用户名: 密码: 验证码:
内置悬置的轮毂电机驱动系统动力学特性及结构优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为下一代纯电驱动系统的关键技术之一,轮毂电机驱动的电动汽车因其在车辆总布置结构、底盘主动控制以及操控方便性方面的明显技术优势,受到业界的高度重视。目前,轮毂电机驱动电动汽车的研发尚处于起步阶段,其研究方向主要集中在电机本体设计与控制系统的集成开发、线控驱动/制动技术、差速控制等方面。轮毂电机驱动的电动轮集电机、轮毂、减速机构、制动器等于一体,非簧载质量增加的同时,不平路面激励下轮胎跳动、载荷不均、轴承磨损及安装误差等都将引起电机气隙不均匀,这将导致轮毂电机引起的振动激励进一步恶化,同时引起定转子及相邻部件的振动,给车辆的平顺性和轮胎接地安全性等带来不利的影响。如何减小甚至消除这种不利影响,已成轮毂电机驱动电动汽车发展所要解决的关键问题之一。
     针对上述现有电动轮驱动车辆存在的问题,本文提出了一种具有自主知识产权的新型内置悬置系统的电动轮拓扑结构方案。此方案通过设置弹性悬置元件将轮毂电机作为一个整体与簧下质量进行弹性隔离,悬置元件的设置一方面可以吸收路面传递给电机的振动能量,减小路面激励对电机气隙的影响,另一方面也可以吸收一部分电能量,减小传递到车身的电激励,削弱路面激励和电激励的相互恶化作用,达到改善车辆动力学特性的目的。围绕此新型结构方案,本文进行了建模、仿真及实验研究,主要做了以下几方面的研究工作:
     (1)根据拓扑结构方案,在建立新型电动轮车辆振动模型的基础上,对系统车身加速度、车轮相对动载及定转子相对位移量等动力学响应特性指标对路面不平度速度输入的频响函数进行推导,并在频域范围内对新型电动轮结构和现有电动轮结构进行对比分析,从原理上论证了新型结构在垂向动力学特性上的优越性;并分析了车辆动力学响应指标对电机质量、轴承刚度、悬置元件刚度和阻尼等重要结构参数的灵敏度,为后续系统参数优化奠定了基础,对轮毂电机驱动电动汽车减振技术的研究有重要意义;
     (2)根据车辆动力学响应指标对悬置元件参数灵敏度的分析结果,结合某实际汽车的车轮结构尺寸对悬置元件进行了结构设计和样件加工;基于静态压缩试验获得了各悬置元件的非线性刚度特性,并利用非线性刚度模型对路面激励下新型系统和现有电动轮系统的振动响应进行了对比分析,对悬置元件结构的设计结果和减振作用进行理论验证,为后续轮毂驱动系统非线性动力学的研究奠定了基础;
     (3)应用Maxwell应力张量法,推导出电机的电力解析表达式,对气隙均匀/不均匀情况下的电力波进行了分析,研究气隙不均匀对轮毂电机电力的影响;在得到电机的电力表达式后,对其未偏心、静偏心、动偏心及混合偏心下的气隙不均匀情况进行计算,得到各种情况下主要不平衡激振力的激振谐次,并找出影响不平衡电激振力的主要因素,为从激振源本身进行振动控制奠定了基础;同时对轮毂定子—支撑架的固有特性进行计算,通过模态分析预测了外部激振源—不平衡电力是否会引起系统较大的振动;最后将电力表达式代入车辆动力学方程,对路面不平度和电复合激励下,车辆的振动响应特性进行了分析;
     (4)应用Lagrange方程建立了传动系统的耦合振动模型,利用所建模型进一步分析电激励下系统的振动响应特性;在ADAMS/Car中建立了目标车型的双横臂悬架的动力学模型,并将由电动轮传动系统的动力学模型计算得到的因电机不平衡电力产生的作用到车轮上的外载荷激振力作为输入,分析了其对车轮外倾角、主销后倾角、主销内倾角和前轮前束等悬架动力学性能评价指标的影响,为轮毂电机驱动系统的设计和振动控制提供理论依据;
     (5)采用尺寸优化和拓扑优化相结合的混合优化方法,对轮毂驱动系统进行结构轻量化优化设计,通过直接减少非簧载质量达到改善车辆平顺性和轮胎接地安全性的目的。轮毂驱动系统的混合优化主要包括两部分:①在保证车辆动力性前提下,以轮毂电机质量最小化为目标,联合有限元(FEM)、响应面(RSM)和粒子群优化算法(PSO)对轮毂电机进行了结构优化设计,并对优化前后轮毂电机的场分布和转矩特性进行对比分析,对优化结果进行了验证;②根据第①步的优化结果,对定子支撑架尺寸进行调整,并利用变密度法对其进行应力约束下的拓扑优化,通过对优化后的结构进行应力分析,对优化结果进行了校核;
     (6)完成新型电动轮样机系统的研制工作,通过前期样机功能实验,验证了新型内置悬置的轮毂电机驱动电动轮结构对解决路面激励引起的电机气隙不均匀问题的可行性。
As one of the key technologies of the next generation of pure electric drive system,in-wheel motor driven electric vehicles have gained great importance in the industry due to itsobvious technical advantages in vehicle’s overall arrangement, chassis active control andhandling convenience. Currently, the research and development of in-wheel motor drivenelectric vehicles are still in their infancy, research interests are mainly focused on the designof motor itself with integrated development of control system, drive-by-wire/brake-by-wire,speed differential control, etc. The electric wheel driven by in-wheel motor integrates themotor, wheel hub, reducing gearbox and brake as a whole, which increases the unsprung mass,meanwhile, tyre runout under the excitation of uneven road, non-uniform load, bearing wearand installation error will cause the motor air gap non-uniform, which will worsen thevibration excitation induced by the in-wheel motor, cause the vibration of stator and rotor aswell as adjacent parts, and bring adverse effects on vehicle’s ride and ride comfort. How toreduce or even eliminate these adverse effects has become one of the key problems to besolved in the development of in-wheel motor driven electric vehicles.
