用户名: 密码: 验证码:
应变强化奥氏体不锈钢制压力容器工艺研究及其在典型介质环境中的性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固溶态奥氏体不锈钢具有较高的抗拉强度和极好的塑性指标,但因其屈服强度较低而使通常设计制造的奥氏体不锈钢制压力容器壁厚较厚,材料利用率低,经济性较差。采用应变强化技术来制造奥氏体不锈钢容器能显著提高材料的屈服强度,减薄容器的设计壁厚,减少容器的用钢消耗,从而可以实现压力容器的轻型化,同时容器的安全性也能得到保证,因此应变强化技术是一种节材降耗的绿色制造技术。
     本文对应变强化技术应用于奥氏体不锈钢容器的相关问题进行了系统的理论和试验研究。分析了应变强化对奥氏体不锈钢材料的常温、低温和高温力学性能的影响;设计并制造了奥氏体不锈钢试验容器,讨论了容器应变强化的时机、处理方式、压力控制及应变测量方法等问题;通过有限元模拟了容器的应变强化过程,得到了容器关键部位的应力应变规律;探讨了应变强化对奥氏体不锈钢材料在高温氯离子环境中应力腐蚀开裂敏感性的影响及其对材料高温棘轮行为的影响规律。主要研究内容如下:
     讨论了应变强化过程中的两个关键工艺参数应变速率和应变量对奥氏体不锈钢力学行为的影响。研究结果表明,强化过程中应变速率不宜过慢,否则材料会出现锯齿形屈服效应,从而对材料的使用性能造成不利影响。室温下把应变量控制在10%以下,在显著提高S30408奥氏体不锈钢屈服强度的同时,对材料的常温和低温力学性能影响不大,且强化效果在100~400℃温度区间内仍保持较好。
     以J积分作为评价指标,测定了应变强化前后含缺陷奥氏体不锈钢焊缝金属的常温断裂韧性,得到了原始态和强化态焊缝金属的启裂韧度J1C的表观值。与原始焊缝性能相比,8%强化态焊缝金属的屈服强度仅提高了19%,而J1C表观值却下降了近33%。这表明焊缝的性能对应变强化效应比较敏感,因此对应变强化容器的焊接工艺、焊接质量和焊后检验要求更加严格。
     按照现行应变强化技术标准设计并制造了低温操作下的奥氏体不锈钢试验容器,并对其实施了应变强化过程。采用应变片、百分表和周长测量三种方法来测量和控制容器应变强化过程中的应变量,并对比了三种方法的优劣及适用条件。由应变强化容器的爆破试验结果可知,应变强化处理后的容器仍保留了良好的塑性储备,说明容器经应变强化处理后的使用安全性可以保证。
     基于材料非线性和几何非线性建立了奥氏体不锈钢容器应变强化过程的有限元模型,在验证有限元模型可靠性的基础上,对容器的应变强化过程进行数值模拟,得到了容器关键部位的受力情况和变形规律。
     针对奥氏体不锈钢容器在腐蚀性介质环境中服役易发生应力腐蚀开裂的情况,采用慢应变速率试验方法,研究了应变强化前后奥氏体不锈钢母材和焊接接头在高温氯离子环境中的应力腐蚀敏感性变化情况。研究发现,随着应变量的增加,S30408奥氏体不锈钢母材的应力腐蚀敏感性呈上升趋势,其中8%强化态母材试样的应力腐蚀敏感性指数比固溶态材料高出近一倍。由于奥氏体不锈钢焊缝中含有一定量的铁素体,因而在焊缝处断裂的试样应力腐蚀敏感性相对较低。研究还发现应变强化有利于改善焊缝中存在的焊接残余应力。
     开展了应力控制模式下的疲劳试验,研究应变强化对奥氏体不锈钢高温棘轮行为的影响。研究发现,固溶态材料的棘轮行为随着应变幅的增加愈加显著,而材料经应变强化后,棘轮行为可以得到明显的抑制,并且随着预应变量的增加,棘轮受抑制程度愈加明显,且应力控制下的疲劳寿命也逐步提高。在Hull-Rimmer理论的基础上,建立适用于不同预应变强化量条件下的奥氏体不锈钢高温疲劳寿命预测方程,预测结果与试验结果吻合较好。
Solid solution austenitic stainless steel has high tensile strength and good plasticity, but exhibits low yield strength, thus causing thicker wall thickness of austenitic stainless pressure vessel designed by conventional method with lower material utilization and poorer economic benefit. Cold stretching technique can improve the yield strength of material and thereby reduce the wall thickness of vessel to achieve lightweight, while the security can be guaranteed, so it is a kind of green manufacturing technology.
