用户名: 密码: 验证码:
深冷疲劳试验装置和应变强化奥氏体不锈钢疲劳特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源的储运是全球能源发展战略的重要环节,随着低温技术的发展和能源需求的不断增长,低温液化储运已成为能源高效率储运的重要手段。以天然气为例,液化天然气(LNG)的储运已然成为天然气的主要储运方式。深冷容器作为LNG等低温液化气体的常用储运装备,在医疗、化工机械、航空航天等领域已得到了广泛应用,在我国“十二五”期间能源结构转型和节能减排等战略目标的实现过程中发挥着重要作用。
     奥氏体不锈钢应变强化深冷容器具有重量轻(其内容器在同等压力参数下比常规内容器轻30~50%)、容重比高、制造运行能耗少等优点,符合国家倡导的“低碳”、“绿色”、“轻量化”等发展理念。开展奥氏体不锈钢深冷容器的应变强化适应性研究,揭示应变强化对深冷容器材料与构件的强度、韧性、抗疲劳性的影响规律,对促进应变强化深冷储运设备的发展、实现安全与经济并重、安全与资源节约并重具有重要意义。
     疲劳特性是应变强化深冷容器尤其是移动式容器的重要特性,是评估分析深冷容器全寿命周期安全性的重要依据。应变强化深冷容器目前已被纳入欧盟、澳大利亚、美国、ISO等多部标准以及中国的多部企业标准中,然而这些标准并没有给出应变强化深冷容器疲劳方面的具体设计。另一方面,深冷工况是应变强化深冷容器的主要工作环境,而当前的疲劳设计并没有考虑深冷温度对疲劳性能的影响。此外,研究发现,国内外缺乏在深冷环境下检测材料疲劳特性的手段,且国内目前还没有能够实现此功能的试验装置。
     本文在国家高技术研究发展计划(863计划)重点项目“极端条件下重大承压设备风险评价与寿命预测关键技术研究”(项目编号为2009AA044801)的支持下,针对目前最为缺乏的应变强化深冷容器疲劳设计问题,从研制搭建深冷疲劳试验装置、研究应变强化奥氏体不锈钢室温和深冷下的疲劳特性等方面开展研究,主要完成的工作如下:
     (1)基于奥氏体不锈钢深冷环境下拉伸和疲劳过程的力学响应,确定了深冷疲劳试验装置的吨位、深冷温度、应变检测等方面的关键参数。综合考虑试验装置加载系统、恒温系统、控制系统、数据检测系统和安全系统的结构与运行原理,提出了恒温功能和试验功能的集成方法。在此基础上搭建了能实现室温至-196℃温度下材料拉伸和疲劳功能的深冷疲劳试验装置,并通过试验验证了其功能。对比分析横梁位移控制和引伸计控制两种试验速率控制方式的特性和差异,提出适用于深冷环境试验的数据检测方法。
     (2)通过应变强化奥氏体不锈钢EN1.4301材料与容器的室温疲劳试验研究,得到了应变强化前后材料疲劳应力响应、循环本构关系以及应变-寿命关系的变化规律,分析了强化对材料和容器疲劳寿命的增益作用。基于材料力学特性、组织相变行为以及位错运动等宏微观角度,讨论了应变强化对材料疲劳性能的增益机制。基于试验数据获得了应变强化影响下的S-N曲线并分析了曲线的特征,将曲线与标准中疲劳设计曲线对比,分析了现有S-N曲线对应变强化容器的适用性。
     (3)基于室温和液氮温度下奥氏体不锈钢试验数据,得到了奥氏体不锈钢拉伸和疲劳性能在应变强化和液氮环境作用下的力学性能响应规律。在本文试验背景下,从宏观力学行为和组织相变角度分析了深冷和应变强化对材料拉伸和疲劳性能的强化作用,以及两者对奥氏体不锈钢疲劳寿命的增益作用。
With the development of cryogenic technology and the growing energy demand, the storage and transport of cryogenic liquid gases have become an important and effective way for transporting energy. The storage of LNG and other liquefied gases have been an important step in the development strategy of global energy. To transport LNG, for example, cryogenic pressure vessels are commonly used in the field of medical treatment, chemical engineering, and aerospace, playing an important role in the development of energy plan about our country's "Twelve Five-Year Planning Program".