     Focusing on the existing problems in current in-wheel driven vehicles, this articleproposes a novel topology scheme with autonomous intellectual property rights for electricwheel with embedded mount system. This scheme elastically isolates the in-wheel motor as awhole from the unsprung mass by setting elastic elements, converts the motor to a parallelmass of the sprung mass. Meanwhile, to utilize the elastic elements to absorb the vibrationenergy passed to the motor from the ground to minimize the effect on the motor air gap due toroad excitation in order to improve the vehicle’s dynamic characteristics. Around this novelstructure scheme, this article mainly carried out research in the following aspects:
     (1) Based on the vibration model of the novel in-wheel vehicle established according tothe topology scheme, to derive the frequency response function of vehicles’ ride performanceindicator such as body acceleration, wheel’s relative dynamic load and relative displacementbetween stator and rotor with respect to road roughness’s velocity input, and then perform thefrequency response analysis for the novel in-wheel structure as well as current electric-wheelstructure in frequency domain, to prove the superiority of the novel structure in verticaldynamic characteristics by principle; to perform the sensitivity analysis of vehicles’ rideperformance indicator with respect to some important structural parameters such as motormass, bearing stiffness, mount element stiffness and damping in order to realize the systemparameters’ effect on vibration response, which make great significance in vibration damping vibration damping for in-wheel motor driven cars as well as building foundation forsubsequent system parameters optimization;
     (2) According to the result of sensitivity analysis of vehicles’ ride performance indicatorwith respect to mount elements’ parameters, combined with the actual wheel structural size todesign and make prototype for mount elements, and then to gain the nonlinear stiffness modelfor every mount element based on static compression test, and utilizes the nonlinear stiffnessmodel to make comparative analysis for the vibration response under road excitation of thenovel and current electric wheel system, to verify the structural design result and dampingeffect of the mount elements, building foundation for the subsequent research on nonlineardynamics of in-wheel driven system.
     (3) From the constitutive structure of this study’s in-wheel motor prototype, Maxwell’sstress tensor is used to derive the analytical expression of the motor’s electromagneticmoment, the electromagnetic force wave is to be analyzed under uniform/non-uniform air gapcondition, and then research into the effect on in-wheel motor’s electromagnetic force by airgap unevenness, at the same time, the dynamic characteristics of the novel in-wheel motordriven vehicle under uniform/non-uniform air gap will be analyzed in the following aspect:nonlinear vibration response characteristics of vehicle under simultaneous acting of roadexcitation and electromagnetic excitation;
     (4) Building the physical model of in-wheel motor system, and then general Lagrangeequation is used to build the system’s electromechanical coupling dynamics model with thehelp of energy principle, the vibration response of motor in-wheel motor system is analyzedunder the electromagnetic excitation. The research work in this chapter can providetheoretical basis of the design and vibration control of in-wheel motor driven system.
     (5) To perform the lightweight design of the in-wheel motor driven system with outerrotor and inner stator. Direct reduction of unsprung mass is used to improve the ride and ridecomfort. Lightweight design mainly include two aspects:○1under the premise of ensuringvehicles’ dynamic performance, lightweight design of in-wheel motor is performed bycombining Finite Element Method (FEM), Response Surface Method (RSM) and ParticleSwarm Optimization (PSO) algorithm, to minimize the mass of in-wheel motor, and thenmake comparative analysis of in-wheel motor’s magnetic field distribution and torquecharacteristics before and after optimization to verify the result of optimization;②according to the result of optimization in step○1, to modify the size of stator bracket andperform topology optimization under stress constraint by using variable density method, and then verify the result of optimization by performing stress analysis to the structure afteroptimization.