     In this paper, systematic theoretical and experimental studies were carried out for cold stretching technique applied to austenitic stainless steel pressure vessel. The effects of cold stretching on mechanical properties of austenitic stainless steel at room temperature, cryogenic and elevated temperature were investigated respectively. Test vessels were designed and manufactured, and the time, treatment mode, pressure controlling and strain measurement methods of cold stretching were discussed. The distributions of stress and strain on the key parts of the vessel during cold stretching were obtained by finite element simulations. The influence of cold stretching on stress corrosion cracking susceptibility at high-temperature chloride environment for austenitic stainless steel was discussed, and its effect on ratcheting behavior of the material at high-temperature was also summarized. All investigations can be concluded as follows:
     Strain rate and strain level were two key parameters in the process of cold stretching and their effects on the mechanical behavior of austenitic stainless steel were investigated. The results show that the strain rate should not be too slow, otherwise the serrated yielding effect will occur which have an adverse effect on the properties of the material. When strain level was limited below10%at room temperature, it has little effect on the mechanical properties of S30408austenitic stainless steel while its yield strength can be improved significantly and the stretching effect in the temperature range of100~400℃will still be maintained.
     J-integral was taken as evaluation index to determine the fracture toughness of austenitic stainless steel weld metal with defect before and after cold stretching, and their apparent values of initiation toughness J1C at room temperature were obtained. Compared with the original weld metal, The yield strength of stretched one (8%level) just increased by19%, whereas its apparent value of J1C dropped nearly33%, which indicate that the properties of weld metal are sensitive to the cold stretching effect, and thus more strictly requirements should be implemented for welding process, welding quality and post welding inspection.
     The austenitic stainless steel cryogenic test vessels were designed and manufactured according to the current standard of cold stretching. The stretching processes were enforced and three measurements such as resistance strain gauge, dial indicator and circumference measurement were used to measuring and controlling hoop strain of the vessel. The merits and demerits of three methods were compared, and their respective applicable conditions were also discussed. The burst tests for cold stretched vessels demonstrate that the vessel still maintain good plastic reservation and the safety of the cold stretched vessel can be guaranteed.
     The finite element model of cold stretching process for austenitic stainless steel pressure vessel was established on the basis of material and geometric nonlinearity. The reliability of the FE model was validated before simulation, and then the variation of stress and deformation on the key parts of the vessel during cold stretching were analyzed.
     In view of the phenomenon that stress corrosion cracking is apt to occur for austenitic stainless steel vessel under corrosive media environment, slow strain rate tests (SSRT) were adopted to investigate the change of stress corrosion cracking susceptibility in high-temperature chloride environment for base metal and welded joint of austenitic stainless steel. The research indicates that the stress corrosion cracking susceptibility of base metal show rising trend with the increase of strain level and the stress corrosion cracking susceptibility index for stretched (8%level) base metal is nearly twice as solid solution one. Due to a certain amount of ferrite in weld metal, the stress corrosion cracking susceptibility of it is relatively low. Moreover, cold stretching is beneficial to improve the welding residual stress.
     The influence of cold stretching on ratcheting behavior at high-temperature for austenitic stainless steel was discussed by developing fatigue test under stress controlling mode. The results show that the ratcheting behavior of solid solution material is more notable with the increasing of strain amplitude while the ratcheting effect of stretched material is inhibited under the same condition. The degree of inhibition is increasingly obvious with the increase of strain level and also the fatigue life is gradually improved under stress controlling. Based on the Hull-Rimmer theory, a life prediction equation applicable to different pre-strain in high temperature was developed, and the predicted lives coincided well with the test results.
引文
[1]陆世英,张廷凯,康喜范,等.不锈钢[M].北京:原子能出版社,1998.
    [2]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB150.1~GB 150.4—2011压力容器[S].北京:中国标准出版社,2011.