     Cold stretched cryogenic pressure vessels from austenitic stainless steels have the advantages of thinner thickness, lighter weight (the inner vessel is about30-50%lower in comparison with the conventional ones), bigger volume, lower cost, and lower energy consumption, which are consistant with the development concept of "low carbon","green", and "light". It is great and meaningful to impell the development of cold stretched cryogenic pressure vessels, and to fulfill the concept of safe and economy by researching on behaviors of cold stretched cryogenic pressure vessels and responses of cold stretching on strength, ductility and fatigue properties of materials or structures.
     Fatigue response is important for the design of cold stretched cryogenic pressure vessels and risk accessments in vessels'entire lives. Nowadays, these products have been included in the standard of Europe, Australia, America, ISO, and China, though there are no design details about the fatigue for cold stretched pressure vessels, and no relative design about the effect of cryogenic temperature on material properties. Furthermore, it is found that there are few methods to test the material's fatigue properties at cryogenic temperature, and there are no equipments for such functions in China.
     Based on the research of fatigue design of cold stretched cryogenic pressure vessels, this paper aims to design and manufacture the fatigue testing machine for cryogenic environment, so the fatigue properties at room and cryogenic temperature environment could be obtained. The main contents and work of this paper are described here:
     (1) Based on the mechanical response of austenitic stainless steel's tensile and fatigue tests, the parameters of the fatigue testing machine for cryogenic environment are determined such as the load, the temperature, and data detecting methods. Considering the loading structures, temperature control system, machine control system, data collecting system, and safe security, some integrated methods to mix the temperature control system and the testing function are proposed. The fatigue testing machine for cryogenic environment is manufactured, and is justified to be workable in tensile and fatigue tests from room temperature to-196℃. Strain detecting method is found by comparing crosshead control method and strain gauge control method for cryogenic environment.
     (2) Fatigue tests of cold stretched austenitic stainless steel and vessels are conducted, and the mechanical behavior is gained such as material fatigue response, cyclic stress-strain curve and strain-life curve. The mechanism of improving the fatigue resistance by cold stretching is analyzed from material's mechanical properties, strain-induced martensite transformation, and dislocation's movement. The S-N curves about cold stretching are gained to analysis the effect of cold stretching, and the curves are compared with the ones in standards. Further, the use of ASME VIII-2design curves for cold stretched vessels are justified.
     (3) Based on the tests'data at room and cryogenic temperature, the response of tensile and fatigue under the influence of cryogenic temperature and cold stretching are obtained. Under the test parameters of this paper, the strengthening effect in tensile and fatigue behavior by cryogenic temperature and cold stretching have been discussed from the points of view with micro and macro behavior in phase structure and mechanical properties respectively. The improving effect of cryogenic temperature and cold stretching on material's fatigue life has also been discussed.
     We would like to acknowledge the financial support from the key projects in the National High Technology Research and Development Program (863Program)(Project No.:2009AA044801).
引文
[1]Zheng J. Y, Wu L. L., Shi J. F.. Extreme Pressure Equipments[J]. Chinese Journal of Mechanical Engineering,2011,24(2):202-206.
    [2]陈鼎,黄培云.金属材料深冷处理发展概况[J].热加工工艺,2001,(4):57-59.
    [3]戴涛,范蜀晋.低温处理技术的进展(一)[J].国外金属热处理,1997,(6):6-10.
    [4]1999,压力容器安全技术监察规程[S].
    [5]DIN EN 10028-7:2008, Flat Products Made of Steels for Pressure Purposes-Part 7: Stainless Steels[S].
    [6]GB/T 18442.1:2011,固定式真空绝热深冷压力容器第1部分:总则[S].
    [7]2008,GB/T 18442《固定式真空绝热深冷压力容器》编制说明[S].
    [8]中华人民共和国国务院.装备制造业调整和振兴计划[R].2009.
    [9]BP Amoco. Statistical Review of World Energy. BP,2012.
    [10]全球LNG接收站统计[J].国际石油经济,2009,(6):69-72.
    [11]郑津洋,缪存坚,寿比南.轻型化——压力容器的发展方向[J].压力容器,2009,26(9):42-48.
    [12]中国科学院先进制造领域战略研究组.中国至2050年先进制造科技发展路线图[M].北京:科学出版社,2009.
    [13]http://www.bitauto.com/zhuanti/news/jianpai/.
    [14]马利,郑津洋,寿比南,等.奥氏体不锈钢制压力容器强度裕度研究[J].压力容器,2008,25(1):1-5,23.
    [15]ASME Boiler & Pressure Vessel Code, VIII Division1:2007, Rules for Construction of Pressure Vessels [S].