     (6) Completing the development of the novel electric wheel prototype system, functionaltest will be performed to the pre-prototype, and then preliminary feasibility verification of theability of this novel electric wheel structure of in-wheel motor drive system with embeddedmount to solve the non-uniform air gap problem due to road excitation will be performed.
引文
[1] Worldwide trends in motor vehicle pollution control[R]. The Report of Considering theAutomobile Society in the21st Century Environment Day, Tokyo, June5,2003.
    [2] David A Hensher and Kenneth J Button. Handbook of transport and the environment[M].Vol.4. Amsterdam: Elsevier,2003:185-199.
    [3] C.C.Chan, Y.S.Wong. The state of the art of electric vehicles technology[C]. Proceedingsof the4th International Power Electronics and Motion Controls Conference (IPEMC2004). Xi'an, China,2004:46-57.
    [4] Zhao Yan-e, Zhang Jianwu, Han Xu. Development of a high performance electric vehiclewith four-independent-wheel drives [C]. SAE Paper, No.2008-01-1829.
    [5] King-Jet Tseng, G. H. Chen. Computer-Aided design and analysis of direct-driven wheelmotor drive [C]. IEEE Transactions on Power Electronics, Vol.12, No.3, May1997:517-526.
    [6] Mnabau OMAE, Hiroshi SHIMIZU, Traction-force-distribution control of EV within-wheel motors of lane keeping[J], EVS’18, Berlin,2001.
    [7] D. Foito, A. Roque, J. Esteves, J. Maia. Electric vehicle with two independent wheeldrives-improving the performance with a traction control system[J], EVS’17,2000.
    [8] R. PUSCA, AIT AMIRA and A.BERTHON. Slip control strategy of an electrical of fourwheel drive vehicle[J], EVS’18, Berlin,2001.
    [9] Katsuhiko Kamiya, Junichi Okuse, Kazufumi Ooishi, et al. Development of In-wheelMotor System for Micro EV: Proceedings of the18th Inernational Electric VehicleSymposium[J]. Berlin, Germany.2001
    [10]Shiro Matsugaura, Kiyomoto Kawakami, Hiroshi Shimizu. Evaluation of Performancesfor the In-wheel Drive System for the New Concept Electric Vehicle “KAZ”: Proceedingsof the19th International electric Vehicle Symposium[J], Busan, Korea.2002
    [11]M. Terashima, T. Ashikaga, T. Mizuno, et al. Novel Motors and Controllers forHigh-Performance Electric Vehicle with Four ln-Wheel Motors: Industrial Electronics[J],IEEE Transactions,1997:Volume44, Issue l,28~38
    [12]J. Willberger, A. Rojas, H. Niederkofler. Energy efficiency and potentials of electricmotor types for wheel hub applications[J], SAE Paper2009-24-0158,2009.
    [13]J. Willberger, M. Ackerl, A. Rojas, H. Niederkofler, Motor selection criteria andpotentials of electrified all wheel drive concepts for passenger cars by add-on wheel hubmotors on the rear axle[J], SAE Paper2010-01-1307,2010.
    [14]沈勇,吴新文.基于复合神经网络模型的四轮独立驱动电动车控制[J].汽车工程,2004,26(4):458-460
    [15]葛英辉,倪光正.新型电动车电子差速控制策略研究.浙江大学学报(工学版)[J],2005,39(12):1973~1978
    [16]陈勇,电动轮电动汽车动力学与控制策略研究.北京理工大学[D].北京:2002
    [17]靳立强,王庆年.电动轮驱动汽车电子差速控制策略及仿真.吉林大学学报(工学版)[J].2008,38:(增刊)1~6
    [18]李宝华.电动轮汽车主动控制技术[M].天津汽车.2008.7
    [19]Yoichi Hori. Future Vehicle Driven by Electricity and Control-Reasearch on4WheelMotored’UOT March II’[J], Proc. of AMC, Maribor,2002
    [20]Farzad Tahami,Shahrokh Farhangi, Reza Kezami. A Fuzzy Logic Direct Yaw-Momentcontrol system for ALL-wheel-Drive Electric Vehicle[J], Vehicle SystemDynamics.2004,41(3):203~221
    [21]靳立强,王庆年,宋传学.电动轮驱动汽车动力学最优PD控制仿真[J].系统仿真学报,2007,19(10):2264~2268
    [22]Sinclair Gair, Andrew Cruden, J. McDonald, Branislav Hredzak. Electronic Differentialwith Sliding Mode Controller for a Direct Wheel Drive Electric Vehicle[J]. IEEEInternational Conference on Mechatronics2004Technical Program.