    [3]奥氏体不锈钢应变强化深冷储运容器2011年度报告[R].浙江大学化工机械研究所,2011,12.
    [4]Liston R, Soc B, Rcts A. Material properties and basic design stresses for boilers and pressure vessels[J]. The Institute of Marine Engineers,1968,80(10):337-358.
    [5]British Standards Institution (BSI). BS EN 13445-3:2009 Unfired pressure vessels-Part 3: Design[S]. London:The Standards Policy and Strategy Committee,2002.
    [6]Schmidt O. German design criteria including safety factors on tensile strength and yield strength[C]. First International Conference on Pressure Vessel Technology, September 29-October 2,1969, Delft, Netherlands. New York:ASME.1969,9-13.
    [7]黄嘉琥,王为国,寿比南,等.各国压力容器用材确定许用应力方法的比较[J].压力容器,2008,25(4):38-44.
    [8]程晓农,戴起勋.奥氏体钢设计与控制[M].北京:国防工业出版社,2005.
    [9]U.卡曼奇.曼德里,R.贝德威.高氮钢和不锈钢—生产、性能与应用[M].北京:化学工业出版社,2006.
    [10]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB 24511—2009承压设备用不锈钢钢板及钢带[s].北京:中国标准出版社,2009.
    [11]Sweden Industry Standard. Cold-stretching direction 1991. Swedish Pressure Vessel Standardization.1991.
    [12]Committee ME/1, Pressure Equipment. AS 1210 supplement 2-1999 , pressure vessels-cold-stretched austenitic stainless steel vessels (Supplement to AS 1210-1997)[S]. Homebush:Standards Australia,1999.
    [13]Ambrose S. Australian practice with cold stretched pressure vessels[C]. Ninth International Conference on Pressure Vessel Technology, April 9-14,2000, Sydney, Australia:ICPVT, 2000,99-107.
    [14]Peterkin J S. Cold stretched austenitic stainless steel pressure vessels[C]. Symposium on Stress Analysis for Mechanical Design, August 26-27,1981, Sydney, Australia:1981, 96-98.
    [15]British Standards Institution. BS EN13458-2:2002 Cryogenic vessels-Static vacuum insulated vessels-Part2:Design, fabrication, inspection and testing[S]. London:The Standards Policy and Strategy Committee,2002.
    [16]British Standards Institution. BS EN13530-2:2002 Cryogenic vessels-Large transportable vacuum insulated vessels-Part 2:Design, fabrication, inspection and testing[S]. London: The Standards Policy and Strategy Committee.2002.
    [17]The ASME Boiler and Pressure Vessel Standards Committee. Case 2596-Coldstretching of austenitic stainless steel pressure vessels[S]. New York:ASME,2008.
    [18]International Standard. ISO 20421-1:2006 Cryogenic vessels-large transportable vacuum insulated vessels-Part 1:Design, fabrication, inspection and testing[S]. Switzerland, International Organization for Standardization.
    [19]International Standard. ISO 21009-1:2008 Cryogenic vessels-static vacuum insulated vessels-Part 1:Design, fabrication, inspection and testing[S]. Switzerland, International Organization for Standardization.
    [20]郑津洋,董其伍,桑芝富.过程设备设计[M].北京:化学工业出版社,2005.
    [21]丁大伟.压力容器用钢在应变强化过程中的宏观性能与纤维结构研究[D].北京:北京工业大学,2009.
    [22]李雅娴.应变强化奥氏体不锈钢低温容器材料和成形工艺研究[D].杭州:浙江大学,2010.
    [23]Jonson J. Comparison of the new EN and ASME pressure vessel rules for stainless steel. Ninth International Conference on Pressure Vessel Technology, April 9-14,2000, Sydney, Australia:ICPVT,2000,57-64.
    [24]Johansson J I. Austenitic stainless steel:USA,3456831 [P].1969-07-22.
    [25]Jonson J. Coldstretched austenitic stainless steel pressure vessels[C]. Second International Conference on Pressure Vessel Technology, October 1-4,1973, San Antonio, Texas: ICPVT,1973,1157-1165.
    [26]陈建存.奥氏体不锈钢设备的超压处理强化技术[J].石油化工设备,1979,(4):1-16.
