用户名: 密码: 验证码:
大直径超长桩侧阻软化试验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高层、超高层建筑及大跨桥梁等建(构)筑物的建设,大直径超长桩因具有单桩承载力高等优点逐渐得到广泛应用。本文针对软土地基中大直径超长桩承载变形机理和试验中发现的桩侧阻软化现象,从现场试验、室内常规试验与离心模型试验、理论分析三方面开展了研究工作。
     对深厚软土地基中的大直径超长桩进行了同时观测桩顶、桩端沉降和桩身应力应变的静载荷试验,研究了荷载水平、桩身几何参数、桩端持力层性质、桩身压缩变形特性对其承载变形性状的影响;得到了侧阻与端阻的发挥规律,二者的发挥是一个异步且互相耦合的过程。研究发现深厚软土中的大直径超长桩存在侧阻软化现象,在实测基础上给出了侧阻软化后桩的典型Q-S曲线。
     对现场取样的桩侧泥皮土和桩间土进行了室内常规试验和三轴试验,得到了其物理力学性能和变形特性。试验结果表明,泥皮土比桩间土更容易发生应变软化。对9根不同桩长、桩径、持力层的单桩和4组群桩进行了考虑与不考虑泥皮效应的离心模型试验,分析了泥皮对桩侧摩阻力和承载力的影响,进一步研究了软土中大直径超长桩承载变形性状,得到了桩径、桩长对桩侧摩阻力的影响规律,研究了侧阻软化效应并与现场测试结果进行对比;分析了桩距对大直径超长群桩承载性状的影响以及承载力的群桩效应,对比了单桩与群桩侧阻发挥的异同。
     采用统一强度理论和三折线软化模型分析了柱孔收缩问题,基于Drucker-Prager模型分析了桩侧土体的结构性软化影响因素,研究了不同摩擦本构关系以及桩侧土体主应力轴旋转对侧摩阻力的影响,分析了长径比对桩身压缩量及桩侧摩阻力的影响。结果表明,桩周土体性状、桩土界面性状、荷载水平、桩身几何与压缩变形特性都将对侧阻软化产生影响。通过对离心试验结果与现场实测结果的归纳分析,建立了归一化后的桩侧摩阻力与桩土相对位移函数关系,提出了侧阻在不同阶段的计算方法。
     提出了一个广义双曲线函数来考虑侧阻软化效应,基于荷载传递法,通过耦合Mindlin解来考虑桩侧摩阻力引起的桩端沉降,采用Rusch模型来考虑高荷载水平下桩身混凝土的弹塑性特性,建立了大直径超长单桩分析模型。通过与现场实测结果和离心试验结果的对比,验证了其合理性。采用该分析模型,分析了桩身几何参数、桩顶荷载水平、混凝土弹塑性和桩侧阻软化效应对大直径超长单桩承载变形性状的影响。提出了最优桩长和最优弹性模量概念,得到了大直径超长桩轴向割线刚度和端阻比的变化规律。
     利用有限元方法,建立了群桩分析模型,模型中考虑了桩侧土体的应变软化以及桩土界面的摩擦性状,对大直径超长群桩进行了研究,得到了群桩侧摩阻力
With the construction of super-high buildings and the wide-span bridge, the large diameter and super-long piles (LDSLP) have been used widely due to their high bearing capacity. Aiming at the bearing characteristic, the deformation mechanism and the shaft resistance softening of LDSLP, the study has been expanded from the field tests, normal indoor tests, centrifuge tests and theory analysis.The static load tests of LDSLP were carried out. The pile top and bottom settlement, the shaft stress and strain have been observed during the course. Baesd on the test results, the effect of load level, the shaft geometry, the bearing stratum characteristic and the shaft compression to the bearing and deformation mechanism of LDSLP have been sdudied. The exerting rules of shaft resistance and end bearing were obtained. Their exertion is asynchronous and coupling. The shaft resistance softening was discovered in LDSLP which embedded in deep soft soil and the typical load-settlement curve was obtained.The normal indoor tests and triaxial tests of mudcake and soil between piles which sampling from the locale were carried out and the physical and mechanical indexes and deformation characteristic were obtained. The results show that mudcake is more prone to softening than the soil. The centrifuge tests of nine single piles and four pile groups which considering the mudcake or not were carried out. The effect of mudcake to pile shaft resistance and capacity were analyzed. The bearing and deformation mechanism of LDSLP were studied furtherly. The effect of pile length and diameter to shaft resistance were obtained.The shaft resistance softening was studied and compared with the field results. The effect of pile space to pile group and the group efficiency coefficient were studied. The shaft resistance between single pile and pile group were compared.The cylindrical cavity contraction was analyzed using the unified strength theory and three fold-lines model. Based on the Drucker-Prager model, the effect factors of soil around pile to structural softening were analyzed. The effects of different friction models and the principal stress axial rotation on shaft