    [23]Ju-sang Lee, Young-Jae Ryoo, Young-Cheol Lim,etc.”A Neural Network Model ofElectric Differential System for Electric Vehicle”[J],26th Annual Conference of theIEEE Industrial Electronics Society(2000IEEE International Conference on IndustrialElectronics,Control and Instrumentation)(IECON2000),vol.1.
    [24]Rafal Setlak.HAULAGE TRUCKS MODEL with Four Electric Separate wheel Drives[J].TRANSPORT-2005,Vol XX,No1,51~54.
    [25]Atsuo kawamura,Tomohiku Okubora,Takahiro sugawara,Masaki Nakano. Analysis on thetwo axis motor(super motor)for electric vehicles[J]. Proceedings of the8th IEEEInternational Workshop on Advanced Motion Control,pp.71-74,Kawasaki,Japan,2004.
    [26]Farzad Tahami, Shahrokh Farhanghi. A novel driver assist stability system forall-wheel-drive electric vehicles[J]. IEEE TRANSACTIONS ON VEHICULARTECHNOLOGY, VOL.52, NO.3, MAY2003.
    [27]E. Esmailzadeh, A. Goodarzi, G. R. Vossoughi. Optimal yaw moment control law forimproved vehicle handling[J]. Mechatronics13(2003):659-675.
    [28]Motoki Shino, Naoya Miyamoto&YuQing Wang, et al. Traction control of electricvehicles considering vehicle stability[J]. AMC2000-NAGOYA.
    [29]M. Croft-White, M. Harrison. Study of torque vectoring for all-wheel-drive vehicles[J].Vehicle System Dynamics, Vol.44, Supplement,2006:313-320.
    [30]贺鹏,掘洋一.四轮独立驱动电动汽车的稳定性控制及其最优动力分配法[J].河北工业大学学报,2007(8), Vol.36,No.4,pp.26-32.
    [31]H. E. Tseng, D. Madau&B. Ashrafi etc. Technical challenges in the development ofvehicle stability control system[C]. Proceedings of the1999IEEE InternationalConference on Control Applications, Kohala Coast–Island of Hawaii, USA, Aug.22-27,1999.
    [32]Mark O. Bodie, Aleksander Hac. Closed loop yaw control of vehicles usingmagneto-rheological dampers[C]. SAE paper, No.2000-01-0107.
    [33]Motoki Shino, Masao Nagai. Yaw-moment control of electric vehicle for improvinghanding and stability[J]. JSAE Review22(2001):473-480.
    [34]Nobuyoshi Mutoh, Kazuya Takita. A control method to distribute electric braking forcebetween front and rear wheels in electric vehicle systems with independently driven frontand rear wheels[C].2004IEEE. pp.2746-2753.
    [35]E. Esmailzadeh, G.R.Vossoughi&A.Goodarzi. Dynamic modeling and analysis of a fourmotorized wheels electric vehicle [J]. Vehicle System Dynamics,2001,35(3):163-194.
    [36]Yoshifumi Aoki,Toshiyuki Uchida,Yoichi Hori.Experimental Demonstration of BodySlip Angle Control based on a Novel Linear Observer for Electric Vehicle [A].IECON2005Proc. Piscataway, NJ, USA: IEEE,2005:2620-2625.
    [37]S. Motoyama et al., Quantitive evalution for yaw control ability[J]. In Prov. AVEC,1998.
    [38]Shio-ichiro Sakai, Hideo Sado, Yoichi Hori. Motion control on an electric vehicle withfour independently driven in-wheel motors[C]. IEEE/ASME Transactions onMechatronics, Vol.4, No.1, March1999:9-16.
    [39]Hideo sado, shin-ichiro Sakai, yoichi hori. Road condition estimation for traction controlfor electric vehicle traction control with slip ratio controller[C]. Proc. IEEE Int. Symp.Industrial Electronics, Slovenia: Bled,1999:973-978.
    [40]Shin-ichiro Sakai, Hideo Sado&Yoichi Hori. Novel Skid Avoidance Method for ElectricVehicle with Independently Controlled4In-Wheel Motors[C], ISIE,1999.7Slovenia.
    [41]Purdy D J.A Brief Investigation Into the Effect on Suspension Motions of HighunsprungMass[J]. Battlefield Technology,2004,7(1).
    [42]Go Nagaya, Development of an in-Wheel Drive with Advanced Dynamic-DamperMechanism[J], JSAE Review2003(24):477-481.
    [43]Hrovat D. Influence of Unsprung Weight on Vehicle Ride Quality[J], Journal of Soundand Vibration.1988,124(3):497-516.
