用户名: 密码: 验证码:
考虑剪切变形影响的薄壁钢梁分析方法与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄壁钢梁广泛应用于土木建筑、机械、海洋工程和航空等领域中,为保证其安全、适用,建立合理、可靠的薄壁梁力学模型和分析方法十分重要。传统的Euler-Bernoulli梁理论和Timoshenko梁理论以及相应的有限元分析方法得到了广泛应用。Euler-Bernoulli梁理论没有考虑剪切变形的影响,Timoshenko梁理论虽然考虑了剪切变形的影响,但仅考虑横向剪切变形且与Euler-Bernoulli梁理论一样适用于实体梁弯曲性能的分析,不能用于薄壁梁的弯曲与扭转分析。Vlasov发展了开口薄壁梁扭转与弯曲相结合的综合理论,但忽略了剪切变形对构件性能的影响,仅适用于跨高比大于10的薄壁梁。
     随着国民经济和城市建设的发展,钢结构在高层、超高层建筑结构以及重型工业厂房等工程中得到了广泛应用。当钢梁的跨高比较小时,剪切变形对其力学性能的影响不能忽略。为了考虑弯曲和扭转所产生的剪切变形对薄壁钢梁力学性能的影响,本文在Vlasov薄壁梁理论的基础上发展了考虑剪切变形影响的一阶薄壁梁理论。由于截面剪心的特性,薄壁钢梁弯曲与扭转是解耦的,可以分别研究。本文分别对薄壁构件的弯曲和扭转进行了分析研究,建立了相应的微分方程。同时在理论分析的基础上,建立了三维梁柱二阶弹塑性单元,并编制了有限元分析程序。具体的工作如下:
     首先研究了开口薄壁钢梁的弯曲与约束扭转问题。在假设位移场的基础上,针对开口薄壁钢梁,考虑了薄壁截面中线上剪切变形的影响,给出了弯曲时的应力、变形以及横向剪切系数的表达式,并给出了横向位移与转角的关系。在分析薄壁钢梁约束扭转时,将薄壁截面总转角分为自由翘曲转角和约束剪切转角。在此基础上,推导了约束扭转状态下截面翘曲位移表达式,给出了截面上的翘曲正应力和剪应力的计算方法,并以能量原理为基础得到了扭转剪切系数。扭转剪切系数说明了真实翘曲剪应力在截面上分布的情况。编制了常用薄壁梁截面特性的计算程序。
     推导了开口薄壁梁约束扭转的新型微分方程,给出了一阶扭转理论的初参数求解公式以及截面总转角和自由翘曲转角之间的关系,为后面有限单元插值函数的建立奠定了基础。对于开口薄壁截面当构件参数λ(与截面特性和梁长有关)满足特定条件时,St.Venant扭矩可以忽略,此时可以得到开口薄壁截面的约束扭转简化分析方法。开口薄壁截面约束扭转简化分析方法的相关公式和Timoshenko梁理论的公式具有完全相同的表达形式。算例分析表明,本文分析方法可以较好地模拟开口薄壁梁的约束扭转性能,并能分析剪切变形对约束扭转性能的影响。
     研究了闭口薄壁截面梁约束扭转问题,提出了闭口薄壁梁的一阶扭转理论。给出了闭口薄壁梁一阶扭转理论中的正应力的表达式。对闭口薄壁截面上的各种扭矩和相应的剪应力进行了探讨。基于能量原理得到了闭口薄壁梁扭转剪切系数的概念与计算方法。推导了闭口截面约束扭转控制微分方程以及相应的初参数求解方法。此微分方程可作为任意截面薄壁梁约束扭转的统一理论。通过算例,分析了由于约束剪切转角产生的剪切变形对闭口薄壁梁扭转性能的影响。
     在理论分析的基础上,建立了一种新的开、闭口薄壁梁单元。利用薄壁梁弯曲时横向位移与截面转角的关系以及约束扭转时截面总转角和自由翘曲转角之间的关系建立了薄壁梁单元的位移模式。此位移模式仅需要两个节点,避免了通过在单元内部设置节点建立单元刚度矩阵过程。根据连续介质力学有限变形理论,利用更新的Lagrange方法(UL法)建立了新型梁单元刚度矩阵。新单元能更准确地考虑剪切变形的影响,避免剪切自锁现象的发生,并能包含翘曲变形和弯扭耦合等因素。
     为了更准确地考虑P-δ效应的影响,基于UL法提出了考虑P-δ效应的增量方法,此方法弥补了三次插值函数在切线刚度矩阵中产生的误差,同时也避免了利用稳定插值函数推导刚度矩阵需依轴力方向而变化的问题。
     假定材料服从Von Mises屈服准则、相关流动法则以及等向强化假设。为了跟踪在截面上和单元长度方向上材料的塑性发展,利用塑性区方法,在薄壁截面曲线坐标s方向划分微段,在单元的长度方向设置Guass积分点,并根据微段中的应力来判断单元塑性发展情况。
     最后在新型薄壁梁单元推导的基础上,利用面向对象的C++语言编制了非线性分析程序,并利用数值算例进行了验证。算例分析表明,建立的有限单元模型可以给出更精确的结果,并且避免了剪切自锁现象的发生。
Thin-walled steel beams are widely used in the fields of civil, mechanical, and navalconstructions. In order to guarantee the security and applicability of these steel members, it isvery important to build reasonable and reliable physical model and analysis method. Theclassical Euler-Bernoulli beam theory and Timoshenko beam theory as well as thecorresponding beam element are used extensively in engineering analysis. Euler-Bernoullibeam theory does not consider the effect of shear deformation on the behavior of beams.Timoshenko beam theory includes the effect of shear deformation, but is limited to flexuralanalysis of solid beam as well as Euler-Bernoulli beam theory and cannot be used to flexuraland torsional analysis of thin-walled beam. Vlasov developed an integrated theory which cananalyze the flexural and torsional behavior of thin-walled beam. However, due to theignorance of shear deformation in middle surface, Vlasov theory is only applicable forthin-walled beams with span-height-ratio greater than10.
