用户名: 密码: 验证码:
煤体非均质随机裂隙模型及渗流—应力耦合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层瓦斯抽采利用既可以解决煤层瓦斯排放污染环境和能源浪费问题,又能大幅度地降低煤层瓦斯含量,消除瓦斯突出和瓦斯爆炸的危险。煤的非均质及其内的随机裂隙存在影响着煤的力学和渗流特性,甚至起到控制作用。为了用数值方法分析煤层中瓦斯流动问题时,必须考虑煤储层基质块体的非均质力学特性及其内的随机裂隙展布,只有这样得到的计算结果才具有工程价值。可见,科学地模拟煤储层的力学特性非均质及其内的随机裂隙展布是数值方法应用于煤层瓦斯抽采工程理论研究与工程设计的关键。本文综合应用实验室试验、理论分析、数值模拟等方法对非均质随机裂隙煤岩体渗流问题进行研究,论文主要研究成果:
     (1)对煤的峰后软化特征和扩容行为进行了探讨,在已有研究基础上建立了考虑围压影响的煤峰后软化模型和扩容模型,并通过数值算例验证,结果表明此模型能反映围压对煤岩剪胀扩容行为。
     (2)通过实验研究瓦斯在煤层内的渗流特征,得出对于“滑脱”效应不明显的煤在计算渗透率时优先采用Louis公式,由此建立了煤的变形和瓦斯流动的耦合模型,通过瓦斯抽采实例证明,瓦斯压力分布关于井心对称。
     (3)通过试验研究煤块力学参数的统计分布规律,利用Weibull分布模拟煤的力学参数的非均质,建立考虑煤的非均质力学特性的概率模型,进而建立非均质煤的渗流应力耦合模型,通过瓦斯抽采实例证明,结果表明瓦斯压力,煤的有效应力和煤变形都呈现非对称性。
     (4)研究煤层内随机裂隙的模拟方法,建立随机裂隙煤的概率表征模型,进而建立随机裂隙煤的渗流应力耦合模型,结果表明:与瓦斯抽采井连通的裂隙对瓦斯运移影响大于与抽采井不连通的裂隙。
     (5)建立了非均质、随机裂隙煤的表征模型,给出了非均质随机裂隙虚拟煤体生成步骤,编制了相应的虚拟煤体生成程序。
     (6)通过实验研究了煤的力学参数之间的关联规律,建立了考虑力学参数关联的非均质煤随机概率模型,结果表明该模型能很好的模拟非均质煤的非线性破坏过程。
Gas drainage not only solves environmental pollution and energy waste caused by gas discharge,but it also reduces coal seam methane content and eliminates danger of gas outburst or explosion. Coal body conceives a large amount of fracture and random cracks which can greatly affect and even control coal mechanicals and seepage property. The effect and control of coal anisotropic and its internal random crack on gas drainage requires numerical approach to analyze gas movement in coal bed, and must take anisotropic mechanical property and internal random crack spreading consideration. Only by this way, can calculating result provide engineering value. It is evident that scientific simulation on anisotropy coal reservoirs’mechanical property and random crack spreading is the key for theoretical research and engineering design of coal seam gas drainage’s numeral application
     The article takes it as an aim to build a representation model of anisotropic and random cracking coal body. The research content as follows:
     1. Build coupling model of coal deformation and gas movement through research of gas seepage property in coal.
     2. Through research on statistic distribution principle of coal block’s mechanical index, build probability model concerning mechanical property by utilizing Weibull distribution to simulate anisotropy of coal’s mechanical index, consequently form anisotropic seep stress coupling model of coal considering the anisotropic coal.
     3. Research simulating means of random crack in coal, and build probability representation model of random crack coal, furthermore, develop a seep stress coupling model of random crack coal.
     4. Above all, setting up representation model of anisotropic an random crack coal,providing generating steps of anisotropic and random coal body, programming relative virtual coal body generation.
     5. Set up random probability model of anisotropic coal concerning mechanical index relevance with experimental research on related principle of mechanical index in coal.
     6. Discuss the peak post softening feature of coal and expansion,build peak post softening model of coal and expansion model with concern of confining pressure, and achieve the goal under FLAC.
引文
[1]袁亮.低透高瓦斯煤层群安全开采关键技术研究[J].岩石力学与工程学报.2008,27(7): 1370-1379.
    [2] W.C. Zhu, J. Liu, T.H. Yang, J.C. Sheng, D. Elsworth. Effects of local rock heterogeneities on the hydromechanics of fractured rocks using a digital-image-based technique[J]. International Journal of Rock Mechanics & Mining Sciences 43 (2006) 1182–1199.