    [44]Siddiqui. Dynamic Analysis of a Modern Urban Bus for Assess-ment of Ride Quality andDynamic Wheel Loads[J]. Master Abstracts International,2000.
    [45]Eastham J F.Disc Motor Reduced Unsprung Mass for Direct EV Wheel Drive[J]. IEEECatalog Number:95TH8081.
    [46]Hredzak B. Control of an EV Drive with Reduced UnsprungMass[J], IEEE Proc. Electr.Power Appl.1998,145(6).
    [47]Johansen P R. The Use of an Axial Flux Permanent Magnet in-Wheel Direct Drive in anElectric Bicycle[J]. Renewable Energy,2001(22):151-157.
    [48]Yang Y P. Design and Control of Axial-Flux Brushless DC Wheel Motors for ElectricVehicles-Part I: Multi–Objective Optimal Design and Analysis[J], IEEE Transactionson Magnetics.2004,40(4).
    [49]Patterson D. The Design and Development of an Axial Flux Permanent Magnet BrushlessDC Motor for Wheel Drive in a Solar Powered Vehicle[J]. IEEE Transactions on IndustryApplications.1995,31(5).
    [50]Profumo F. Axial Flux Machines Drives. A New Viable Solution for Electric Cars[J].IEEE Transactions on Industrial Electronics.1997,44(1).
    [51]Mellor P H. Hub-Mounted Electric Driven-Train for a High Performance All-ElectricVehicle.London[C], UK,1996.
    [52]Rmsden V S R. Design of an in-Wheel Motor for a Solar-Powered Electric Vehicle[J].Journals&Magazines,1998,145(5):402-408..
    [53]Hori Y. Future Vehicle Driven by Electricity and Control-Research on Four-Wheel-Motored. UOT Electric March II[J]. IEEE Transactions on Industrial Electronics.2004,51(5).
    [54]Eastham J F, Balchin M J, Becter T, et al. Disk motor with reduced unspring mass fordirect EV wheel drive[C]//IEEE. Proceedings of the IEEE International Sympostion onIndustrial Electronics,1995:569-573.
    [55]Nagaya G, Wakao Y. Development of an in-wheel drive with advanced dynamic-dampermechanism[J]. JSAE Review,2003,24:477-481.
    [56]夏存良,宁国宝.轮边驱动电动车大质量电动轮垂向振动负效应主动控制[J].中国机械工程学报.2006.1:4(1),31-34.
    [57]Nagaya G, Wakao Y, Abe A. Development of an in wheel drive with advanceddynamic-damper mechanisim [J]. JSAE Review,2003,24:477~481
    [58]Eastham J F, et a l. Discmotor with reduced unsprung mass for direct EV wheel drive [J].IEEE International Symposium on Industrial Electronics,1995:569~573
    [59]Shimizu H, et al."KAZ" the super electric vehicle[A].18th International Battery, Hybridand Fuel Electric Vehicle[C],2001, EVS18, Berlin.
    [60]赵艳娥,张建武,韩旭.轮毂电机独立驱动电动汽车动力减振机构设计与研究[J].机械科学与技术.2008.27(3),395-398.
    [61]Y. Hayashi, H. Mitarai, and Y. Honkura. Development of a DC Brush Motor with50%Weight and Volume Reduction Using an Nd–Fe–B Anisotropic Bonded Magnet[J]. IEEETRANSACTIONS ON MAGNETICS, BOSTON, MASSACHUSETTS,2003.9,39(5).
    [62]D.-K. Hong, B.-C. Woo, J.-H. Chang, and D.-H. Kang,“Optimum Design of TFLM WithConstraints for Weight Reduction Using Characteristic Function”[J], IEEE Transactionson Magnetics,2007,43(4):1613–1615.
    [63]Do-Kwan Hong, Byung-Chul Woo and Do-Hyun Kang. Optimum Design of TFLM withConstraint to Maximize Thrust Force, Minimize Detent Force for Weight ReductionUsing Characteristic Function[C]. The12th Biennial IEEE Conference onElectromagnetic Field Computation Digest Book, Miami, FL, USA,2006.5.
    [64]Goga V. Cvetkovski, Lidija B. Petkovska. Weight Reduction of Permanent Magnet DiscMotor for Electric Vehicle Using Genetic Algorithm Optimal Design Procedure[C]. IEEEEUROCON2009, St.-Petersburg, Russia,2009.5.
    [65]Tahar Hamiti, Chris Gerada, Michael Rottach Weight Optimisation of a Surface MountPermanent Magnet Synchronous Motor Using Genetic Algorithms and a CombinedElectromagnetic-thermal Co-simulation Environment [J]. Energy Conversion Congressand Exposition, Nottingham, UK,2011.9:1536-1540.