     With the growth of national economy and city construction, steel members are widelyused in heavy structures, such as high-rise, super high-rise and heavy industrial buildings. Inthese buildings, the span-height-ratio of steel beam is small and the effect of sheardeformation becomes obvious. In order to include the effect of shear deformation due toflexure and torsion, in this thesis, a first-order thin-walled beam theory is developed based onVlasov theory. This theory can analyze the flexural and torsional problems of thin-walledbeam. Due to the shear center of thin-walled cross section, the flexural and torsional problems of thin-walled beams can be analyzed respectively. Accordingly, the governing differentialequations are obtained for flexure and torsion of thin-walled beam respectively. Asecond-order elasto-plastic beam element based on the first-order thin-walled beam theory isobtained, and the corresponding code is written. The specific contents are given as follows.
     Firstly the first-order thin-walled beam theory is developed for flexural and torsionalproblems of open thin-walled beam. The expressions of flexural stress, deformation andtransverse shear coefficient are given. The relationships between transverse deflection androtation are obtained. When analyzing the restrained torsion of open thin-walled beam, thetotal rotation of section is divided into free warping rotation and restrained shear rotation. Theexpression of warping deformation, the warping normal stress and warping shear stress arederived based on this assumption. And the torsion shear coefficient is then obtained on thebasis of energy principle. Torsion shear coefficient could account for the true shear stressdistribution in the cross section. Program is compiled to calculate the geometric properties ofopen thin-walled section.
     The new governing differential equations of the restrained torsion are derived and thecorresponding initial method is given to solve the equations. The relationship between totalrotation and free warping rotation is obtained. A parameter λ, which is associated with thestiffness property of a cross section and the beam length, is introduced to determine thecondition, under which the St. Venant constant is negligible. Consequently a simplifiedmethod of restrained torsion is derived. The simple method has the same style withTimoshenko beam theory. Numerical examples are illustrated to validate the current approachand the results of the current theory are compared with those of some other available methods.The results of comparison show that the current theory predicts the torsion behavior ofthin-walled beam more accurately.