    [3] Hongbin Zhang, Jishan Liu, D. Elsworth. How sorption-induced matrix deformation affects gas ?ow in coal seams: A new FE model[J]. International Journal of Rock Mechanics & Mining Sciences 45 (2008) :1226–1236.
    [4] Sun PD. Numerical simulations for coupled rock deformation and gas leak flow in parallel coal seams. Geotech Geol Eng. 2004,22:1–17.
    [5] Gary I. Reservoir engineering in coal seams: Part 1—The physical process of gas storage and movement in coal seams. Soc Petrol Eng Res Eng .1987,1:28–34.
    [6]赵阳升,胡耀青,赵宝虎等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用[J].煤炭学报.2003, 28(1): 41-45.
    [7]张春会.非均匀、随机裂隙展布岩体渗流应力耦合模型[J].煤炭学报.2009,34(11):1460- 1464.
    [8] S.C. Yuan, J.P. Harrison. A review of the state of the art in modelling progressive mechanical breakdown and associated ?uid ?ow in intact heterogeneous rocks [J]. International Journal of Rock Mechanics & Mining Sciences 43 (2006) 1001–1022
    [9] Da Cunha AP. Scale effects in rock masses. Rotterdam: Balkema, 1993.
    [10] Brighi B, Chipot M, Gut E. Finite differences on triangular grids. Numer Methods Partial Differential Equations 1998;14:567–79.
    [11] Selim V. A node centred finite volume approach: bridge between finite differences and finite elements. Comput Methods Appl Mech Eng 1993;102:107–38.
    [12] Fallah NA, Bailey C, Cross M, Taylor GA. Comparison of finite element and finite volume methods application in geometrically nonlinear stress analysis. Appl Math Modelling 2000;24:439–55.
    [13] Bailey C, Cross M. A finite volume procedure to solve elastic solid mechanics problems in three-dimensions on an unstructured mesh. Int J Numer Methods Eng 1995;38: 1757–76.
    [14] ITSAC Consulting Group, Ltd. FLAC manuals, 1993.
    [15] Fryer YD, Bailey C, Cross M, Lai CH. A control volume procedure for solving the elastic stress–strain equations on an unstructured mesh. Appl Math Modelling 1991;15:639–45.
    [16] Wilkins ML. Calculation of elasto-plastic ?ow. Lawrence Radiation Laboratory, University of California, Research Report UCRL-7322, ReviewI, 1963.
    [17] Taylor GA, Bailey C, Cross M. Solution of the elastic/visco-plastic constitutive equations: a finite volume approach. Appl Math Modelling 1995;19:746–60.
    [18] Marmo BA, Wilson CJL. A verification procedure for the use of FLAC to study glacial dynamics and the implementation of an anisotropic ?owlaw. In: S. arkk. a, Eloranta, editors. Rock mechanics—a challenge for society. Swetz and Zeitlinger Lisse, ISBN 90 2651 821 B. 2001. p. 183–9.
    [19] Mishev ID. Finite volume methods on Voronoi meshes. Numer Methods Partial Differential Equations 1998;14:193–212.
    [20] Caillabet Y, Fabrie P, Landerau P, Noetinger B, Quintard M.Implementation of a finite-volume method for the determination of effective parameters in fissured porous media. Numer Methods Partial Differential Equations 2000;16:237–63.
    [21] Fang Z. A local degradation approach to the numerical analysis of brittle fracture in heterogeneous rocks. PhD thesis, Imperial College of Science, Technology and medicine, University of London, UK, 2001.
    [22] Martino S, Prestininzi A, Scarascia Mugnozza G. Mechanisms of deep seated gravitational deformations: parameters from laboratory testing for analogical and numerical modeling. In:S. arkk. a, Eloranta, editors. Rock mechanics—a challenge for society. Swetz and Zeitlinger Lisse, ISBN 90 2651 821 B. 2001.p. 137–42.
    [23] Kourdey A, Alheib M, Piguet JP. Evaluation of the slope stability by numerical methods. In: S. arkk. a, Eloranta, editors.Rock mechanics—a challenge for society. Swetz and Zeitlinger Lisse, ISBN 90 2651 821 B. 2001. p. 499–504.
    [24]李银平,杨春和.裂纹几何特征对压剪复合断裂的影响分析[J].岩石力学与工程学报.2006,25(3):462-466.
    [25]朱维申,陈卫忠,申晋.雁形裂纹扩展的模型试验及断裂力学机制研究[J].固体力学学报,1998,19(4):355–360.
    [26]王宏图,李晓红,杨春和,等.准各向同性裂隙岩体中有效动弹性参数与弹性波速关系的研究[J].岩土力学.2005,26(6):873-6.
    [27]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩土力学.2000,21(1):64-7.