    [66]Hany M. Hasanien, Ahmed S. Abd-Rabou, and Sohier M. Sakr. Design Optimization ofTransverse Flux Linear Motor for Weight Reduction and Performance ImprovementUsing Response Surface Methodology and Genetic Algorithms[J]. IEEETRANSACTIONS ON ENERGY CONVERSION,2010.9,25(3):598-605.
    [67]Hokyung Shim, Semyung Wang, and Kwansoo Lee.3-D Optimal Design of InductionMotor Used in High-Pressure Scroll Compressor[J]. IEEE TRANSACTIONS ONMAGNETICS,2009.5,45(5):2076-2084.
    [68]Semyung Wang, D. Youn, H. Moon, and J. Kang. Topology Optimization ofElectromagnetic Systems Considering Magnetization Direction[J]. IEEETRANSACTIONS MAGNETICS,2005,41(5):1808-1811.
    [69]Labbeacute T, Dehez B, Markovic M. Perriard. Torque-to-Weight Ratio Maximization inPMSM using Topology Optimization[C]. International Conference on ElectricalMachines (ICEM), Rome, Italy,2010.9.
    [70]Bends e M, Kikuchi N (1988) Generating optimal topologies in structural design using ahomogeneization method[J]. Comput Methods Appl Mech Eng71:197–224.
    [71]Bends e M, Sigmund O (1999) Material interpolation schemes in topologyoptimization[J]. Arch Appl Mech69:635–654.
    [72]Bends e M, Sigmund O (2003) Topology optimization-theory, methods andapplications[M], Springer, EUA, New York.
    [73]Luo Yutao, Tan Di. A Novel in-wheel Motor with Inner Rubber Bushings[J]. ChineseJournal of Automotive Engineering.2012.Vol.2(3):172-178
    [74]罗玉涛.一种内置悬置集成式轮毂电机驱动电动轮[P].中国发明专利. CN102673380A.
    [75]Yutao Luo, Di Tan. Study on the Dynamics of the In-wheel Motor System[J]. IEEETransactions on Vehicular Technology.2012.61(8):3510-3518.
    [76]D.-K. Hong, B.-C. Woo, J.-H. Chang, and D.-H. Kang,“Optimum Design of TFLM WithConstraints for Weight Reduction Using Characteristic Function[J],” IEEE Transactionson Magnetics,2007,43(4):1613-1615.
    [77]David G. Dorrell, William T. Thomson, Steven Roach. Analysis of airgap flux, current,and vibration signals as a function of the combination of static and dynamic airgapeccentricity in3-phase induction motors[J]. IEEE Transactions On Industry Applications,1997,33(1):24-34.
    [78]Jim P. Wang, Dennis K. Lieu. Magnetic lumped parameter modeling of rotor eccentricityin brushless permanent-magnet motors[J]. IEEE Transactions On Magnetics,1999,35(5):4226-4231.
    [79]Yoshihiro Kawase, Noriyo Mimura and Kazuo Ida.3-D electromagnetic force analysis ofeffects of off-center of rotor in interior permanent magnet synchronous motor[J]. IEEETransactions On Magnetics,2000,36(4):1858-1862.
    [80]Kyung-Tae Kim, Kwang-Suk Kim, Sang-Moon Hwang, Tae-Jong Kim and Yoong-HoJung. Comparison of magnetic forces for IPM and SPM motor with rotor eccentricity[J].IEEE Transactions On Magnetics,2001,37(5):3448-3451.
    [81]Kyung-Tae Kim, Sang-Moon Hwang, Gwz-Yong Hwang, Tae-Jong Kim, Weui-BongJeong and Chul-U Kim. Effect of rotor eccentricity on spindle vibration in magneticallysymmetric and asymmetric BLDC motors[C]. Proceedings of IEEE ISIE,2001. Pusan,KOREA,2001:967-972.
    [82]余志生.汽车理论[M].第三版.北京:机械工业出版社,2000.
    [83]Shengping Fu, Changle Xiang, Jingyan Wu. Numerical calculation of ball bearingexcitation and application in multi-body dynamics simulation[J]. Computer-AidedIndustrial Design and Conceptual Design,2009. Wen zhou, China,2009:596-600.
    [84]E.Lopez-Medina and G.Silva-Navarro. Dynamic Stiffness Control and AccelerationScheduling for Unbalance Compensation in a Rotor-Bearing System: ExperimentalResults.20107th International Conference on Electrical Engineering, Computing Scienceand Automatic Control (CCE2010). TuxtIa Gutierrez, Chiapas, Mexico. September8-10,2010:494-499.
    [85]陈忠.滚动轴承及其支承的刚度计算[J].煤矿机械.2006,27(3):387-388.