resistance have been studied. The results show that the characteristic of soil around the pile and pile-soil interface, the load level, the geometry and compression characteristic will influnce the shaft resistance softening. Based on the induction of centrifuge test and field test results, the function of normalized shaft resistance and pile-soil relative displacement was set up and the calculating method of shaft resistance in different stage was put forward.A generalized parabolic model which considering the shaft resistance softening
    was put forward. Based on the load transfer method, coupling with the Mindlin solution and the Rusch model which considering the settlement produced by the shaft resistance and the plasticity of concrete under heavy load respectively, the analysis model of LDSLP was set up. Its rationality was proved by the contrast of the calculating, the field and centrifuge test results. The effects of shaft geometry, load level, concrete elastoplasticity and shaft resistance softening on bearing and deformation characteristic of LDSLP were studied by using this model. The optimum length and elastic modulus were put forward. The changing regularities of axial rigidity and end bearing ratio of LDSLP were obtained.Based on the finite element method, the analysis model of pile group, which considering the soil strain softening and pile-soil interface friction, was set up. The rules of group pile shaft resistance exertion, effect of pile length and space to pile group bearing characteristic were studied by using this model.
引文
Balakrishnan E G, Balasubramaniam A S, Noppadol P. Load deformation analysis of bored piles in residual weathered formation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125 (2): 122-131
    Banerjee P K. Acontribution to the study of pile foundation[D]. Southampton: University of Southampton, 1969
    Banerjee P K. Integral equation methods for analysis of piece nonhomogeneous, three-dimension elastic solids of arbitrary shape[J]. International Journal for Mechanics Science, 1976, 18, 293-303
    Bazant Z P.岩土和混凝土力学[M].张迪康,邱贤德等译.重庆:重庆大学出版社,1991
    Bond A J, Jardine R J. Shaft capacity of displacement piles in a high OCR clay [J]. Geotechnique, 1995, 45(1): 3-23
    Butterfied R, Banerjee P K. The elastic analysis of compressible pile and pile groups [J]. Geotechnique, 1971a, 21(1): 43-60
    Butterfied R, Banerjee P K. The problem of pile group and pile cap interaction[J]. Geotechnique, 1971b, 21(2): 135-142
    Chan S F. An experimental study of behavior of endbearing cast-in-situ piles[A]. Proc. 4th Southeast Asia Conference on Soil Engineering, Kuala, Malaysia, 1975
    Chandler R J, Martins J P. An experiment study of skin friction around piles in clay[J]. Geotechnique, 1982, 32(2): 119-132
    Chang M E Zhu H. Construction effect on load transfer along bored piles [J]. Journal of Geotechnical and Geoenvironmental engineering, 2004, 130(4): 426-437
    Cheung Y K, Tham L G, Guo D J. Analysis of pile group by infinite layer method [J]. Geotechnique, 1988, 38 (3): 415-431
    Chow Y K, Tham L G, Guo D J. Axial loaded piles and pile groups embedded in a cross-anisotropic soil[J]. Geotechnique, 1989, 39 (2): 203-212
    Clement J L M, Polo J M. Micro-computer analysis of pile group settlement using independent point and shaft loads[J]. Computers and Structures, 1988, 29 (2): 241-255