    [27]Standards Australia International. AS 1210-1997 Pressure vessels[S]. Sydney:Standards Australia International Ltd.
    [28]韩豫,陈学东,刘全坤,等.应变强化奥氏体不锈钢力学行为研究及应用[J].中国机械工程,2011,22(21):2633-2637.
    [29]韩豫,陈学东,刘全坤,等.奥氏体不锈钢应变强化工艺及性能研究[J].机械工程学报, 2012,48(2):87-92.
    [30]Han Y, Chen X D, Liu Q K. Research and application on mechanical behavior of austenitic stainless steels for cold stretched pressure vessel[C], July 17-21,2011, Baltimore. USA. New York:ASME.2011.
    [31]闫永超,陈学东,杨铁成,等.应变强化022Cr17Ni12Mo2奥氏体不锈钢室温低周疲劳性能研究[J].压力容器,2011,28(12):5-10.
    [32]闫永超.应变强化奥氏体不锈钢022Cr17Ni12Mo2低周疲劳性能研究[D].杭州:浙江工业大学,2011.
    [33]张起侨,陈学东,韩豫.强化应力及预强化处理对平板焊接残余应力的影响[J].压力容器,2011,28(10):9-14.
    [34]张起侨.应变强化对不锈钢应力腐蚀开裂和焊接残余应力的影响[D].杭州:浙江工业大学,2011.
    [35]汪志福.应变强化奥氏体不锈钢压力容器的强化工艺和设计研究[D].东营:中国石油大学,2011.
    [36]周高斌.应变强化奥氏体不锈钢低温容器研究[D].杭州:浙江大学,2007.
    [37]马利,郑津洋,寿比南,等.奥氏体不锈钢制压力容器强度裕度研究[J].压力容器,2008,25(1):1-5,23.
    [38]郑津洋,缪存坚,寿比南.轻型化——压力容器的发展方向[J].压力容器,2009,26(9):42-48.
    [39]郑津洋,郭阿宾,缪存坚,等.奥氏体不锈钢深冷容器室温应变强化技术[J].压力容器,2010,27(8):28-32,56.
    [40]Li M, Zheng J Y, Miao C J, et al. Analysis of strength margins for austenitic stainless steel pressure[C], July 27-31,2008, Chicago, USA. New York:ASME.2008.
    [41]Li M, Zheng J Y, Miao C J. et al. Nonlinear analysis of pressure strengthening for austenitic stainless steel pressure vessel[C], July 27-31,2008, Chicago, USA. New York:ASME. 2008.
    [42]Miao C J, Li X Y, Zheng J Y. Effect of strain rate on the deformation-induced martensite transformation and mechanical behavior of austenitic stainless steels for cold stretched pressure vessels[C], July 18-22,2010, Bellevue, USA. New York:ASME.2010.
    [43]Zheng J Y, GuoAB, Miao C J, et al. Cold stretching of cryogenic pressure vessels from austenitic stainless steels[C], July 17-21,2011, Baltimore, USA. New York:ASME.2011.
    [44]Miao C J, Zheng J Y, Ma L. Investigation on fatigue properties of cold stretched austenitic stainless steel[C], July 17-21,2011, Baltimore, USA. New York:ASME.2011.
    [45]郑津洋,李雅娴,徐平,等.应变强化用奥氏体不锈钢力学性能影响因素[J].解放军理工大学学报(自然科学版),2011,12(5):512-519.
    [46]邓阳春.考虑材料应变强化的压力容器静压承载能力[D].上海:华东理工大学,2009.
    [47]邓阳春,陈钢,杨笑峰,等.奥氏体不锈钢压力容器的应变强化技术[J].化工机械,2008,35(1):54-59.
    [48]邓阳春,陈钢,杨笑峰,等.奥氏体不锈钢压力容器应变强化安全裕度分析[D].第七届全国压力容器学术会议,无锡,2011,517-520.
    [49]Chen G, Deng Y C, Yang X F. Safety factor of austenitic stainless steel pressure vessels with strain-strengthening[C], July 27-31,2008, Chicago, USA. New York:ASME.2008.