     The restrained torsion of closed thin-walled beam is analyzed. The first-order torsiontheory of closed thin-walled beam is proposed. The various stresses in closed cross section are analyzed and divided into categories, and the expressions of these stresses are given. Thetorsion shear coefficient is then obtained on the basis of energy principle. The governingdifferential equations of the restrained torsion of closed thin-walled beam are derived and thecorresponding initial method is given to solve the equation. These equations can be used asunified theory for restrained torsion of arbitrary cross section. The effect of restrained shearrotation on torsional behavior of closed thin-walled beam is investigated through numericalanalysis.
     The thin-walled beam element is derived. The displacement mode of thin-walled beamelement is obtained through the relationship between deflection and rotation and that betweentotal rotation and free warping rotation. Only two nodes are needed in this displacement mode,which avoid the deriving process of beam element with internal node. The new beam elementis obtained through the updated Lagrange (UL) method on the basis of finite deformationtheory in continuum mechanics. This new beam element avoids the phenomenon of shearlocking and includes the effects of warping deformation and the coupling of flexure andtorsion.
     An incremental method is proposed based on UL method in order to include the P-δeffect more accurately. This method makes up the defect of the cubic interpolation function intangential stiffness matrix and avoids the problem of variation of stiffness matrix derivedfrom stable interpolation function with the direction of axial force.
     It is assumed that the Von Mises yield criterion, associated flow rules and isotropichardening model are applied to the material that used in this paper. Plastic-zone method isused and the thin-walled section is divided into a number of finite parts along the s directionand three Guass integral points are placed along the length of thin-walled beam in order totrace the plasticity development in the beam. And the plasticity development can be judged bythe stress condition in finite parts.
     Finally, on the basis of derivation of new thin-walled beam element, nonlinear analysis program is compiled by using the object oriented program language C++. And numericalexamples are illustrated to validate the current approach. The results of the current theory arecompared with those of some other available methods. The results of comparison show thatthe current theory provides more accurate results and avoids the phenomenon of shearlocking.
引文
[1]王元清,黄怡,石永久,陈宏,温四清.超高层钢结构建筑动力特性与抗震性能的有限元分析[J].土木工程学报.2006,39(5):65-71.
    [2]胡艳玲,潘文,崔辉辉.高层钢结构支撑的布置方式对结构内力的影响分析[J].科学技术与工程.2010,10(18):4538-4543.
    [3]赖鹏邦,赵金城,刘明路,贾徐晨.塔式锅炉钢架在地震作用下的动力响应分析[J].钢结构.2009,24(22):37-42.
    [4]王元清,黄怡,石永久,舒兴平.双塔高层钢结构抗震性能的有限元分析[J].湖南大学学报(自然科学版).2007,34(10):10-14.
    [5]李国强,沈祖炎.考虑剪切变形的压杆刚度方程及应用[J].同济大学学报.1991,19(2):131-138.
    [6] Vlasov, V.Z. Thin-Walled Elastic Beams[M].2nd ed. Washington: National ScienceFoundation1961.
    [7] Back, S.Y., Will, K.M. A shear-flexible element with warping for thin-walled openbeams[J]. International Journal for Numerical Mehtods in Engineering.1998,43(7):11731191.
    [8] Park, S.W., Fujii, D., Fujitani, Y. A finite element analysis of discontinuous thin-walledbeams considering nonuniform shear warping deformation[J]. Computers&Structures.1997,65(1):17-27.
    [9] Pavazza, R. Torsion of thin-walled beams of open cross-section with influence ofshear[J]. International Journal of Mechanical Sciences.2005,47(7):1099-1122.
    [10]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [11] Eren, A.M. An Elastic-Plastic Beam Finite Element[D].Ankara: Middle East TechnicalUniversity.2006.
    [12]中华人民共和国建设部.钢结构设计规范(GB50017-2003)[S].北京:中国建筑工业出版社,2003.
    [13]胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981.