    Clough G W, Duncan J M. Finite element analysis of retaining wall behavior[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(12): 1657-1672
    Cooke R W. The settlement of friction pile foundation[J]. Foundation and Soil Technology, Building Research, Series3, 1974
    Coyle H M, Reese L C. Load transfer for axially loaded piles in clay[J]. Journal of SMFE Division, ASCE, 1966, 97(2): 1-25
    Craig W H. Installation studies for model piles[A]. Proceedings of symposium on the application of centrifuge modeling to geotechnical design[C], Manchester, 1984: 440-455
    Daichao Sheng, Eigenbrod K D, Wriggers P. Finite element analysis of pile foundation using large-slip frictional contact[J]. Computers and Geotechnics, 2005,32(1): 17-26
    D'Appolonia, Thurman A G. Computed movement of friction and end-bearing piles embedded in uniform and stratified soils, Proceeding 6th ICSMFE, Montereal, 1963
    Delpak R, Robinson R B. Load/settlement prediction for large-diameter bored piles in Mercia mudstone [J]. Proc. Instn. Civ. Engrs Geotech. Engng, 2000, 143: 201-224
    Desai C S. Numerical design analysis for piles in sands[J]. Journal of the Geotechnical Engineering Division, 1974, 100(6): 613-635
    Drucker D C Conventional and unconventional plastic response and representation[J]. Applied Mechanics Review, 1988,41(4): 151-167
    Dyson G J, Randolph M F. Installation effects on lateral load-transfer curves in calcareous sands[A]. Proceedings of the International Conference Centrifuge, Tokyo, 1998, 545-550
    Emilios M C, Christos T A, Michael K G. Numerical assessment of axial pile group response based on load test[J]. Computers and Geotechnics, 2003, 30(3): 505-515
    Feld T, Bloomquist P. Investigation of pile group efficiencies in sand[A]. Proceeding of the International Conference Centrifuge 94, Singapore, 1994: 437-442
    Findlay J D, Brooks J N. Design of axially loaded piles-United Kingdom practice [C]. De Cock &Legend, Balkema, Rotterdam ed., 1997, 353-376
    Fioravante V. Load transfer mechanism of piled aft foundation[A]. Proceedings of the International Conference Centrifuge, Tokyo, 1998, 495-500
    Fleming W K G, Sliwinski Z J. The use and influence of bentonite in bored pile [A]. Construction Industry Research and Information Association (CURIA), London, 1977
    Hemming W K G. Piling Engineering [M]. New York : John Wiley & Sons, Inc, 2~(nd) edition, 1992a Fleming WKG. A new method for single pile settlement prediction and analysis[J]. Geotechnique, 1992b, 42(3): 411-425
    Gardner W S. Consideration in the design of drilled piers[M]. Design, Construction and Performance of Deep foundation, 1975
    Gamier J. Scale effects in piles and nails loading tests in sand[A]. Centrifuge 98[C], Rotterdam, 1998: 205-210
    Geddes J D. Stress in foundation soils due to vertical subsurface loading [J]. Geotechnique, 1966, 16(3): 231-255
    Geddes J D. Boussinesq-based approximation to the vertical stresses in a non-homogeneous elastic half-space[J]. Geotechnique, 1969, 17:58-67
    Glough G W, Duncan J M. Finite element analysis of retaining wall behavior[J]. Journal of Soil Mechanics and Foundations Division, 1971, 97(12): 1657-1672
    Guo D J, Tham LG ,Cheung Y K. Infinite layer method for the analysis of single piles[J]. Computers and Geotechnics, 1987, 12 (3): 229-249