    [50]CHEN G, DENG Y C. Load bearing capacity and safety analysis for strain-hardening austenitic stainless steel pressure vessels[J]. Chinese Journal of Mechanical Engineering, 2011,24(2):179-186.
    [51]徐彤,孙亮,陈钢.考虑材料应变强化效应的应力应变关系双线性表征方法的研究[J].压力容器,2010,27(2):1-7.
    [52]白衫.深冷容器的奥氏体不锈钢应变强化技术研究[D].上海:华东理工大学,2011.
    [53]刘凡,江楠,张文建.国产奥氏体不锈钢06Cr19Ni10(S30408)拉伸试验研究[J].压力容器,2011,28(4):7-11,34.
    [54]周连东,江楠.国产S30408奥氏体不锈钢应变强化低温容器许用应力及应变确定[J].压力容器,2011,28(4):7-11,34.
    [55]周连东,江楠.ASME应变强化本构模型及压力容器安全裕度分析[J].压力容器,2011,28(6):11-15,23.
    [56]朱昌宏,莫伟,魏东.奥氏体不锈钢应变强化原理的应用[J].中国特种设备安全,2009,26(10):34-36.
    [57]王亚辉,王学生,王定标,等.常温奥氏体不锈钢容器的超压强化处理研究[J].郑州工业大学学报,2001,22(3):92-94.
    [58]冯小松,钱才富,陈志伟,等.基于应变强化技术的低温储罐轻量化设计[J].压力容器,2011,28(11):25-28.
    [59]http://jsnews.jschina.com.cn/cz/200906/t86322.shtml[OL].
    [60]http://www.sdy-cn.com/newInfo.asp?id=76[OL].
    [61]Alper R H. Development of ultra-high strength rocket motor cases by cryogenic stretch forming and cooled solid propellant rocket nozzles[R], United States Army,1961.
    [62]Alpha R H. Cryogenically stretch-formed type 301 stainless steel for cryogenic service[J]. Materials Research & Standards,1964.4(10):525-532.
    [63]Arthur C. Cryogenic stretch forming improves strength of vessels[J]. Metal Progress,1969, (7),64-67.
    [64]Henderson S W. High strength pressure vessels by stretch forming[J]. Materials in Design Engineering,1964,60(6):104-106.
    [65]Gleich D. Metallic bladders for cryogenic fluid storage and expulsion systems[J]. Spacecraft,1968,5(9):1057-1064.
    [66]Morrison J D, Campbell M A, Kattus J R. Development of high strength and fracture toughness in steels through strain-induced transformations[R]. Southern Research Institute, September,1963.
    [67]左景伊.应力腐蚀破裂[M].西安:西安交通大学出版社,1985.
    [68]中华人民共和国国家质量监督检验检疫总局.GB/T 228-2002金属材料—室温拉伸试验方法[S].北京:中国标准出版社,2002.
    [69]中华人民共和国国家质量监督检验检疫总局,中国国家标准会管理委员会.GB/T229-2007金属材料—夏比摆锤冲击试验方法[S].北京:中国标准出版社,2007.
    [70]江慧丰,陈学东,范志超,等.动态应变时效对316L不锈钢疲劳蠕变行为的影响[J].金属学报,2009,45(3):326-330.
    [71]江慧丰,张青川,徐毅豪,等.固溶处理对Al-Cu合金中Portevin-Le Chatelier效应空域行为的影响[J].物理学报,2006,55(1):409-412.
    [72]Jiang H F, Zhang Q C, Sun L, et al. Effect of solute concentration on the serrated flow in solution-treated Al-4%Cu alloys[J]. Chinese physics,2006,15 (5):1051-1054.
    [73]江慧丰.A1合金中塑性失稳现象(Portevin-Le Chatelier效应)的实验和机理研究[D].合肥:中国科学技术大学,2006.
    [74]Talonen J, Nenonen P, Pape G. Effect of strain rate on the strain-induced γ→ α'-martensite transformation and mechanical properties of austenitic stainless steels[J]. Metallurgical and materials transactions A,2005,36(2):421-431.
    [75]Joshua A L, Martin C M, Chester J V. Effect of strain rate on stress-strain behavior of alloy 309 and 304 L austenitic stainless steel[J]. Metallurgical and materials transactions A,2006, 37(1):147-161.