    [28]孔园波,华安增.裂隙岩石破裂机理研究[J].煤炭学报.1995,20(1):72-6.
    [29] Simpson G, Gueguen Y, Schneider F. Permeability enhancement due to microcrack dilatancy in the damage regime. J Geophys Res 2001;106:3999–4016.
    [30] Ofoegbu GI, Curran JH. Deformability of intact rock. Int J Rock Mech Min Sci Geomech Abstr 1992;29(1): 52–5.
    [31] Krajcinovic D, Fonseka GU. The continuous damage theory of brittle materials—part 1: general theory. J Appl Mech Trans ASME 1981;48:809–15.
    [32] Krajcinovic D. Continuum damage mechanics. Appl Mech Rev 1984;37(1):1–6.
    [33] Costin LS. Damage mechanics in the post-failure regime. Mech. Mater 1985;4:149–60.
    [34] Costin LS. Time-dependent deformation and failure. In: Atkinson BK, editor. Fracture Mechanics of Rock. London: Academic Press; 1987. p. 167–215.
    [35] Basista M, Gross D. The sliding crack model of brittle deformation: an internal variable approach. Int J Solids Struct 1998;35(5–6):487–509.
    [36] Charlez PH. Rock mechanics, vol. 2: theoretical fundamentals.Paris: Editions Technip; 1997.
    [37] Lamaitre L. How to use damage mechanics. Nucl Eng Des 1984;80:233–45.
    [38] Charlez PH. Rock mechanics, vol. 2: theoretical fundamentals.Paris: Editions Technip; 1997.
    [39] Gambarotta L, Lagomarsino S. A microcrack damage model for brittle materials. Int J Solids Struct 1993;30(2):177–98.
    [40]李树春;许江;陶云奇,等.岩石低周疲劳损伤模型与损伤变量表达方法[J].岩土力学.2009,30(6).
    [41]孙星亮;汪稔;胡明鉴.冻土弹塑性各向异性损伤模型及其损伤分析[J].岩石力学与工程学报.2005,19.
    [42] Dragon A,Mroz Z. A continuum model for plastic-brittle behaviour of rock and concrete. Int J Engng Sci 1979;17:121–37.
    [43] Frantziskonis G, Desai CS. Constitutive model with strain softening. Int J Solids Struct 1987;23(6):733–50.
    [44] Valanis KC. On the uniqueness of solution of the initial value problem in softening materials. J Appl Mech 1985;52:649–53.
    [45] Tzou DY, Chen EP.Mesocrack damage induced by a macrocrack in heterogeneous materials. Eng Fract Mech 1991;39(2):347–58.
    [46] Halm D, Dragon A. An anisotropic model of damage and frictional sliding for brittle materials. Eur J Mech A/Solids 1998;17(3):439–60.
    [47] Pensee V, Kondo D, Dormieux L. Micromechanical analysis of anisotropic damage in brittle materials. J Eng Mech ASCE 2002; 128(8):889–97.
    [48] Nemat-Nasser S, Obata M. A microcrack model of dilatancy in brittle materials. J Appl Mech 1988;55:24–35.
    [49] Shao JF, Rudnicki JW. A microcrack-based continuous damage model for brittle geomaterials. Mech Mater 2000;32:607–19.
    [50] Souley M, Homand F, Pepa S, Hoxha D. Damage-induced permeability changes in granite: a case example at the URL in Canada. Int Rock Mech Min Sci 2001;38:297–310.
    [51] Tang CA, Tham LG, Lee PKK, Yang TH, Li LC. Coupled analysis of ?ow, stress and damage (FSD) in rock failure. Int J Rock Mech Min Sci 2002;39(4):477–89.
    [52] Shao JF, Zhou H, Chau KT. Coupling between anisotropic damage and permeability variation in brittle rocks. Int J Numer Anal Meth Geomech 2005;29:1231–47.
    [53]杨天鸿,徐涛,刘建新等.应力–损伤–渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J].岩石力学与工程学报.2005,24(16):2900-2905.
    [54] Scholz CH.Microfracturing and the inelastic deformation of rock in compression. J Geophys Res 1968;73(4):1417–32.
    [55] Hudson JA, Fairhurst C. Tensile strength, Weibull’s theory and a general statistical approach to rock failure. Structure, solid mechanics and engineering design. In: Te’eni M, editor., The proceedings of the Southampton 1969 civil engineering materials conference. 1969. pp. 901–914.
    [56] Weibull W. A statistical distribution function of wide applicability. J Appl Mech 1951;18:293–7.