    [16]GB150:2011,压力容器[S].
    [17]TSG R0004:2009,固定式压力容器安全技术监察规程[S].
    [18]黄嘉琥,王为国,寿比南等.各国压力容器用材确定许用应力方法的比较[J].压力容器,2008,25(4):38-44.
    [19]EN13530-2:2002, Cryogenic Vessels-Large Transportable Vacuum Insulated Vessels Part 2:Design, Fabrication, Inspection and Testing[S].
    [20]EN13458-2:2002, Cryogenic Vessels-Static Vacuum Insulated Vessels Part 2:Design, Fabrication, Inspection and Testing[S].
    [21]Abraham H.. Metals and Fabrication Methods Used for the Atlas[J]. Metal Progress, 1959,76(5):65-73.
    [22]Faure A., Gourgeon L.. Cryoformed Stainless Steel Pressure Vessels for Space Applications [J]. European Conference on Spacecraft Structures, Materials And Mechanical Testing, Proceedings,1999,428:201-203.
    [23]Peterkin J.S. Cold Stretched Austenitic Stainless Steel Pressure Vessels[C].Symposium on Stress Analysis for Mechanical Design 1981:Preprints of Papers 1981.96-98.
    [24]Cold-Stretching Directions:1991 [S]. Swedish Pressure Vessel Standardization.
    [25]Malstrom U.. Design Criteria Involving Factors of Safety on Tensile Strength[C]. Yield Strength and Creep Rupture Stress1977.29-34.
    [26]AS 1210-Supp2:1999, Pressure Vessels-Cold-stretched Austenitic Stainless Steel Vessels[S].
    [27]AS 1210:2010, Pressure Vessels[S].
    [28]ISO 20421-1:2006, Cryogenic Vessels-Large Transportable Vacuum-Insulated Vessels-Part 1-Design, Fabrication, Inspection and Testing [S].
    [29]ISO 21009-1:2008, Cryogenic Vessels-Static Vacuum-Insulated Vessels-Part 1-Design, Fabrication, Inspection and Tests [S].
    [30]ASME Code Case 2596:2008, Coldstretching of Austenitic Stainless Steel Pressure Vessels[S].
    [31]ASME BPVC appendix:2011, Cold-Stretching of Austenitic Stainless Steel Pressure Vessels[S].
    [32]Johan I., Johansson. Austenitic Stainless Steel Pressure Vessels. US 3456831 A.1969.
    [33]郑津洋,刘春峰,徐平,等.容器应变强化系统及其所生产的奥氏体不锈钢低温容器.ZL 2007 10119161.2.2011.
    [34]郑津洋,郭阿宾,缪存坚,马利,吴琳琳.奥氏体不锈钢深冷容器室温应变强化 技术[J].压力容器,2010,(8):28-32.
    [35]周高斌.应变强化奥氏体不锈钢低温容器研究[D].杭州:浙江大学硕士学位论文,2007.
    [36]李雅娴.应变强化奥氏体不锈钢低温容器材料和成形工艺研究[D].杭州:浙江大学硕士学位论文,2010.
    [37]郑津洋,李雅娴,徐平,马利,缪存坚,吴琳琳.应变强化用奥氏体不锈钢力学性能影响因素[J].解放军理工大学学报(自然科学版),2011,12(5):512-519.
    [38]Miao C. J., Li Y. X., Zheng J. Y.. Effect of Strain Rate on the Deformation-Induced Martensite Transformation and Mechanical Behavior of Austenitic Stainless Steels for Cold Stretched Pressure Vessels [A]. Proceedings of the ASME 2010 Pressure Vessels & Piping Division/K-PVP Conference[C]. Bellevue, Washington, USA,
    [39]中集圣达因应变强化低温容器新产品发布会成功召开[J].深冷技术,2008,(2):55.
    [40]Q/JY 003:2011,奥氏体不锈钢应变强化制固定式真空绝热深冷压力容器[S].
    [41]JB/T4732:1995(2005),钢制压力容器——分析设计标准(2005年确认版)[S].
    [42]ASME Boiler & Pressure Vessel Code, VIII Division2:2010, Alternative Rules, Rules for Construction of Pressure Vessels[S].
    [43]EN13445-3:2002, Unfired Pressure Vessels-Part3:Design[S].
    [44]Q/320582SDY7:2008, Pressure Strengthening of Cryogenic Vessels from Austenitic Stainless Steels-Static Vessels[S].