    [76]Kumar A, Singhal L K. Effect of strain rate on martensitic transformation during uniaxial testing of AISI-304 stainless steel[J]. Metallurgical and materials transactions A,1989, 20(12):2857-2859.
    [77]Amar K D, John G S, David K M, et al. Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel[J]. Metallurgical and materials transactions A,2006,37(6):1875-1886.
    [78]刘伟,李志斌,王翔,等.应变速率对奥氏体不锈钢应变诱发α'—马氏体转变和力学行为的影响[J].金属学报,2009,45(3):285-291.
    [79]刘全坤.材料成形基本原理[M].北京:机械工业出版社,2006.
    [80]刘树勋,刘宪民,刘蕤,等.0Cr21Ni6Mn9N奥氏体不锈钢的应变强化行为[J].钢铁研究学报,2005,17(4):40-44
    [81]Ludwigson D C. Modified stress-strain relation for FCC metals and alloys[J]. Metallurgical and materials transactions A,1971,2(10):2825-2828.
    [82]Mannan S L, Samuel K G, Rodriguez P. Stress-strain relation for 316 stainless steel at 300 K[J]. Scripta materialia,1982,16(3):255-257.
    [83]余海燕,鲍立,高云凯.相变诱发塑性钢板的非弹性回复行为及其对回弹的影响[J].机械工程学报,2010,46(18):46-51.
    [84]曾其英.18-8型不锈钢的相变诱发塑性和形变马氏体[J].机械工程材料,1995,19(2):12-14.
    [85]周惠久,涂铭旌,邓增杰,等.再论发挥金属材料强度潜力问题——强度、塑性、韧度的合理配合[J].西安交通大学学报,1979,13(4):1-20.
    [86]周惠久,涂铭旌,邓增杰,等.再论发挥金属材料强度潜力问题——强度、塑性、韧度的合理配合(续完)[J].西安交通大学学报,1980,14(1):25-37
    [87]范志超.压力容器典型用钢1.25Cr0.5Mo钢高温环境下疲劳蠕变交互作用研究及免于蠕变失效判定条件[PDR].杭州:浙江大学(合肥通用机械研究院),2006.
    [88]Das A, Sivaprasad S, Ghosh M, et al. Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel[J]. Materials science and engineering A,2008,486(1-2):283-286.
    [89]陈国邦.低温工程材料[M].杭州:浙江大学出版社,1998.
    [90]郑志军,高岩.304不锈钢在ECAP过程中形变诱发马氏体的定量计算[J].材料工程,2008,(10):137-141.
    [91]Amar K D, David C, Martin C, et al. Quantitative measurement of deformation induced martensite in 304 stainless steel by X-ray diffraction[J]. Scripta materialia,2004,50(12): 1445-1449.
    [92]Cullity B D, Stock S R. Elements of X-ray diffraction(3rd ed)[M]. New Jersey:Prentics Hall,2001.
    [93]杨卓越,王健,陈嘉砚.304奥氏体不锈钢热诱发马氏体相变研究[J].材料热处理学报,2008,29(1):98-101.
    [94]王健,杨卓越,陈嘉砚.304不锈钢应变诱发α'马氏体相变及对力学性能的研究[J].物理测试,2006,24(5):8-11.
    [95]Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation[J]. Metallurgical transactions A,1975,6(4):791-795.
    [96]Jeom Y C, Won J. Strain induced martensite formation and its effect on strain hardening behavior in the cold drawn 304 austenitic stainless steel[J]. Scripta materialia,1997,36(1): 99-104.
    [97]Murr L E. Staudhammer K P, Hecker S S. Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel:Part Ⅱ. Microstructural study[J]. Metallurgical transactions A,1982,13(4):627-635.
    [98]Kong W H, Chen X D, Guo P J. Quantitative measurement of strain-induced a'-martensite in 06Cr19Ni10 austenitic stainless steel[C].2011 International Symposium on Structural Integrity, October 17-21,2011, Hefei, China:283-288.
    [99]Mirzadeh H, Najafizadeh A. ANN modeling of strain-induced martensite and its applications in metastable austenitic stainless steels[J]. Journal of alloys and compounds,2009, 476(1-2):352-355.