    Guo W D, Randolph M F. An efficient approach for settlement prediction of pile groups [J]. Geotechnique, 1999,49 (2): 161-179
    Guo W D. Pile capacity in nonhomogeneous softening soil[J]. Soils and Foundations, 2001, 41(2): 111-120
    Hamilton J M, Dunnavant T W, Murff J D. Centrifuge study of laterally loaded behavior in clay[A]. Proceedings of the International Conference Centrifuge, Colorado, 1991:285-292
    Hashiguchi K, Saitoh K, Okayasu T, etc. Evaluation of typical conventional and un conventional plasticity models for prediction of softening behavior of soils[J]. Geotechnique, 2002, 52 (8): 561-578
    Heydinger A G... Analysis of axial pile-soil interaction in clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10(4): 367-381
    Hon Y K, Atkinson R H, Goble G G. Centrifuge modeling of pile foundation[A]. Analysis and Design of pile foundation[C], American, 1984:21-40
    Horikoshi K, Randolph M F. Centrifuge modeling of piled raft foundation on clay [J]. Geotechnique, 1996, 46(4): 741-752
    Ilyas T, Leung C F, Chow Y K. Performance of laterally loaded pile group in clay[A]. Proceedings of the International Conference onPhysical Modelling in Geotechnics[C]. Rotterdam: Balkema A A, 2002
    Jeong S, Lee J, Lee C J. Slip effect at the pile-soil interface on dragload[J]. Computers and Geotechnics, 2004, 31(2): 115-123
    Kezdi A. The bearing capacity of piles and pile group[A]. Proceedings of 4th International Conference on Soil Mechanics and Foundation Engineering, London, 1957, 46-51
    Kim S, Jeong S, Cho S, etc. Shear load transfer characteristic of drilled shafts in weathered rocks[J]. Journal of geotechnical and geoenvironmental engineering, 1999, 125(11): 999-1010
    Kimura M, Adachi T, Yamanaka T. Failure mechanism of axially-loaded concrete piles under cyclic lateral loading[A]. Proceedings of the International Conference Centrifuge, Tokyo, 1998, 539-544
    Kishida H. Tests of the interface between sand and steel in the simple shear apparatus [J]. Geotechnique, 1987, 37 (1): 45-52
    Kitiyodom, Matsumoto T, Kanefusa N. Influnce of reaction piles on the behaviour of a test pile in static load testing[J]. Canadian Geotechnical Journal, 2004,41(3): 408-420
    Kolk H J, van der Velde. A reliable method to determine friction capacity of piles driven into clays[A]. Proc. Offshore Technol. Conf., Houston, 1996, 337-346
    Kouda M, M. Okamoto J, Takemura O. Direct measurement of p-y relationships of piles in sand[A]. Proceedings of the International Conference Centrifuge, Tokyo, 1998, 551-556
    Kraft LM, Ray R P, Kagawa T. Theoretical development of t-z curves [J]. Journal of Geotechnical Engineering, 1981, 107(11): 1543-1561
    Kraft L M. Performance of axially loaded piles in sand[J]. Journal of Geotechnical Engineering, 1991, 117(2): 272-296
    Latotzke J, Konig D. Axial pile load tests with reaction piles[A]. Proceedings of the International Conference Centrifuge, Tokyo, 1998,485-490
    Lee C Y. Finite layer analysis of axially loaded piles[J]. Journal of Geotechnical Engineering, 1991, 117(11): 17064-1721
    Lee C Y. Pile group settlement analysis by hybrid layer approach[J]. Journal of Geotechnical Engineering, 1993, 119(6): 984-997