    [86]Qatu M, Sirafi M, Johns F. Robustness of powertrain mount system fornoise, vibrationand harshness at idle[J].Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2002,216(10):805-810.
    [87]Kim T.J., Hwang S.M., et al. Comparison of dynamic responses for IPM and SPM motorsby considering mechanical and magnetic coupling[J]. IEEE Transactions on Magnetics,2001,37:2818-2820.
    [88]Kim K.T, Kim K.S, et al. Comparison of magnetic forces for IPM and SPM motor withrotor eccentricity[J]. IEEE Transactions on Magnetics,2001,37:3448-3451.
    [89]Zhu Z Q,Howe D. Halbach permanent magnet machines and applications: a review[J].IEEE Proc.-Electr.Power App,2001,148(4):299-308.
    [90]F.Libert, J.Soilard and J.Engstrom.Design of a4-Pole Start PermanentMagnetSynchronous Motor[C]. EME,2002:1316-1320.
    [91]Zhu Z Q, Howe D. Influence of Design Parameters on Cogging Torque in PermanentMagnet Machines[J]. IEEE Trans. on Energy Conversion,2000,15(4):407-412
    [92]Lee S J, Kenkel J M, Pecharaky V K, et al. Permanent Magnet Array for MagneticRefrigerator[J]. IEEE Transactions on Magnetics,2004,5:1597-1600.
    [93]Halbach K. Design of Permanent Multipole Magnets with Oriented Rare Earth CobaltMaterial[J]. Nuclear Instruments and Methods,1981,169:1-10
    [94]F. Magnussen, P. Thelin and C. Sadarangani. Design of Compact Permanent MagnetMachines for a Novel HEV Propulsion System[C]. The20th Internatinal Electric VehicleSympo2sium and Exposition (EVS), Long Beach, California, USA,2003:1-12.
    [95]K.J.Tseng, S.B.Wee. Analysis of Flux Distribution and Core Losses in Interior PermanentMagnet Motor [J]. IEEE Transactions on Energy Conversion,1999,14(4):969-975.
    [96]Ji-Young Lee, Sang-Ho Lee. Determination of Parameters Considering MagneticNonlinearity in an Interior Permanent Magnet Synchronous Motor[J]. IEEE Trans. onMagnetics.2006,42(4):1303-1306.
    [97]Miller T J E, Popescu M. Performance Estimation of Interior Permanent-MagnetBrushless Motors Using the Voltage-Driven Flux-MMF Diagram[J]. IEEETransaction onMagnetics,2006,42(7):1867-1872.
    [98]Kurihara K., Wakui G, Kubota T. Steady-state performance analysis of permanent magnetsynchronous motors including space harmonics[J].IEEE Transactions onMagnetics.1994,30(3):1306-1315.
    [99]Ping Zhou., Rah man M.A., Jab bar M.A. Field circuit analysis of permanent magnetsynchronous motors [J].IEEE Transaction son Magnetic.1994,30(4), Part.2:1350-1359.
    [100] Rah man M.A., Ping Zhou. Field-based analysis for permanent magnet motors [J].IEEE Transactions on Magnetics.1994,30(5), Part.2:3664-3667.
    [101] Kiml U, Lieu D K. Effects of Magnetically Induced Vibration Force in BrushlessPermanent-Magnet Motors[J]. IEEE Trans. on Magnetics,2005,4(16):2164-2172.
    [102] Gyu-Hong Kang, Young-Dae Son, Gyu-Tak Kim. The Noise and Vibration Analysisof BLDC Motor Due to Asymmetrical Permanent-Magnet Overhang Effects[J]. IEEETrans. on Industry Applications,2008,44(5):1569-1577
    [103] Chénet S, Javadi H, et al. Theoretical and Experimental Studies of The Effects of TheFeeding Currents on The Vibrations of Magnetic Origin of Permanent MagnetMachines[J]. IEEE Trans. on Magnetics,1995,31(3):1837-1842.
    [104] F.Taegen,J.Kolbe,S.P.Verma. Vibrations and noise produced by special purposepermanent-magnet synchronous motors in variable frequency operation[C]. Proceedingsof The Fourth IEEE International Conference On Power Electronics AND driveSystems,2001,22-25Oct.2001,2:583-588
    [105] R.Belmans,D.Verdyck,W.Geysen. Optimization of Permanent Magnet Machines withRespect to Torque and Audible Noise[C]. Proceedings of the Fourth InternationalConference On Electrical Machines and Drives,1989,13-15Sep:80-84.
    [106] Y.Lefevre,B.Davat,M.Lajoie-mazeng. Determination of Synchronous MotorVibrations due to Electromagnetic Force Harmonics[J] IEEE Transactions OnMagnetics1989.