    [57] Tang C, Liu H, Lee PKK, Tsui Y, Tham LG. Numerical studies of the in?uence of microstructure on rock failure in uniaxial compression—part I: effect of heterogeneity. Int J Rock Mech Min Sci 2000;37:555–69.
    [58]张明;李仲奎;苏霞.准脆性材料弹性损伤分析中的概率体元建模[J].岩石力学与工程学报.2005,24(23):4282-4288.
    [59]梁正召;唐春安;张永彬;马天辉.准脆性材料的物理力学参数随机概率模型及破坏力学行为特征[J].岩石力学与工程学报.2008,27(4):718-727.
    [60] Fang Z, Harrison JP. Development of a local degradation approach to the modelling of brittle fracture in heterogeneous rocks. Int J Rock Mech Min Sci 2002;39:443–57.
    [61] Fang Z, Harrison JP. A mechanical degradation index for rock. Int J Rock Mech Min Sci 2001;38:1193–9.
    [62] Fang Z, Harrison JP. Numerical analysis of progressive fracture and associated behaviour of mine pillars by use of a local degradation model. Trans Inst Min Metall 2002;A111:A59–72.
    [63] Fang Z, Harrison JP. Application of a local degradation model to the analysis of brittle fracture of laboratory scale rock specimens under triaxial conditions. Int J Rock Mech Min Sci 2002;39:459–76.
    [64] Potyondy DO, Cundall PA. A bonded-particle model for rock. Int J Rock Mech Min Sci 2004;41(8):1329–64.
    [65] Hazzard JF, Young RP,Maxwell SC.Micromechanical modeling of cracking and failure in brittle rocks. J Geophys Res 2000;105(B7): 16683–97.
    [66] Antonellini MA, Pollard DD. Distinct element modeling of deformation bands in sandstone. J Struct Geol 1995;17(8):1165–82.
    [67] Hazzard JF, Collins DS, Pettitt WS, Young RP. Simulation of unstable fault slip in granite using a bond-particle model. Pure Appl Geophys 2002;159:221–45.
    [68] Hazzard JF, Young RP. Simulating acoustic emissions in bonded particle models of rock. Int J Rock Mech Min Sci 2000;37:867–72.
    [69] Cook BK, Lee MY, DiGiovanni AA, Bronowski DR, Perkins ED, Williams JR. Discrete element modeling applied to laboratory simulation of near-wellbore mechanics. Int J Geomech ASCE 2004;4(1):19–27.
    [70]王泳嘉,刘连峰.三维离散单元法软件系统TRUDEC的研制[J].岩石力学与工程学报.1996,15(3):193-200.
    [71]王泳嘉.离散单元法同拉格朗日元及其在岩土力学中的应用[J].岩土力学.1995,16(2):1-14.
    [72] Seeburger DA, Nur A. A pore space model for rock permeability and bulk modulus. J Geophys Res 1984;89(B1):527–36.
    [73] David C. Geometry of ?ow paths for ?uid transport in rocks. J Geophys Res 1993;98(B7):12267–78.
    [74] Bernabe Y, Bruderer C. Effect of the variance of pore size distribution on the transport properties of heterogeneous networks. J Geophys Res 1998;103(B1):513–25.
    [75] Hazzlet RD. Statistical characterization and stochastic modeling of pore networks in relation to ?uid ?ow. Mathematical Geology 1997;29(6):801–22.
    [76] Long JCS, Remer JS, Wilson CR, Witherspoon PA. Porous media equivalents for networks of discontinuous fractures.Water Resour Res 1982;18(3):645–58.
    [77] Long JCS, Gilmour P, Witherspoon PA. A model for steady ?uid ?owin random three dimensional networks of disc-shaped fractures. Water Resour Res 1985;21(8):1105–15.
    [78] Robinson PC. Connectivity, ?owand transport in network models of fractured media. PhD thesis, St. Catherine’s College, Oxford University, UK, 1984.
    [79] Andersson J. A stochastic model of a fractured rock conditioned by measured information. Water Resour Res 1984;20(1):79–88.
    [80] Endo HK.Mechanical transport in two-dimensional networks of fractures. PhD thesis, University of California, Berkeley, 1984.
    [81] Endo HK, Long JCS, Wilson CK, Witherspoon PA. A model for investigating mechanical transport in fractured media. WaterResour Res 1984;20(10):1390–400.
    [82] Smith L, Schwartz FW. An analysis of the in?uence of fracture geometry on mass transport in fractured media. Water ResourRes 1984;20(9):1241–52.
    [83] Elsworth D. A model to evaluate the transient hydraulic response of three-dimensional sparsely fractured rock masses.Water Resour Res 1986;22(13):1809–19.
    [84] Elsworth D. A hybrid boundary-element-finite element analys procedure for ?uid ?owsimulation in fractured rock masses. I J Numer Anal Methods Geomech 1986;10:569–84.