    Lee K M, Xiao Z R. A new analytical model for settlement analysis of a single pile in multi-layered soil[J]. Soils and Foundations, 1999, 39(5): 131-143
    Lehane B M. Mechanism of shaft friction in sand from instrumented pile tests[J]. Journal of Geotechnical Engineering, 1993, 119(1): 19-35
    Lehane B M, Jardine R J. Displacement-pile behavior in a soft marine clay[J]. Canadian Geotechnical Journal, 1994, 31 (1): 181-191
    Leung C F, Yet N S. Behaviour of piles subjected to lapses during installation[A]. Proceedings of the International Conference Centrifuge, Tokyo, 1998,491-494
    Luong M P, Bonaz R, Pecker A. Piles and pile groups under forced horizontal loading in a centrifuge [A]. Proceedings of the International Conference Centrifuge Modeling, Pairs, April, 1988, 513-520
    Lyndon A, Pearson R A. Skin friction effects on laterally loaded large diameter piles in sand[A]. Proceedings of the International Conference Centrifuge Modeling, Pairs, 1988, 363-369
    Majano R E, O'Neil M W, Hassan K M. Perimeter load transfer in model drilled shafts formed under slurry[J]. Journal of Geotechnical Engineering, 1994, 120(12): 2136-2154
    Martins J P, Potts D M. A numerical study of skin friction around piles[A]. Proc. 3rd Int. Conf. on Behaviour of Offshore Structures, MIT, 283-293
    Matsuoka H, Suzuki Y. A constitution model for soils evaluation principal stress rotation and its application to some deformation problems[J]. Soils and Foundations, 1990, 30(1): 142-154
    McClelland B. Design of deep-penetration piles for ocean structures[J]. Journal of the Geotechnical Engineering Division, 1974, 100(7): 705-747
    Meyerholf G G, Murdock L J. An investigation of the bearing capacity if some bored and driven piles in London clays [J]. Geotechnique, 1953, 3 (7) :267-282
    Meyerholf. Bearing capacity and settlement of pile foundation[J]. Journal of the Geotechnical Engineering Division, 1976, 102(3): 195-228
    Muqtadir A, Desai C S. Three-dimensional analysis of pile-group foundation [J]. International Journal for Numerical anal Methematical Geomechanics, 1986, 10 (1)
    Murff J D. Pile capacity in a softening soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1980, 4(2): 185-189
    Narong T, Muhammad A A. Failure mechanism of long bored piles in layered soils of Bangkok[J]. Civil and Environmental Engineering Conference, 1999, Bangkok Thailand: 69-74
    Novak M, Sharnoby B. Pile groups under static and dynamic loading[A]. Proc. 11th ICSMFE, San Francisco, 1985, 3, 1449-1454
    Nunez I L, Hoadley P J, Randolph M F. Driving and tension loading of piles in sand on a centrifuge[A]. Proceedings of the International conference centrifuge modeling[C], Paris, 1988: 25-27
    O'Neill M W, Hawkins R A, Mahar L J. Load transfer mechanism in piles and pile groups[J]. Journal of Geotechnical engineering, 1982, 108(12): 1605-1623
    O'Neill M W. Side resistance in piles and drilled shafts[J]. Journal of Geotechnical and Geoenvironmentalengineering, 2001, 127(1): 3-16
    Ottavianni M. Three-dimensional finite element analysis of vertically loaded pile groups [J]. Geotechnique, 1975, 25 (2): 159-174
    Potts D M, Martins J P. The shaft resistance of axially loaded piles in clay [J]. Geotechnique, 1982, 32 (4): 369-386
    Poulos H G, Davis E H. The settlement behavior of axially-loaded incompressible piles and piers[J]. Geotechnique, 1968a, 18 (3): 365-415