    [14]吕列武,沈世钊,沈祖炎,胡学仁.钢结构构件稳定理论[M].北京:中国建筑工业出版社,1983.
    [15] Oden, J.T. Mechanics of Elastic Structures[M].2nd ed. Washington: HemispherePublication Corp.,1981.
    [16]陈惠发Atsuta, T.著.,周绥平,刘西拉译.梁柱分析与设计[M].北京:人民交通出版社,1993.
    [17]陈伯真,胡毓仁.薄壁结构力学[M].上海:上海交通大学出版社,1998.
    [18]郝际平,钟炜辉.薄壁杆件的弯曲和扭转[M].北京:高等教育出版社,2006.
    [19] Timshenko, S.P., Gere, J.M. Theory of Elastic Stability[M]. New York: McGraw-HillBook Company, Inc.,1961.
    [20] Shimpi, R.P. Zeroth-Order Shear Deformation Theory for Plates[J]. AIAA Journal.1998,37(4):524-526.
    [21] Ray, M.C. Zeroth-order shear deformation theory for laminated composite plates[J].Journal of Applied Mechanics ASME.2003,70(5):374-380.
    [22] Levinson, M. A new rectangular beam theory[J]. Journal of Sound and Vibration.1981,74(1):81-87.
    [23] Bickford, W.B. A consistent higher order beam theory[J]. Developments Theoretical andApplied Mechanics.1982,11:137-150.
    [24] Reddy, J.N. A simple higher-order theory for laminated composite plates[J]. Journal ofApplied Mechanics ASME.1984,51:745-752.
    [25] Tutek, Z., Zagreb, A. A justificaiton of the one-dimensional linear model of elasticbeam[J]. Math Mech in the Applied Science.1986(8):502-515.
    [26] Auricchio, F., Sacco, E. Refined first-order shear deformation theory models forcomposite laminates[J]. Journal of Applied Mechanics ASME.2003,70(5):381-390.
    [27] Kumar, D., Prasad, B. Higher-order beam theoryies for mode II fracture ofunidirectional composites[J]. Journal of Applied Mechanics ASME.2003,70(11):840-852.
    [28]龚克.单广义位移的深梁理论与中厚板理论[J].应用数学和理论.2000,21(9):984-990.
    [29]王敏中,王炜.梁的精化理论[J].工程力学.2003,20(增刊):324-327.
    [30]高阳,王敏中.基于弹性通解的矩形深梁的精化理论[J].中国科学:G辑.2006,36(3):286-297.
    [31] Wang, C.M. Timoshenko beam-bending solutions in terms of Euler-Bernoullisolutions[J]. Journal of Engineering Mechanics.1995,121(6):763-765.
    [32] Reddy, J.N., Wang, C.M., Lee, K.H. Relationships between bending solutions of clasicaland shear deformation beam theories[J]. International Journal of Solids and Structures.1997,34(26):3373-3384.
    [33] Timoshenko, S.P. On the correcgtion for shear of the differential equation for tranversevibration of prismatic bars[J]. Philosophical Magazine, Series6.1921,41(245):744-746.
    [34] Timoshenko, S.P., Gere, J.M. Mechanics of Materials[M]. London: Van NostrandReinhold Company Ltd,1973.
    [35] Cowper, G.R. The shear coefficient in Timoshenko's beam theory[J]. Journal of AppliedMechanics ASME.1966,33(2):335-340.
    [36] Cowper, G.R. On the accuracy of Timoshenko's beam theory[J]. Proceeding of ASCEEM6.1968,94:1447-53.
    [37] Kaneko, T. On Timoshenko's correction for shear in vibrating beams[J]. Journal ofPhysics D: Applied Physics.1975,8:1927-1936.
    [38] Hutchinson, J.R. Transverse vibrations of beams, exact versus approximate solutions[J].Journal of Applied Mechanics ASME.1981,48:923-928.
    [39] Leissa, A.W., So, J. Comparisons of vibration frequencies for rod and beams fromone-dimensional analyses[J]. Journal of the Acoustical Society of America.1995,98:2122-2135.