    [85] DershowitzWS, Einstein HH. Three-dimensional ?ow modellin in jointed rock masses. In: Herget O, Vongpaisal O, editor Proceedings of the Sixth Congress on ISRM, Montreal, Canad 1987(1): 87–92.
    [86] Andersson J, Dverstop B. Conditional simulations of ?uid ?ow in three-dimensional networks of discrete fractures. Wat Resour Res 1987;23(10):1876–86.
    [87] Yu Q, Tanaka M, Ohnishi Y. An inverse method for the mode of water ?ow in discrete fracture network. Proceedings of the 34th Janan National Conference on Geotechnical Engineerin Tokyo, 1999. p. 1303–4.
    [88] Zimmerman RW, Bodvarsson GS. Effective transmissivity two-dimensional fracture networks. Int J Rock Mech Min S Geomech Abstr 1996;33(4):433–6.
    [89] Bear J, Tsang CF, de Marsily G. Flowand contamina transport in fractured rock. San Diego: Academic Press, 1993.
    [90] Sahimi M. Flowand transport in porous media and fracture rock. Weinheim: VCH Verlagsgesellschaft mbH, 1995.
    [91] National Research Council. Rock fractures and ?uid ?ow—contemporary understanding and applications. Washington DC: National Academy Press, 1996.
    [92] Adler PM, Thovert JF. Fractures and fracture networks. Dordrecht: Kluwer Academic Publishers, 1999.
    [93] Louis C. Rock Hydraulics in Rock Mechanics[M]. New York:Verlay Wien,1974.
    [94] Wilson C R,Witherspoon P A. An investigation of laminar flow in fractured porous rocks[J]. J. of University of California,Berkeley,1970,5:106–113.
    [95] Maini Y N T,Noorishad J,Sharp J. Theoretical and field considerations in the determination of the in-situ hydraulic parameters in fractured rock[A]. In:Proc. Symposium on Percolation Through Fissured Rock[C]. Stuttgart:[s. n. ],1972.
    [96] Dershowitz W S,Einstein H H. Three-dimensional flow modeling in jointed rock masses[A]. In:Herget O,Vongpaisal O,ed. Proceedings of the Sixth Congress on ISRM[C]. Montreal:[s. n. ],1987. 87–92.
    [97] Dershowitz WS, Lee G, Geier J, Hitchcock S, la Pointe P. User documentation: Fracman discrete feature data analysis, geo-metric modelling and exploration simulations. Seattle: Golder Associates, 1993.
    [98] Stratford RG, Herbert AW, Jackson CP. A parameter study of the in?uence of aperture variation on fracture ?owand the consequences in a fracture network. In: Barton N, StephanssonO, editors. Rock joints. Rotterdam: Balkema, 1990(5): 413–22.
    [99] Herbert AW. NAPSAC (Release 3.0) summary document. AEA D&R 0271 Release 3.0, AEA Technology, Harwell, UK,1994.
    [100] Herbert AW. Modelling approaches for discrete fracture net-work ?ow analysis. In: Stephansson O, Jing L, Tsang CF,editors. Coupled thermo-hydro-mechanical processes of frac- tured media-mathematical and experimental studies. Amster-dam: Elsevier, 1996. p. 213–29.
    [101] Wilcock P. The NAPSAC fracture network code. In: Stephans-son O, Jing L, Tsang CF, editors. Coupled thermo-hydro-mechanical processes of fractured media. Rotterdam: Elsevier,1996. p. 529–38.
    [102]陈剑平.岩体随机不连续面三维网络数值模拟技术[J].岩土工程学报.2001,23(4):397-402.
    [103]宋晓晨,徐卫亚.裂隙岩体渗流模拟的三维离散裂隙网络数值模型(I):裂隙网络的随机生成[J].岩石力学与工程学报.2004,23(12):2015-2020.
    [104]朱焕春, Brummer Richard, Andrieux Patrick.节理岩体数值计算方法及其应用(一):方法与讨论[J].岩石力学与工程学报.2004,23(20):3444-3449.
    [105] Mauldon M. Estimating mean fracture trace length and density from observations in convex windows. Rock Mech Rock Eng 1998;31(4):201–16.
    [106] Mauldon M, Dunne WM, Rohrbaugh Jr MB. Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces. J Struct Geol 2001;23:247–58.
    [107] Long JCS. Investigation of equivalent porous media perme-ability in networks of discontinuous fractures. PhD thesis,Lawrence Berkeley Laboratory, University of California, Berke-ley, CA, 1983.