    Poulos H G. Analysis of the settlement of pile groups[J]. Geotechnique, 1968b, 18(3): 449-471
    Poulos H G. Pile foundation analysis and design[M]. New York: John Wiley Press, 1980
    Poulos H G. The influence of shaft length on pile load capacity in clays[J]. Geotechnique, 1982, 32(3): 145-148
    Poulos H G, Randolph M F. Pile group analysis:a study of two methods[J]. Journal of the Geotechnical Engineering Division, 1983, 109 (3): 355-372
    Poulos H G. Modified calculation of pile-group settlement interaction[J]. Journal of the Geotechnical Engineering Division, 1988,114 (6): 697-706
    Poulos HG. Pile behavior—theory and application[J]. Geotechnique, 1989, 39 (3): 365-415
    Prevost J H, Hoeg K. Soil mechanics and plasticity analysis of strain softening[J]. Geotechnique, 1975,25 (2): 279-297
    Randolph M F, Worth C P. Analysis of deformation of vertically loaded piles[J]. Journal of the Geotechnical Engineering Division, 1978, 104: 1465-1488
    Randolph M F, Worth C P. Application of the failure state in undrained simple shear to the shaft capacity of driven piles[J]. Geotechnique, 1981, 31(1): 143-157
    Randolph M F. Science and empiricism in pile foundation desisn [J]. Geotechnique, 2003, 53 (10): 847-875
    Remaud D, Garnier J, Frank R. Laterally loaded piles in dense sand: Group effects[A]. Proceedings of the International Conference Centrifuge, Tokyo, 1998, 527-532
    Renzi R, Maggioni W, Smits F. A centrifuge study on the behavior of suction piles [A]. Proceedings of the International conference centrifuge[C], Colorado, 1991: 169-176
    Reul O, Randolph M F. Piled rafts in overconsolidated clay: comparison of in situ measurements and numerical analysis[J]. Geotechnique, 2003, 53(3): 301-315
    Reul O. Numerical study of the bearing behavior of piled rafts[J]. International Journal of Geomechanics, 2003, 4(2): 59-67
    Semple R M, Rigden W J. Shaft capacity of driven piles in clay[A] Analysis and design of pile foundations[C], J Ray Meyer, ed.,New York, 1984: 59-78
    Shen W Y, Chow Y K, Yong K Y. Practical method for settlement analysis of pile groups [J]. Journal of geotechnical and Geoenvironmental Engineering, 2000, 126(10): 890-897
    SinhaJ. Forthcoming of piles[D]. Sydney: University of Sydney, 1996
    Skempton. First-time slides in over-consolidated clays[J]. Geotechnique, 1970, 20(3): 320-324
    Sterpi D. An analysis of geotechinical problems involving strain softening effects [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(2): 1427-1459
    Subba Rao K S, Allam M M. Discussion on "Adual interface apparatus for testing unrestricted friction of soil along solid surface[J]. Geotechnical Testing Journal, 1996, 19 (4): 446-451
    Terashi M, Kitazume M, Maruyama A. Lateral resistance of a long pile in or near the slope[A]. Proceedings of the International Conference Centrifuge , Colorado, 1991, 245-252
    Trochanis A M, Bielak J, Christiano P. Three-dimension nonlinear study of piles[J]. Journal of geotechnical engineering, 1991,117(3): 429-447
    Trochanis A M, Bielak J, Christiano P. Simplified model for analysis of one or two piles[J]. Journal of geotechnical engineering[J]. 1991, 117(3): 448-466
    Tsubakihara Y, Kishida H, Nishiyama K. Friction between sohensive soil and steel[J]. Soils and Foundation, 1993, 33 (2): 145-156
