in compression,Constitutive laws for engineering materials:Theory and Applications[J].vol.Ⅱ,Elsevier,New York,1987,879-887.
    [209]李术才,朱维申.复杂应力状态下断续节理岩体断裂损伤机理研究及其应用[J].岩石力学与工程学报,1999,18(2):142-146.
    [210]Itasca Consulting Group Inc..FLAC3Dusers manual[R].Minneapolis:Itasca Consulting Group Inc.,2004.
    [211]Clark J B.A hydraulic process for increasing the productivity of wells[J].AIME,1949,1:186-198.
    [212]Ito T,Evans K,Kawai K,et al.Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress[J].Int.J.Rock Mech.Min.Sci.,1999,36(6):811-826.
    [213]黄洪.龙潭水电站不衬砌隧洞设计与放空检查[J].江西水利科技,1999,25(1):51-55.
    [214]周武平.大断面不衬砌水工隧洞的理论与实践[J].四川水力发电,1995.3(1):69-73.
    [215]李协生,不衬砌引水隧洞布置与设计中的若干问题[J].甘肃水利水电技术,1994,10(2):11-18.
    [216]刘莉芳译.卡塞克楠工程无衬砌压力引水隧洞段渗漏的估计[J].水利水电快报,2002,23(18):1-7.
    [217]中华人民共和国水利行业标准编写组.水工隧洞设计规范(SL279-2002)[S].北京:中国水利水电出版社,2003.
    [218]谢和平,王家臣,陈光辉.坚硬厚煤层综放开采爆破破碎顶煤技术研究[J].煤炭学报,1999,24(4):350-354.
    [219]金龙哲,宋存义,蒋仲安.压力渗流润湿煤体的试验研究[J].安全与环境学报,2001,1(5):19-21.
    [220]吴健,张勇.顶煤裂隙的发展趋势及其对注水防尘的影响[J].煤炭学报,1998,23(6):580-584.
    [221]赵延林,曹平,文有道,等.渗透压作用下压剪岩石裂纹损伤断裂机制研究[J].中南大学学报(自然科学版),2008,39(4):838-844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700