    [40] Sangianhnadar, D., Hugh, J.M. Shear coefficients for orthotropic beams[J]. JournalComposite Materials.1973,7:530-535.
    [41] Bank, L.C. Shear coefficients for thin-walled composite beams[J]. Composite Structures.1987,8(1):47-61.
    [42] Omidvar, B. Shear coefficient in orthotropic thin-walled composite beams[J]. Journal ofComposites for Construction.1998,2(1):46-56.
    [43] Gruttmann, F., Wagner, W. Shear correction factors in Timoshenko's beam theory forarbitrary shaped cross-sections[J]. Computational Mechanics.2001,27(3):199-207.
    [44] Raman, P.M., Davalos, J.F. Static shear correction factor for laminated rectangularbeams[J]. Composite Part B: Engineering.1996,27(3-4):285-293.
    [45] Pai, P.F., Schulz, M.J. Shear correction factors and an energy-consistent beam theory[J].International Journal of Solids and Structures.1999,36(10):1523-1540.
    [46] Hutchinson, J.R. Shear coefficients for Timoshenko beam theory[J]. Journal of AppliedMechanics ASME.2001,68(1):87-92.
    [47] Liu, Y., Soh, C.K. Shear correction for Mindlin type plate and shell elements[J].International Journal for Numerical Mehtods in Engineering.2007,69(13):2789-2806.
    [48]杜丹旭,郑泉水.子空间变分原理的修正及其应用于确定梁的剪切系数[J].固体力学学报.1996,17(4):348-352.
    [49] Dong, S.B., Alpdogan, C., Taciroglu, E. Much ado about shear correction factors inTimoshenko beam theory[J]. International Journal of Solids and Structures.2010,47(13):1651-1665.
    [50] Gjelsvik, A. Theory of Thin-Walled Bars[M]. New York: John Wiley&Sons Inc,1981.
    [51] Benscoter, S.U. A theory of torsion bending for multicell beams[J]. Journal of AppliedMechanics ASME.1954,76(21):25-34.
    [52] Prokic, A. Thin-walled beams with open and closed cross-sections[J]. Computers&Structures.1993,47(6):1065-1070.
    [53] Prokic, A. New warping function for thin-walled beams I: Theory[J]. Journal ofStructural Engineering ASCE.1996,122(12):1437-1442.
    [54] Mentrasti, L. Torsion of closed cross-section thin-walled beams: the influence ofshearing strain[J]. Thin-Walled Structures.1987,5(4):277-305.
    [55] Ferrero, J.F., Barrau, J.J., Segura, J.M., Castanie, B., Sudre, M. Torsion of thin-walledcomposite beams with midplane symmetry[J]. Composite Structures.2001,54:111-120.
    [56] Kollár, L.P. Flexural-torsional buckling of open section composite columns with sheardeformation[J]. International Journal of Solids and Structures.2001,38(42-43):7525-7541.
    [57] Salim, H.A., Davalos, J.F. Torsion of open and closed thin-walled laminated compositesections[J]. Journal of Composite Materials.2005,39(6):497-524.
    [58] Pluzsik, A., Kollár, L.P. Torsion of cosed section, orthortropic, thin-walled beams[J].International Journal of Solids and Structures.2006,43(17):5307-5336.
    [59] Erkmen, R.E., Mohareb, M. Torsion analysis of thin-walled beams including sheardeformation effects[J]. Thin-Walled Structures.2006,44(10):1096-1108.
    [60] Saade, K., Espion, B., Warzee, G. Non-uniform torsional behavior and stability ofthin-walled elastic beams with arbitrary cross sections[J]. Thin-Walled Structures.2004,42(6):857-881.
    [61] Roberts, T.M., Ubaidi, H.A. Influence of shear deformation on restrained torsionalwarping of pultruded FRP bars of open cross section[J]. Thin-Walled Structures.2001,39:395-414.
    [62] Fatmi, R.E. Non-uniform warping including the effects of torsion and shear forces. PartI: A general beam theory[J]. International Journal of Solids and Structures.2007,44(18-19):5912-5929.