    [45]Q/320582 HK 05:2010, Stationary Pressure Strengthened Cryogenic Vessels from Austenitic Stainless Steels[S].
    [46]Ambrose S. Australian Practice with Cold Stretched Pressure Vessels[C].The Ninth International Conference on Pressure Vessel Technology2000.99-107.
    [47]ISO/TC 220. Consideration of Fatigue Loads for Static or Transportable Vacuum-Insulated Cryogenic Vessels[R].2011.
    [48]EN13445-3:2009, Unfired Pressure Vessels-Part3:Design[S].
    [49]王栓柱.金属疲劳[M].福州:福建科学技术出版社,1985.
    [50]Jonson J.. Coldstretched Austennitic Strainless Steel Pressure Vessels [C]. The 2nd International Conference on Pressure Vessel Technology. San Antonio, USA 1973. 1157-1165.
    [51]Zeedijk H. B.. Cyclic Hardening and Softening of Annealed and 9%-Prestrained AISI 304 Stainless Steel during High Strain Cycling at Room Temperature [J]. Metal Science,1977,11(5):171-176.
    [52]Rao K. B. S., Valsan M., Sandhya R., Mannan S. L., Rodriguez P.. An Assessment of Cold Work Effects on Strain-Controlled Low-Cycle Fatigue Behavior of Type-304 Stainless-Steel[J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science,1993,24(4):913-924.
    [53]Srinivasan V. S., Sandhya R., Valsan M., Rao K. B. S., Mannan S. L.. Comparative Evaluation of Strain Controlled Low Cycle Fatigue Behaviour of Solution Annealed and Prior Cold Worked 316L(N) Stainless Steel [J]. International Journal of Fatigue, 2004,26(12):1295-1302.
    [54]Raman S. G. S., Padmanabhan K. A.. Effect of Prior Cold Work on the Room-Temperature Low-Cycle Fatigue Behaviour of AISI 304LN Stainless Steel [J]. International Journal of Fatigue,1996,18(2):71-79.
    [55]Bergengren Y., Larsson M., Melander A.. Fatigue Properties of Stainless Sheet Steels in Air at Room Temperature[J]. Materials Science and Technology,1995,11(12): 1275-1280.
    [56]Johansson R., Nordberg H.. Fatigue Properties of Stainless Steel Strip[J]. AvestaPolarit, R&D,2002,
    [57]Hong S. G., Yoon S., Lee S. B.. The Effect of Temperature on Low-Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel[J]. International Journal of Fatigue,2003,25(9-11):1293-1300.
    [58]Hong S.. The Tensile and Low-Cycle Fatigue Behavior of Cold Worked 316L Stainless Steel:Influence of Dynamic Strain Aging[J]. International Journal of Fatigue,2004, 26(8):899-910.
    [59]Hong S. G., Lee S. B.. Dynamic Strain Aging under Tensile and LCF Loading Conditions, and their Comparison in Cold Worked 316L Stainless Steel[J]. Journal of Nuclear Materials,2004,328(2-3):232-242.
    [60]Nakamura T., Tominaga M., Murase H., Nishiyama Y.. Low Cycle Fatigue Behaviour of Austenitic Stainless Steel at Cyrogenic Temperature[C]1982.471-476.
    [61]Shibata K., Kishimoto Y, Namura N., Fujita T.. Cyclic Softening and Hardening of Austenitic Steels at Low Temperatures[M].Fatigue at Low Temperatures, ASTM STP 857, R. I. Stephens, Ed., American Society for Testing and Materials, Philadelphia, 1985.31-46.
    [62]Vogt J., Foct J., Regnard C, Robert G., Dhers J.. Low-Temperature Fatigue of 316L and 316LN Austenitic Stainless Steels[J]. Metallurgical and Materials Transactions A, 1991,22(10):2385-2392.
    [63]Vogt J. B.. Fatigue Properties of High Nitrogen Steels[J]. Journal of Materials Processing Technology,2001,117(3):364-369.
    [64]党霆,陈成澍.常温及低温下奥氏体不锈钢低循环变形行为的研究[J].西南交通大学学报,1991,(3):109-116.
    [65]何国求,高庆.在室温及低温下316L、316LN不锈钢单轴低周疲劳特性的研究[J].西南交通大学学报,1996,31(5):483-487.
    [66]郑津洋,董其伍,桑芝富.过程设备设计第三版[M].北京:化学工业出版社,2010.
    [67]Jaske C. E., Odonnell W. J.. Fatigue Design Criteria for Pressure-Vessel Alloys[J]. Journal of Pressure Vessel Technology-Transactions of the Asme,1977,99(4): 584-592.