    Vesic A S. Tests on instrumented piles in Ogeechee river site[J]. Journal of the Soil Mechanics and Foundation, 1970, 561-584
    Vijayvergiya V N, Focht J A. A new way to predict the capacity of piles in clay[A]. Proc. 4th Annual Offshore Technology Conference, 1972, 865-874
    Vijayvergiya V N. Load-movement characteristics of piles[J]. Coastal and Ocean Division, American Society Civil Engineering, 1977, (2): 269-284
    Wolf J P, Darbre G R. Dynamic stiffness matrix of pile foundations by indirect boundary element methods[A]. Proc. 7th SMIRT, Chicago, 1983, 245-258
    Yong K Y. A laboratory study of the shaft resistance of bored piles[D]. Univ. of Sheffield, U. K., 1979
    Yu H S, Rowe R K. Plasticity solutions for soil behaviour around contracting cavities and tunnels[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(12): 1245-1279
    Yu H S, Carter J P. Rigorous Similarity Solutions for Cavity Expansion in Cohesive-Frictional Soils[J]. The International Journal of Geomechanics, 2002, 2(2): 233-258
    Yu J. Effects of construction on axial load transfer along bored piles in residual soils[D]. Nanyang Technology University, Singapore, 2000
    曹汉志.桩的轴向荷载传递及荷载—沉降曲线的数值计算方法[J].岩土工程学报,1986,8(6):37-49
    曹志远,潘多忠.桩筏地基半解析解分区耦合法[J].岩土工程学报,1996,18(6):77-83
    陈惠发.混凝土和土的本构方程[M].余天庆,刘西拉等译.北京:中国建筑工业出版社,2004
    陈龙珠,梁国钱.桩轴向荷载—沉降曲线的一种解析算法[J].岩土工程学报,1994,16(6):30-38
    陈明中.群桩沉降计算理论及桩筏基础优化设计研究[D].杭州:浙江大学,2000
    陈雨孙,周红.纯摩擦桩荷载—沉降曲线的拟合方法及其工作机理[J].岩土工程学报,1987,9(2):49-60
    陈云敏,陈仁朋.考虑相互作用的桩筏基础简化分析方法[J].岩土工程学报,2001,23(6):686-691
    池跃君,顾晓鲁.天津软土地区大直径超长灌注桩垂直承载性状的试验研究[A].高层建筑桩基工程技术[C],北京:中国建筑工业出版社,1998
    董金荣,林胜天.大口径钻孔灌注桩荷载传递性状[J].岩土工程学报,1994,16(6):123~131
    方鹏飞.超长桩承载性状研究[D].杭州:浙江大学,2003
    费勤发.任意层状土中可压缩性单桩的弹性分析[J].上海城建学院院报,No.1,1987
    冯世进.黄土地基中超长钻孔灌注桩承载性状试验研究[J].岩土工程学报,2004,26(1):110-114
    甘幼琛.非对称竖直群桩基础变位和内力的直接解及变位要素间相互影响分析[J].土木工程学报,2002,35(1):99-106
    横山幸满.桩结构物的计算方法和计算实例[M].唐业清,吴庆荪译,北京:中国铁道出版社,1984
    洪毓康,楼晓明.群桩基础的共同作用分析[A].第六届土力学及基础工程学术会议论文集[C],上海:同济大学出版社,1991
    胡汉兵,茜平一.桩—承台—土共同作用的三维有限元分析[J].工程勘察,1996,6:1-4
    胡黎明.土与结构物接触面力学特性研究和工程应用[D].北京:清华大学,2000
    胡庆立,任瑞波,张克绪.轴向荷载作用下单桩沉降的非线性分析[J].工程力学,2004,21(3):72-77
    建筑地基基础设计规范(GB50007—2002)[S].北京:中国建筑工业出版社,2002
    建筑桩基技术规范(JGJ 94-94)[S].北京:中国建筑工业出版社,1995
    蒋镇华.有限里兹单元法及其在桩基和复合地基中的应用[D].杭州:浙江大学,1996
    金波,李志飙.层状地基中的单桩沉降分析[J].岩土工程学报,1997,19(5):35-42
    李作勤.有结构强度的欠压密土和力学特性[J].岩土工程学报,1982,4(1):100-110
    李作勤.摩擦桩的荷载传递及承载力的一些问题[J].岩土力学,1990,11(4):2-12
    梁发云,陈龙珠.应变软化Tesca材料中扩孔问题解答及其应用[J].岩土力学,2004,25(2):261-265
    凌道盛,陈云敏.任意基础板的有限元分析[J].岩土工程学报,2000,22(4):450-455
    刘杰,张可能,肖宏彬.考虑桩侧土软化时单桩荷载—沉降关系的解析算法[J].中国公路学报,2003,16(2):61-64
    刘金砺.桩基础设计与计算[M].北京:中国建筑工业出版社,1990
    刘金砺,祝经成.泥浆护壁灌注桩桩端后压浆新技术的工程应用实例分析[J].建筑科学,1996,No.2:13-18
    刘金砺,迟铃泉.桩土变形计算模型和变刚度调平设计[J].岩土工程学报,2000,22(2):151-157
    刘金砺.竖向荷载下的群桩效应和群桩基础概念设计若干问题[J].土木工程学报,2004,37(1):78-83
    刘俊龙.桩底沉渣对超长大直径钻孔灌注桩承载力影响的试验研究[J].工程勘察,2000,No.3,8-11
    刘树亚.嵌岩桩桩—土—岩共同作用分析方法[J].土工基础,2000,14(2):14-19
    刘元雪.含主应力轴旋转的土体一般应力应变关系[D].重庆:后勤工程学院,1997
    楼晓明,洪毓康,陈强华.群桩基础地基中的竖向附加应力性状研究[J].岩土工程学报,1996,18(4):20-26
    吕凡任.倾斜荷载作用下斜桩基础工作性状研究[D].杭州:浙江大学,2004
    潘时声.桩基础分层位移迭代法计算理论及其应用[D].上海:同济大学,1993
    潘时声,侯学渊.桩的刚度计算[J].岩土工程学报,1996.18(1):1-6
    钱家欢,詹美礼.接触面剪切流变特性试验分析[A].土与混凝土接触面摩擦试验研究[C],1993
    邱洪兴.用贝叶斯方法确定单桩竖向承载力[J].工业建筑,1997,27(2):33-36
    沈珠江.理论土力学[M].北京:中国水利水电出版社,2000