    [108] Amadei B, Illangasekare T. Analytical solutions for steady and transient ?owin non-homogeneous and anisotropic rock joints. Int J Rock Mech Min Sci Geomech Abstr 1992;29(6):561–72.
    [109] Robinson PC. Flowmodelling in three dimensional fracture networks. Research Report, AERE-R-11965, UK AEA,Harwell, 1986.
    [110] Pruess K, Wang JSY. Numerical modelling of isothermal and non-isothermal ?owin unsaturated fractured rock—a review. In: Evan, Nicholson, editors. Flowand transport through unsatu-rated fractured rocks, Monograph 42. Washington, DC: Amer-ican Geophysical Union, 1987. p. 11–21.
    [111] Slough KJ, Sudicky EA, Forsyth PA. Numerical simulation of multiphase ?ow and phase partitioning in discretely fractured geologic media. J Contaminant Hydrol 1999;40:107–36.
    [112] Hughes RG, BluntMJ. Network modelling of multiphase ?ow in fractures. Adv Water Res 2001;24:409–21.
    [113]孙可明,潘一山,梁冰.流固耦合作用下深部煤层气井群开采数值模拟[J].岩石力学与工程学报.2007,26(5):994-1001.
    [114] Layton GW, Kingdon RD, Herbert AW. The application of a three-dimensional fracture network model to a hot-dry-rock reservoir. In: Tillerson JR, Wawersik WR, editors. Rock mechanics. Rotterdam: Balkema, 1992(5): 561–70.
    [115] Ezzedine S, de Marsily G. Study of transient ?owin hard fractured rocks with a discrete fracture network model. Int J Rock Mech Min Sci Geomech Abstr 1993;30(7):1605–9.
    [116] Watanabe K, Takahashi H. Parametric study of the energy extraction from hot dry rock based on fractal fracture network model. Geothermics 1995;24(2):223–36.
    [117] Kolditz O. Modelling ?owand heat transfer in fracture rocks: conceptual model of a 3-d deterministic fracture network.Geothermics 1995;24(3):451–70.
    [118] Willis-Richards J, Wallroth T. Approaches to the modeling of HDR reservoirs: a review. Geothermics 1995;24(3):307–32.
    [119] Willis-Richards J. Assessment of HDR reservoir simulation and performance using simple stochastic models. Geothermics1995;24(3):385–402.
    [120] Dershowitz WS, Wallmann P, Doe TW. Discrete feature dual porosity analysis of fractured rock masses: applications to fractured reservoirs and hazardous waste. In: Tillerson, Wawersik, editors. Rock mechanics. Rotterdam: Balkema,1992(5):543–50.
    [121] Herbert AW, Layton GW. Discrete fracture network modeling of ?ow and transport within a fracture zone at Stripa. In: Myer LR, Cook NGW, Goodman RE, Tsang CF, editors. Fractured and jointed rock masses. Rotterdam: Balkema, 1995(12): 603–9.
    [122] Doe TW, Wallmann PC. Hydraulic characterization of fracture geometry for discrete fracture modelling. Proceedings of the Eighth Congress on IRAM, Tokyo, 1995. p. 767–72.
    [123] Barth! el! emy P, Jacquin C, Yao J, Thovert JF, Adler PM. Hierarchical structures and hydraulic properties of a fracture network in the Causse of Larzac. J Hydrol 1996;187:237–58.
    [124] Jing L, Stephansson O. Network topology and homogenization of fractured rocks. In: Jamtveit B, editor. Fluid ?owand transport in rocks: mechanisms and effects. London: Chapman & Hall, 1996(22): 91–202.
    [125] Margolin G, Berkowitz B, Scher H. Structure, ?ow and generalized conductivity scaling in fractured networks. Water Resour Res 1998;34(9):2103–2107.
    [126] Mazurek M, Lanyon GW, Vomvoris S, Gautschi A. Derivation and application of a geologic dataset for ?owmodeling by discrete fracture networks in low-permeability argillaceous rocks. J Contaminant Hydrol 1998;35:1–17.
    [127] Zhang X, Sanderson DJ. Scale up of two-dimensional con-ductivity tensor for heterogenous fracture networks. Eng Geol 1999;53:83–99.
    [128] Rouleau A, Gale JE. Stochastic discrete fracture simulation of groundwater ?ow into underground excavation in granite.Int J Rock Mech Min Sci Geomech Abstr 1987;24(2):99–112.
    [129] Xu J, Cojean R. A numerical model for ?uid ?owin the block interface network of three dimensional rock block system. In: Rossmanith HP, editor. Mechanics of jointed and faulted rock. Rotterdam: Balkema, 1990,5: 627–33.