    [63] Fatmi, R.E. Non-uniform warping including the effects of torsion and shear forces. PartII: analytical and numerical applications[J]. International Journal of Solids and Structures.2007,44(18-19):5930-5952.
    [64] Eisenberger, M. Nonuniform torsional analyis of variable and open cross-section bars[J].Thin-Walled Structures.1995,21:93-105.
    [65] Sapountzakis, E.J., Mokos, V.G. Nonuniform torsion of bars of variable cross section[J].Computers&Structures.2004,82:703-715.
    [66] Mokos, V.G., Sapountzakis, E.J. Secondary torsional moment deformation effect byBEM[J]. International Journal of Mechanical Sciences.2011,53:897-909.
    [67] Trahair, N.S. Nonlinear elastic nonuniform torsion[J]. Journal of Structural EngineeringASCE.2005,131(7):1135-1142.
    [68] Krajcinovic, D. A consistent discrete elements technique for thin-walled assemblages[J].International Journal of Solids and Structures.1969,5(7):639-662.
    [69] Krajcinovic, D. Matrix force analysis fo thin-walled Structures[J]. Journal of StructuralEngineering ASCE.1970,96(1):107-121.
    [70] Kawai, T. The application of finite element methods to ship structures [J]. Computers&Structures.1973,3(5):1175-1194.
    [71]胡毓仁,陈伯真.一种新的薄壁杆件单元扭转刚度矩阵[J].计算结构力学及其应用.1988,5(3):19-28.
    [72] Shakourzadeh, H., Guo, Y.Q., Batoz, J.L. A torsion bending element for thin-walledbeams with open and closed cross sections[J]. Computers&Structures.1995,55(6):1045-1054.
    [73] Mohareb, M., Nowzartash, F. Exact finite element for nonuniform torsion of opensections[J]. Journal of Structural Engineering ASCE.2003,129(2):215-223.
    [74] Murín, J., Kuti, V. An effective finite element for torsion of constant cross-sectionsincluding warping with secondary torsion moment deformation effect[J]. EngineeringStructures.2008,30(10):2716-2723.
    [75]舒兴平,沈蒲生.剪切变形对钢框架结构p-Delta效应的影响研究[J].湖南大学学报.1993,20(2):89-93.
    [76] Prathap, G., Bhashyam, G.R. Reduced integration and the shear flexibel beamelement[J]. International Journal for Numerical Mehtods in Engineering.1982,18(2):195-210.
    [77] Hughes, T.J.R., Taylor, R.L. A simple and efficient finite element for plate bending[J].International Journal for Numerical Methods in Engineering.1977,11(10):1529-1543.
    [78] Przmieniecki, J.S. Theory of Matrix Structural Analysis[M]. New York: McGraw-HillBook Company,1968.
    [79] Oral, S. Anisoparametric interpolation in hybrid-stress Timoshenko beam element[J].Journal of Structural Engineering ASCE.1991,117(4):1070-1078.
    [80] Reddy, J.N. On locking-free shear deformable beam finite elements[J]. ComputerMehods in Applied Mechanics and Engineering.1997,149(1-4):113-132.
    [81] Tessler, A., Dong, S.B. On a hierarchy of conforming Timoshenko beam elements[J].Computers&Structures.1981,14(3-4):335-344.
    [82] Friedman, Z., Kosmatka, J.B. An improved two node Timoshenko beam finiteelements[J]. Computers&Structures.1993,47(3):473-481.
    [83] Bazoune, A., Khulief, Y.A., Stephen, N.G. Shape functions of three-dimensionalTimoshenko beam element[J]. Journal of Sound and Vibration.2003,259(2):473-480.
    [84]夏桂云,曾庆元等.建立Timoshenko深梁单元的新方法[J].交通运输工程学报.2004,4(2):27-32.
    [85] Urthaler, Y., Reddy, J.N. A corotational finite element formulation for the analysis ofplanar beams[J]. Communications in Numerical Methods in Engineering.2005,21(10):553-570.