    [107] F. Magnussen. On Design and Analysis of Synchronous Permanent Magnet Machinesfor Field-weakening Operation in Hybrid Electric Vehicles[D] Doctor’s thesis, SwedenRoyal Institute of Technology.2004:59-131
    [108] F. Magnussen, P. Thelin and C. Sadarangani. Performance Evaluation of PermanentMagnet Synchronous Machines with Concentrated and Distributed Windings Includingthe Effect of Field-weakening[J]. Proceedings of the IEEesecond InternationalConference on Power Electronics, Machine and Drive (PEMD),2004,2:679-685
    [109] Rahman M.F, Haque Md. E, et al. Problems associated with the direct torque controlof an interior permanent-magnet synchronous motor drive and their remedies[J].Industrial Electronics, IEEE Transactions on,2004.51(4):799-809.
    [110] Tang Lixin, Zhong Linmin, et al. A novel direct torque control for interiorpermanent-magnet synchronous machine drive withe low ripple in torque and flux-aspeed-sensorless approach. Industrial Electronics[J], IEEE Transactions on PowerElectronics,39(6):1748-1756.
    [111]郭孔辉,王爽,丁海涛,等.后悬架非对称式橡胶衬套弹性耦合特性[J].吉林大学学报(工学版).2007,37(6):1225-1228.
    [112] Blundell M.V.. The Influence of Rubber Bush Compliance on Vehicle Suspensionovement[J]. Materials and Design,1998,19:29-37.
    [113]杨树凯,宋传学,安晓娟,等.用虚拟样机方法分析橡胶衬套弹性对整车转向特性的影响[J].吉林大学学报(工学版).2007,37(5):994-999.
    [114]高晋,宋传学.橡胶衬套刚度对悬架特性的影响[J].吉林大学学报(工学版),2010,40(2):324-329.
    [115] Bends e M, Kikuchi N (1988) Generating optimal topologies in structural designusing a homogeneization method[J]. Comput Methods Appl Mech Eng71:197–224.
    [116] Bends e M, Sigmund O (2003) Topology optimization—theory, methods andapplications[J], Springer, EUA, New York.
    [117] Bends e M, Sigmund O (1999) Material interpolation schemes in topologyoptimization[J]. Arch Appl Mech69:635–654.
    [118] Chu E. Generalization of Hill’s1979anisotropic yield criteria[J]. Journals ofMaterials Processing Technology,1995,50(1-4):207-215.
    [119] Hill R. Constitutive modeling of orthotropic plasticity in sheet metal[J]. Journal ofthe Mechanics Physics of Solids,1990,38(3):405-417.
    [120] Keum Y T, Lee B. Sectional finite element analysis of forming processes foraluminum-alloy sheet metals[J]. In-ternational Journal of Mechanical Sciences,2000,42(10):1911-1933.
    [121] Barlat F, Lian J. Plastic behaviour and stretchability of sheet metals. Part I Ayield function for orthotropic sheet under plane stress conditions[J]. International Journalof Plasticity,1989,5(1):51-66.
    [122] Barlat F, Lege D J, Brem J C. A six-component yield function for anisotropicmaterials[J]. International Journal of Plasticity,1991,7(7):693-712.
    [123] Habraken F A C M, Dautzenberg J H. Some applications of the Barlat1991yieldcriterion[J]. CIRP Annals-Manufacturing Technology,1995,44(1):185-188.
    [124] Wu P D, Jain M, Savoie J, et al. Evaluation of anisotropic yield functions foraluminum sheets[J]. International Journal of Plasticity,2003,19(1):121-138.
    [125] Barlat F, Maeda Y, Chung K, et al. Yield function development for aluminum alloysheets[J]. Journal of the Mechanics and Physics of Solids,1997,45(11-12):1717-1763.
    [126] Bron F, Besson J. A yield function for anisotropic materials application to aluminumalloys[J]. International Journal of Plasticity,2004,20(4-5):937-963.
    [127] Cazacu O, Barlat F. Application of the theory of representation to describe yieldingof anisotropic aluminum alloys[J]. International Journal of Engineering Science,2003,41(12):1367-1385.
    [128] Cazacu O, Barlat F. A criterion for description of anisotropy and yield differentialeffects in pressureinsensitive metals[J]. International Journal of Plasticity,2004,20(11):2027-2045.
    [129] Plunkett B, Lebensohn R A, Cazacu O, et al. Anisotropic yield function of hexagonalmaterials taking into account texture development and anisotropic hardening[J]. ActaMa-terialia,2006,54(16):4159-4169.
    [130]丁康,江利旗.离散频谱的能量重心校正法[J].振动工程学报,2001,14(3):354-358.
    [131]林慧斌,丁康.离散频谱四点能量重心校正法及抗噪性能分析[J].振动工程学报,2009,22(6):659-664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700