    [68]Langer B.F.. Design of Pressure Vessels for Low-Cycle Fatigue[J]. Journal of Basic Engineering,1962,3(3):389-402.
    [69]Rao K. R.. Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 2, Third Edition[M].ASME Print,2009.
    [70]Harvey J.. Theory and Design of Modern Pressure Vessels[M].Van Nostrand Reinhold Company,1985.
    [71]丁伯民.对《应力分析法容器设计规定》中疲劳分析章的讨论[J].化工设备与管道,1983,(4):13,32-36.
    [72]贺匡国.压力容器分析设计基础[M].北京:机械工业出版社,1995.
    [73]BS 5500:1978,非火焰接触压力容器[S].
    [74]GB150:1998,钢制压力容器[S].
    [75]ASME Boiler & Pressure Vessel Code, VIII Divisionl:2010, Rules for Construction of Pressure Vessels[S].
    [76]GB/T 228:2010,金属材料拉伸试验[S].
    [77]GB/T 3075:2008,金属材料疲劳试验轴向力控制方法[S].
    [78]GB/T 15248:2008,金属材料轴向等幅低循环疲劳试验方法[S].
    [79]ASTM E606:2004, Standard Practice for Strain-Controlled Fatigue Testing[S].
    [80]ASTM E466:2007, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials[S].
    [81]Hecker S. S., Stout M. G., Staudhammer K. P., Smith J. L.. Effects of Strain State and Strain Rate on Deformation-induced Transformation in 304 Stainless steel.1.Magnetic Measurements and Mechanical-behavior [J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science,1982,13(4):619-626.
    [82]Murr L. E., Staudhammer K. P., Hecker S. S.. Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless-Steel.2. Microstructural Study [J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1982,13(4):627-635.
    [83]Kumar A., Singhal L. K.. Effect of Strain Rate on Martensitic-Transformation during Uniaxial Testing of Aisi-304 Stainless-Steel[J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science,1989,20(12):2857-2859.
    [84]Talonen J., Nenonen P., Pape G., Hanninen H.. Effect of Strain Rate on the Strain-Induced Gamma->Alpha'-Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2005,36A(2):421-432.
    [85]Lichtenfeld J. A., Mataya M. C., Van Tyne C. J.. Effect of Strain Rate on Stress-Strain Behavior of Alloy 309 and 304L Austenitic Stainless Steel[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2006,37A(1): 147-161.
    [86]Das A., Sivaprasad S., Ghosh M., Chakraborti P. C., Tarafder S.. Morphologies and Characteristics of Deformation Induced Martensite during Tensile Deformation of 304LN Stainless Steel[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008,486(1-2):283-286.
    [87]Tominaga M., Toyooka S.. Anomalous Deformation Behavior and Strain Induced Martensitic Transformation in SUS304 Stainless Steel at Low Strain Rates[J]. Journal of the Japan Institute of Metals,2008,72(8):565-570.
    [88]Liu W., Li Z. B., Wang X., Zou H., Wang L. X.. Effect of Strain Rate on Strain Induced Alpha'-Martensite Transformation and Mechanical Response of Austenitic Stainless Steels[J]. Acta Metallurgica Sinica,2009,45(3):285-291.
    [89]Opoku J.. Strengthening of an Austenitic Stainless Steel Alloy by Cryoforming[J]. Journal of Materials Science,1981,16(3):844-849.
    [90]Henderson S.W.. High Strength Pressure Vessels by Stretch Forming[J]. Materials in Design Engineering,1964,60(6):104-106.
    [91]Cozewith A.. Cryogenic Stretch Forming Improves Strength of Vessels [J]. Metal Progress,1969,96(1):64-67.
    [92]Das A., Tarafder S.. Experimental Investigation on Martensitic Transformation and Fracture Morphologies of Austenitic Stainless Steel[J]. International Journal of Plasticity,2009,25(11):2222-2247.
    [93]Koshelev P. F.. Mechanical Properties of Materials at Low Temperatures [J]. Strength of Materials,1971,3(3):286-291.
    [94]Zheng J. Y., Miao C. J., Li Y. X., Xu P., Ma L., Guo A. B.. Investigation on Influence Factors of Mechanical Properties of Austenitic Stainless Steels for Cold Stretched Pressure Vessels[J]. Journal of Pressure Vessel Technology,2012, In Press
    [95]Byun T. S., Hashimoto N., Farrell K.. Temperature Dependence of Strain Hardening and Plastic Instability Behaviors in Austenitic Stainless Steels[J]. Acta Materialia, 2004,52(13):3889-3899.