    [100]Mirzadeh H, Najafizadeh A. Correlation between processing parameters and strain-induced martensitic transformation in cold worked AISI 301 stainless steel [J]. Materials Characterization,2008,59(11):1650-1654.
    [101]Talonen J, Aspegren P, H□nninen H. Comparison of different methods for measuring strain induced a'-martensite content in austenitic steels[J]. Materials science and technology, 2004,20(12):1506-1512.
    [102]黄嘉琥.不锈钢晶间腐蚀[M].北京:新华出版社,2008.
    [103]Park W S, Yoo S W, Kim M H, et al. Strain-rate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments[J]. Materials and design,2010,31(8):3630-3640.
    [104]Lee K J, Chun M S, Kim MH, et al. A new constitutive model of austenitic stainless steel for cryogenic applications[J]. Computational materials science,2009,46(4):1152-1162.
    [105]中华人民共和国国家机械工业局,中华人民共和国国家石油和化工工业局.JB4708-2000钢制压力容器焊接工艺评定[s].北京:新华出版社,2000.
    [106]李泽震,周道祥,曾广欣,等.压力容器安全评定[M].北京:劳动人事出版社,1987.
    [107]Baek J H, Kim Y P, Kim W S et al. Fracture toughness and fatigue crack growth properties of the base metal and weld metal of a type 304 stainless steel pipeline for LNG transmission[J]. International journal of pressure vessels and piping,2001,78(5):351-357.
    [108]Newman J C, James M A, Zerbst U. A review of the CTOA/CTOD fracture criterion[J]. Engineering fracture mechanics,2003,70(3-4):371-385.
    [109]褚武扬.断裂与环境断裂[M].北京:科学出版社,2000.
    [110]霍立兴.焊接结构的断裂行为及其评定[M].北京:机械工业出版社,2000.
    [111]Tavassoli A A. Assessment of austenitic stainless steels[J]. Fusion engineering and design, 1995,29(3):371-390.
    [112]Tanaka K, Harrison J D. An R curve approach to COD and J for an austenitic steel[J]. International journal of pressure vessels and piping,1978,6(3):177-201.
    [113]中华人民共和国国家技术监督局.GB 2038-91金属材料延性断裂韧度Jlc试验方法[s].北京:中国标准出版社,1992.
    [114]中华人民共和国国家机械工业局.JB/T 4291-1999焊接接头裂纹张开位移(COD)试验方法[s].北京:机械工业部机械标准化研究所,1999.
    [115]Read D T, Reed R P. Fracture and strength properties of selected austenitic stainless steels at cryogenic temperatures[J]. Cryogenics,1981. (7):415-417.
    [116]崔振源.断裂韧性测试原理及方法[M].上海:科学技术出版社,1981.
    [117]刘燕.尿素合成塔用15MnVR板的断裂与疲劳性能研究[D].济南:山东大学,2009.
    [118]中华人民共和国国家质量监督检验检疫总局.TSG R0004-2009固定式压力容器安全技术监察规程[S].北京:新华出版社,2009.
    [119]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T25198-2010压力容器封头[S].北京:中国标准出版社,2010.
    [120]中华人民共和国国家发展和改革委员会.JB/T 4730.2—-2005承压设备无损检测第2部分:射线检测[S].北京:新华出版社,2005.
    [121]中华人民共和国国家发展和改革委员会.JB/T4730.5—2005承压设备无损检测第5部分:渗透检测[S].北京:新华出版社,2005.
    [122]张如一、陆耀桢.实验应力分析[M].北京:机械工业出版社,1981.
    [123]沈观林,马良珵.电阻应变计及其应用[M].北京:清华大学出版社,1983.
    [124]余伟炜,高炳军,等.ANSYS在机械与化工装备中的应用(第二版)[M].北京:中国水利水电出版社,2007.
    [125]陈火红.新编Marc有限元实例教程[M].北京:机械工业出版社,2007.
    [126]何晋瑞.金属高温疲劳[M].北京:科学出版社,1988.
    [127]Sanal Z. Nonlinear analysis of pressure vessels:some examples[J]. International journal of pressure vessels and piping,2000.77(12):705-709.
    [128]李建国.压力容器设计的力学基础及其标准应用[M].北京:机械工业出版社,2004.