    石明磊.大直径钻孔灌注桩的承载力与沉降研究[D].南京:东南大学,2002
    史宏彦,谢定义,汪闻韶.平面应变条件下主应力轴旋转产生的应变[J].岩土工程学报,2001,23(2):162-166
    舒士霖.钢筋混凝土结构[M].杭州:浙江大学出版社,1996
    舒翔,黄雨,陈竹昌.单桩轴向刚度的非线性分析[J].同济大学学报,2001,29(10):1142-1146
    王建华.神经网络法预估水泥搅拌桩单桩沉降[J].土木工程学报,1996,29(1):55-61
    王立忠,赵志远,李玲玲.考虑土体结构性的修正邓肯—张模型[J].水利学报,2004,(1):83-89
    王年香,章为民,曾友金等.主桥索塔群桩基础与土体共同作用离心模型试验研究报告[R].南京水利科学研究院,2004
    汪鹏程,朱向荣.考虑中间主应力影响的土中孔扩张问题精确相似解[J].水利学报,2004,11:68-73
    王文,顾晓鲁.桩—土—筏体系的数值与半数值三维非线性分析模型[J].土木工程学报,1998,31(3):30-40
    汪文彬,杨敏.基于广义协调变形的直桩弹塑性分析[J].岩土工程学报,2005,27(12):1442—1446
    王晓鸿,王家来,梁发云.应变软化岩土材料内扩空问题解析解[J].工程力学,1999,16(5):71-76
    王旭东,魏道垛.群桩—土承台结构的共同作用的数值分析[J].岩土工程学报,1996,18(4):27-33
    王延斌,范文,徐栓强.基于统一强度理论的柱形孔扩张问题研究[J][J].岩土力学,2003,24(Supp.):125-132
    温世游,陈云敏,李夕兵.考虑应变软化特性的缩孔解析解[J].岩石力学与工程学报,2002,21(Supp.2):2432-2438
    吴宏伟,陈重义,陈思豪.固结软土中单桩负摩擦离心机模型试验[R].香港科技大学,2004
    席宁中.桩端土刚度对桩侧阻力影响的试验研究及理论分析[D].北京:中国建筑科学研究院, 2002
    向大润,卢廷浩,方涤华等.土与混凝土接触面摩擦试验研究[A].岩土与水工建筑物相互作用—散粒体地基上土石坝混凝土防渗墙研究成果汇编[C],1993
    辛公锋.竖向受荷承载变形机理与侧阻软化研究[D].杭州:浙江大学,2003
    辛公锋,张忠苗,夏唐代等.高荷载水平下超长桩承载性状试验研究[J].岩石力学与工程学报,2005,24(13):2397-2402
    辛公锋,张忠苗等.软土地基管桩挤土浮桩与处理方法研究,岩土工程学报,录用待刊,2006
    徐光明,章为民.离心模型中的粒径效应和边界效应研究[J].岩土工程学报,1996,18(3):80-86
    徐建忠.入桩顺序对粘土地基群桩竖向承载力影响的土工离心试验研究[D].北京:清华大学,1997
    阳吉宝,钟正雄.超长桩的荷载传递机理[J].岩土工程学报,1998,20(6):108~112
    杨敏.分层土中的单桩分析法[J].同济大学学报,1992,20(4):421-428
    杨敏,王树娟,王伯钧等.使用Geddes应力系数公式求解单桩沉降[J].同济大学学报,1997,25(4):379-385
    杨敏,王树娟,王伯钧等.考虑极限承载力下的桩筏基础相互作用分析[J].岩土工程学报,1998,20(5):82-86
    殷宗泽,朱泓,许国华.土与结构材料接触面处的变形及其数学模拟[J].岩土工程学报,1994,16(3):14-21
    余闯,刘松玉.考虑桩侧土软化的单桩性状计算分析[J],岩土力学,2005,26(Supp):133-136
    俞茂宏.岩土类材料的统一强度理论及其应用[J].岩土工程学报,1994,16(2):1-10
    俞茂宏.双剪强度理论[M].北京:科学出版社,1998
    宰金珉,杨嵘昌.桩周土非线性位移的广义剪切位移法[J].南京建筑工程学院院报,1993,No.1:1-16
    宰金珉.群桩与土和承台非线性共同作用分析的半解析半数值方法[J].建筑结构学报,1996,18(7):63-74
    曾友金,王年香,章为民等.软土质地区微型桩基础离心模型试验研究[J].岩土工程学报,2003,25(2):242-245
    曾友金,章为民.用有限单元法分析超长单桩的荷载传递[J].岩土力学,2002,23(6):803-806
    曾友金,章为民,王年香等.桩基模型试验研究现状[J].岩土力学,2003,24(Supp):674-680
    赵春洪,赵锡宏.上部结构-筏-桩-地基共同作用分析的新方法[J].建筑结构学报,1990,11 (2):69-77
    赵明华,何俊翘,曹文贵.基桩竖向荷载传递模型及承载力研究[J].湖南大学学报(自然科 学版),2005,32(1):37-42
    赵善锐.基桩轴向刚度与阻力发挥特性的关系[A].第六届上力学及基础工程学术会议论文集[C].上海:同济大学出版社,1991:357-360
    赵铁立.粘性土中轴向受力桩的解[J].西南交通大学学报.1991,(3):89-91
    赵锡宏,张启辉.土的剪切带试验与数值分析[M].北京:机械工业出版社,2003
    张保良,赵锡宏,姜宏伟.上部结构—筏—桩—地基共同作用分析[J].建筑结构学报,1997,18(2):72-78
    张诚厚.两种结构性粘土德土工特性[J].水利水运科学研究,1983,14:65-71
    张利民,胡定.土石坝离心模拟的若干推断方法[A].第二届全国土工离心机模拟技术会议论文集[C],上海:同济大学出版社,1991
    张尚根,郑必勇.用优化方法确定桩基的荷载传递函数[J].力学与实践,1997,19(5):26-29
    张雁,李华.软土地基超长灌注桩承载力试验研究[A].第七届全国土力学及基础工程学术会议论文集[C],北京:中国建筑工业出版社,1994
    张忠苗.基于桩顶与桩端沉降的钻孔桩受力性状研究[J].岩土工程学报,1997,19(4):88-93
    张忠苗.软土地基超长嵌岩桩的受力性状[J].岩土工程学报,2001a,23(5):552-556
    张忠苗.软土地基大直径桩受力性状与桩端注浆新技术[M].杭州:浙江大学出版社,2001b
    张忠苗,辛公锋.不同持力层钻孔桩桩底后注浆应用效果分析[J].建筑结构学报,2002,23(6):85-90
    张忠苗,辛公锋,夏唐代.深厚软土非嵌岩超长桩受力性状试验研究[J].土木工程学报,2004,37(4):64-69
    佐滕悟,基础桩支持力学机构,土工技术,1965,20(1)
    郑金伙.群桩入桩过程中的孔压变化及其对承载力影响的离心试验研究[D].清华大学,1998
    郑刚,顾晓鲁.软土地区超长灌注桩承载性状的讨论[A].高层建筑桩基工程技术[C],北京:中国建筑工业出版社,1998
    周国林.单桩极限承载力的灰色预测,岩土力学,1991,12(1):37-43
    周洪波,黄胜生.锚桩法单桩静载试验中群桩相互作用及误差分析[J].岩土力学,2004,25(10):1613-1616
    周小平,张永兴,王建华.中间主应力对球形孔扩张的影响[J].重庆建筑大学学报,2003,25(3):26-29
    朱向荣,方鹏飞,黄洪勉.深厚软基超长桩工程性状试验研究[J].岩土工程学报,2003,25(1):76-79
    桩基工程手册编写委员会.桩基工程手册[H].北京:中国建筑工业出版社,1995
    庄茁.ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700