    [130] He S. Research on a model of seapage ?owof fracture networks and modelling for coupled hydro-mechanical processes in fractured rock masses. In: Yuan J, editor. Computer methods and advances in geomechanics, vol. 2. Rotterdam: Balkema,1997.8: 1137–1142.
    [131]王飞,王媛,倪小东.渗流场随机性的随机有限元分析[J].岩土力学.2009,30(11):3539-3542.
    [132]陈伟,阮怀宁.随机连续模型分析裂隙岩体耦合行为[J].岩土力学.2008,29(10):2708-3712.
    [133]李传夫,李术才,李树忱.非饱和裂隙岩体渗流的统计模型研究方法[J].岩土力学.2006,27(S):198-202.
    [134]刘文剑,吴湘滨,张慧.在裂隙岩体中开挖隧道的双场耦合蠕变分析[J]. 2008,29(11):3011-3016.
    [135]柴军瑞,仵彦卿.考虑动水压力裂隙网络岩体渗流应力耦合分析[J].岩土力学,2000,20(4):459-462.
    [136]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1998.
    [137]梁冰.煤和瓦斯突出固流耦合失稳理论[M].北京,地质出版社.2000.
    [138]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社.1994.
    [139]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报.1986,3.87-93.
    [140] Zhao Y S,Qing H Z,Bai Q Z. Mathematical model for solid-gas coupled problems on the methane flowing in coal seam[J]. Acta Mechanica Solida Sinica,1993,6(4):459–466.
    [141]赵阳升.煤体一瓦斯祸合数学模型及数值解法[J].岩石力学与工程学报.1994,13(3):229-239.
    [142]赵阳升,胡耀青,赵宝虎等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用[J].煤炭学报.2003, 28(1): 41-45.
    [143]Zhao YS, Hu YQ, Zhao BH, Yang D. Nonlinear coupled mathematical model for solid deformation and gas seepage in fractured media. Transp Porous Media 2004;55:119–36.
    [144]杨天鸿,徐涛,刘建新等.应力–损伤–渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J].岩石力学与工程学报.2005,24(16):2900-2905.
    [145]Klinkenberg LJ. The permeability of porous media to liquids and gases. In: Drilling and production practice. American PetroleumInstitute, 1941. p. 200–13.
    [146] Harpalani S, Chen G. In?uence of gas production induced volumetric strain on permeability of coal. Geotech Geol Eng 1997;15:303–25.
    [147] Seidle JP, Jeansonne MW, Erickson DJ. Application of matchstick geometry to stress dependent permeability in coals. In: Proceedings of the SPE rocky mountain regional meeting, Casper, Wyoming, 15–21, May 1992, paper SPE 24361.
    [148]孙可明.低渗透煤层气开采和注气增产流固耦合理论及其应用[D].辽宁工程技术大学研究生学院,2004.
    [149]张天军.富含瓦斯煤岩体采掘失稳非线性力学机理研究[D].西安科技大学研究生学院,2009.
    [150]陆银龙,王连国,杨峰,等.软弱岩石峰后应变软化力学特性研究[J].岩石力学与工程学报,2010,29(3):648
    [151]周思孟.刚性试验机及其在岩石力学中的应用[J].岩石力学与工程学报,1987,6(2):125~138.
    [152]FRANTZISKONIS G,DESAI C S. Constitutive model with strain softening[J]. International Journal of Solids and Structures,1987,23(6):733–750.
    [153]VARDOULAKIS I. Shear band inclination and shear modulus of sand in biaxial tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1980,4(1):103~119.
    [154] VERMEER P A. The orientation of shear bands in biaxml tests[J]. Geotechnique,1990,40(2):223~236.
    [155]王学滨,潘一山,盛谦,等.平面应变岩样局部化变形场数值模拟研究[J].岩石力学与工程学报,2003,22(4):521~524.
    [156] ZDENEK P,BAZANT F. Continuum theory for strain-softening[J]. Journal of Engineering Mechanics,1984,110(12):1 666~1 692.
    [157]李晓.岩石峰后力学特性及其损伤软化模型的研究与应用[D].徐州:中国矿业大学研究生学院,1995.
    [158]张帆,盛谦,朱泽奇,等.三峡花岗岩峰后力学特性及应变软化模型研究[J].岩石力学与工程学报,2008, 27(增1): 2 651~2 655.
    [159]杨超,崔新明,徐水平.软岩应变软化数值模型的建立与研究[J].岩土力学,2002, 23(6): 695~697.
    [160]张春会,赵全胜,于永江.非均匀煤岩双重介质渗流-应力耦合模型[J].采矿与安全工程学报, 2009, 26(4): 481-485.