    [129]Ugiansky G M, Payer J H. Stress corrosion cracking—the slow strain rate technique[M], American Society for Testing and Materials, Philadelphia,1979.
    [130]Nishimura R, Maeda Y. SCC evaluation of type 304 and 316 austenitic stainless steels in acidic chloride solutions using the slow strain rate technique[J]. Corrosion Science,2004, 46(3):769-785.
    [131]方智,吴荫顺,曹备,等.304不锈钢焊缝在室温酸性氯化物溶液中的应力腐蚀行为[J].腐蚀科学与防护技术,1994,6(3):225-231.
    [132]许淳淳,欧阳维真,徐瑞芬,等.1Cr18Ni9Ti不锈钢在氯化物溶液中的SCC敏感性与铁磁相含量的相关性[J].中国腐蚀与防护学报,1997,17(1):73-76.
    [133]许淳淳,张新生,胡钢,等.拉伸变形对304不锈钢应力腐蚀的影响[J].材料研究学报,2003,17(3):310-313.
    [134]中华人民共和国国家质量技术监督局.GB/T 15970.7-2000金属和合金的腐蚀—应力腐蚀试验—第7部分:慢应变速率试验[S].北京:中国标准出版社,2000.
    [135]李孝华,陈玮,刘晓东,等.BFe30-1-1(:焊态)在海水中的应力腐蚀试验研究[J].中国化工装备,2005,(3):30-35.
    [136]朱向群,戴起勋,周明,等.汽车衡用马氏体不锈钢连接件热处理工艺改进[J].机械工程材料,2008,32(6):74-77.
    [137]杜红元,魏献玲,胡效军.亚稳态奥氏体不锈钢封头应力开裂分析[J].石油化工设备,2011,40(1):103-106.
    [138]康国政,高庆,杨显杰,等.奥氏体不锈钢高温循环棘轮行为的实验研究[J].应用力学学报,2000,17(4):34-39.
    [139]陈旭,焦荣,田涛.棘轮效应预测及其循环本构模型研究进展[J].力学进展,2003,33(4):461-470.
    [140]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 15248—2008金属材料轴向等幅低循环疲劳试验方法[S].北京:中国标准出版社,2008.
    [141]范志超.压力容器用钢16MnR中温应力控制下的低周疲劳行为及寿命评估技术研究[D].杭州:浙江大学,2003.
    [142]Hong S.G, Yoon S, Lee S B. The effect of temperature on low-cycle fatigue behavior of prior cold worked 316 L stainless steel [J]. International journal of fatigue,2003,25(9-11): 1293-1300.
    [143]Mannan S L. Role of dynamic strain aging in low cycle fatigue[J]. Bulletin of Materials Science,2008,16(6):561-582.
    [144]张莉,江慧丰,姜恒.不同加载条件下316 L不锈钢的疲劳蠕变行为研究[J].压力容器,2008,25(7):6-9.
    [145]江慧丰,陈学东,范志超,等.动态应变实效对316 L不锈钢疲劳蠕变行为的影响[J].金属学报,2004,45(3):326-330.
    [146]陈学东,范志超,江慧丰,等.复杂加载条件下压力容器典型用钢疲劳蠕变寿命预测方法[J].机械工程学报,2009,45(2):81-87.
    [147]Hull D, Rimmer D E. The growth of grain-boundary voids under stress[J]. Philosophical Magazine,1959,4(42):673-687.
    [148]Nam S W, Lee S C, Lee J M. The effect of creep cavitation on the fatigue life under creep-fatigue interaction[J]. Nuclear Engineering and Design,1995,153(2-3):213-221.
    [149]Nam S W. Assessment of damage and lifeprediction of austeniticstainlesssteelunderhigh temperature creep-fatigue interaction condition [J]. Materials Science and Engineering:A, 2002,322(1-2):64-72.
    [150]范志超,蒋家羚.16MnR钢中温低周疲劳行为研究[J].浙江大学学报(工学版),2004,38(9):1190-1195.
    [151]Fan Z C, Chen X D, Chen L, et al. Fatigue-creep behavior of 1.25Cr0.5Mo steel at high temperature and its life prediction[J]. International journal of fatigue,2007,29(6): 1174-1183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700