    [96]Kundu A., Chakraborti P. C. Effect of Strain Rate on Quasistatic Tensile Flow Behaviour of Solution Annealed 304 Austenitic Stainless Steel at Room Temperature[J]. Journal of Materials Science,2010,45(20):5482-5489.
    [97]林高用,张蓉,张振峰,等.变形速度对304奥氏体不锈钢室温拉伸性能的影响[J].湘潭大学自然科学学报,2005,27(3):91-94.
    [98]Wang Z. F., Chen X. D.. Study of Strengthening Process and Design on Strain Hardening Austenitic Stainless Steel Pressure Vessels[D].2011.
    [99]Q/TX 3398:2009,应变强化压力容器用奥氏体不锈钢热轧钢板及钢带[S].
    [100]GB 24511:2009,承压设备用不锈钢钢板及钢带[S].
    [101]ASTM A240/A 240M:2007, Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications[S].
    [102]Lo K. H., Shek C. H., Lai J. K. L.. Recent Developments in Stainless Steels[J]. Materials Science & Engineering R-Reports,2009,65(4-6):39-104.
    [103]杨卓越,苏杰,陈嘉砚,熊建新.C、Cr、Ni和Mn含量对304不锈钢变形诱发马氏体相变的影响[J].压力容器,2007,42(5):61-64,78.
    [104]O'Sullivan D., Cotterell M., Meszaros I.. The Characterisation of Work-Hardened Austenitic Stainless Steel by NDT Micro-Magnetic Techniques [J]. Ndt & E International,2004,37(4):265-269.
    [105]http://indehk.com/pages/satmagan-c.htm.
    [106]http://physics.kenyon.edu/Early Apparatus/Electricity/Magnetic_Balance/Magnetic_B alance.html.
    [107]Talonen J., Aspegren P., Hanninen H.. Comparison of Different Methods for Measuring Strain Induced Alpha'-Martensite Content in Austenitic Steels [J]. Materials Science and Technology,2004,20(12):1506-1512.
    [108]Sherman A.. Fatigue Properties of High Strength-Low Alloy Steels[J]. Metallurgical and Materials Transactions A,1975,6(5):1035-1040.
    [109]Singh V.. Effects of Prior Cold Working on Low Cycle Fatigue Behavior of Stainless Steels, Titanium Alloy Timetal 834 and Superalloy IN 718:A Review[J]. Transactions of the Indian Institute of Metals,2010,63(2-3):167-172.
    [110]全国压力容器标准化技术委员会.JB 4732-95《钢制压力容器——分析设计标准》标准释义[M].1995.
    [111]GB13298:1991,金属显微组织检测方法[S].
    [112]王琼琪.深冷处理提高奥氏体不锈钢服役性能及机理的研究[D].上海:华东理工大学,2009.
    [113]Feltner C.E., Beardmore P.. Strengthening Mechanisms in Fatigue[M].Philadelphia, PA:ASTM,1970.
    [114]Kim D. S., Choo Y. S., Hong K. P., Kim J. K., Kim C. S.. Low Temperature Effects on the Fracture Behavior of Cold-Worked STS 304 Stainless Steel for Membrane of LNG Storage Tank[J]. Solid State Phenomena,2007,124-126:1345-1348.
    [115]Tomota Y., Nakano J., Xia Y, Inoue K.. Unusual Strain Rate Dependence of Low Temperature Fracture Behavior in High Nitrogen Bearing Austenitic Steels [J]. Acta Materialia,1998,46(9):3099-3108.
    [116]GB/T 13239:2006,金属材料低温拉伸试验方法[S].
    [117]Sadoughvanini A., Lehr P.. Low-Cycle Fatigue Behavior of 18-Percent Cr-10-Percent Ni Stainless-Steel (304-L) at Room and Liquid-nitrogen Temperatures [J]. Revue De Metallurgie-Cahiers D Informations Techniques,1994,91(5):781-788.
    [118]Sitko M., SkoczenB.. Effect of y-a'Phase Transformation on Plastic Adaptation to Cyclic Loads at Cryogenic Temperatures[J]. International Journal of Solids and Structures,2012,49(3-4):613-634.
    [119]Soo P., Chow J.G.Y.. Correlation of High Cycle and Low Cycle Fatigue Data for some HTGR Structural Metals[M].1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700