    [161]Bieniawski, ZT. Deformation behaviour of fractured rock under multiaxial compression. Structure, solid mechanics and engineering design[J]. Proceedings of Southampton Civil Engineering Materials Conference, Part 1, M. Te’eni ed., 1969.
    [162] Fang Z, Harrison JP. A mechanical degradation index for rock [J]. Int J Rock Mech Min Sci. 2001, 38(8):1193–1199.
    [163] Brace WF, Paulding BW, Scholz C. Dilatancy in the fracture of crystalline rocks. J Geophys Res 1966;71:3939–53.
    [164]Cristescu N. Rock dilatancy in uniaxial tests [J]. Rock Mechanics, 1982, 15: 133~144.
    [165] Baud P, Schubnel A, Wong TF. Dilatancy, compaction, and failure mode in Solnhofen limestone [J]. Journal of Geophysical Research B, 2000, 105: 289~303.
    [166]Vajdova V, Baud P, Wong TF. Compaction, dilatancy, and failure in porous carbonate rocks [J]. Journal of Geophysical Research B, 2004, 109: 1~16.
    [167]Gerbault M, Poliakov ANB, DaignieresM. Prediction of faulting from the theories of elasticity and plasticity: what are the limits[J]. Journal of Structural Geology, 1998, 20: 301~320.
    [168] Simpson G, Gueguen Y, SchneiderF. Permeability enhancement due tomicrocrack dilatancy in the damage regime [J]. Journal of Geophysical Research B, 2001, 106: 3999~4016.
    [169]Zoback MD, Byerlee JD. The effect of cyclic differential stress on dilatancy in Westerly granite under uniaxial and triaxial conditions[J]. Geophys Res 1975;80:1526–30.
    [170] Detournay E. Elastoplastic model of a deep tunnel for a rock with variable dilatancy[J]. Rock Mech Rock Eng 1986,19:99–108.
    [171]Pan XD, Brown ET. Influence of axial stress and dilatancy on rock tunnel stability[J]. Geotech Eng 1996;122:139–46.
    [172]赵星光,蔡明,蔡美峰.岩石剪胀角模型与验证[J].岩石力学与工程学报.2010, 29(5):970-981.
    [173] PATERSON M S. Experimental deformation and faulting in Wombeyan marble[J]. Geological Society of America Bulletin,1958,69(4):465–476.
    [174] Shih-Che Yuan, J.P. Harrison.An empirical dilatancy index for the dilatant deformation of rock[J]. International Journal of Rock Mechanics & Mining Sciences2004 ( 41): 679–686.
    [175] B!esuelle P, Desrues J, Raynaud S. Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell. Int J Rock Mech Min Sci 2000;37:1223–37. [176 ] Santarelli FJ. Theoretical and experimental investigation of the stability of the axisymmetric wellbore[M]. PhD thesis, University of London, 1987.
    [177] Bourdet D. Gringarten A.C(1980), Determination of fissure volume and block size in fractured reservoirs by Type-curve analysis. Paper SPE.,9293(8.2.3).
    [178] Barenblatt, G.E., Zheltov, I.P., Kochina, I.N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J]. Journal of Applied Mathematics and Mechanics. 1960. 24 (5), 1286–1303.
    [179]张有天.岩石水力学与工程[M].北京:中国水力水电出版社,2005.
    [180] DESAI C S, ZAMAN M M. Thin-layer element for interfaces and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984,8(1):19-43.
    [181]唐春安,于广明,刘红元,等.采动岩体破裂与岩层移动数值试验[M].吉林大学出版社.2003.28-32.
    [182]夏蒙棼,韩闻生,柯孚久,等.统计细观损伤力学和损伤演化诱致突变I[J].力学进展.1995, 25(1):1-40.
    [183]夏蒙棼,韩闻生,柯孚久,等.统计细观损伤力学和损伤演化诱致突变II[J].力学进展.1995, 25(2):145-173.
    [184] Massey, F. J. "The Kolmogorov-Smirnov Test for Goodness of Fit." Journal of the American Statistical Association. Vol. 46, No. 253, 1951, pp. 68–78.
    [185] Miller, L. H. "Table of Percentage Points of Kolmogorov Statistics." Journal of the American Statistical Association. Vol. 51, No. 273, 1956, pp. 111–121.
    [186] Marsaglia, G., W. Tsang, and J. Wang. "Evaluating Kolmogorov's Distribution." Journal of Statistical Software. Vol. 8, Issue 18, 2003.
    [187]庄楚强,何春雄.应用数理统计基础[M].华南理工大学出版社.2006.
    [188]冯增朝,赵阳升,段康廉.岩石的细胞元特性及其非均质分布对岩石全曲线性态的影响[J].岩石力学与工程学报. 2004,23(11):1819-1823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700