    [86] Edem, I.B. The exact two-node Timoshenko beam finite element using analyticalbending and shear rotation interdependent shape-functions[J]. International Journal forComputational Methods in Engineering Science and Mechanics.2006,7(6):425-431.
    [87] Chen, H., Blandford, G.E. A C0finite element formulation for thin-walled beams[J].International Journal for Numerical Methods in Engineering.1989,28(10):2239-2255.
    [88] Gendy, A.S., Saleeb, A.F., Chang, T.Y.P. Generalized thin-walled beam models forflexural-torsional analysis[J]. Computers&Structures.1992,42(4):531-550.
    [89] Prokic, A. New warping function for thin-walled beams II: finite element method andapplications[J]. Journal of Structural Engineering ASCE.1996,122(12):1443-1452.
    [90] Hu, Y.R., Jin, X.D., Chen, B.Z. A finite element model for static and dynamic analysisof thin-walled beams with asymmetric cross-sections[J]. Computers&Structures.1996,61(5):897-908.
    [91] Kim, Y.Y., Kim, J.H. Thin-walled closed box beam element for static and dynamicanalysis[J]. International Journal for Numerical Methods in Engineering.1999,45(4):473-490.
    [92] Kim, N.I., Lee, B.J., Kim, M.Y. Exact element static stiffness matrices of sheardeformable thin-walled beam-columns[J]. Thin-Walled Structures.2004,42(9):1231-1256.
    [93] Kim, N.I., Kim, M.Y. Exact dynamic/static stiffness matrices of non-symmetricthin-walled beams considering coupled shear deformation effects[J]. Thin-WalledStructures.2005,43(5):701-734.
    [94] Minghini, F., Tullini, N., Laudiero, F. Locking-free finite elements for shear deformableorthotropic thin-walled beams[J]. International Journal for Numerical Methods inEngineering.2007,72(7):808-834.
    [95] Lee, J. Flexural analysis of thin-walled composite beams using shear-deformable beamtheory[J]. Composite Structures.2005,70(2):212-222.
    [96] Vo, T.P., Lee, J. Flexural-torsional behavior of thin-walled composite box beams usingshear-deformable beam theory[J]. Engineering Structures.2008,30(7):1958-1968.
    [97] Back, S.Y., Will, K.M. Shear-flexible thin-walled element for composite I-beams[J].Engineering Structures.2008,30(5):1447-1458.
    [98]王晓峰,杨庆山.基于Timoshenko梁理论的薄壁梁弯扭耦合分析[J].工程力学.2008,25(5):12-21.
    [99] Yang, Q.S., Wang, X.F. A geometrical and physical nonlinear finite element model forspatial thin-walled beams with arbitrary section[J]. Science China Technological Sciences.2010,53(3):829-838.
    [100] Feo, L., Mancusi, G. Modeling shear deformability of thin-walled composite beamswith open cross-section[J]. Mechanics Research Communications.2010,37(3):320-325.
    [101] Kim, N.I. Shear defromable doubly-and mono-symmetric composite I-beams[J].International Journal of Mechanical Sciences.2011,53(1):31-41.
    [102] Liew, J.Y.R., Chen, H., Shanmugam, N.E., Chen, W.F. Improved nonlinear plastic hingeanalysis of space frame structures[J]. Engineering Structures.2000,22(10):1324-1338.
    [103]夏桂云,李传习.考虑剪切变形影响的杆系结构理论与应用[M].北京:人民交通出版社,2008.
    [104]陈惠发著,周绥平译.钢框架稳定设计[M].上海:世界图书出版公司,2001.
    [105] Livesley, R.K., Chandler, D.B. Stability Functions for Structural Frameworks[M].Manchester: Manchester University Press,1956.
    [106] Oran, C. Tangent stiffness in plane frames[J]. Journal Structural Division. Proceedingsof the American Society of Civil Engineers1973,99(ST6):973-985.
    [107] Oran, C. Tangent stiffness in space frames[J]. Journal Structural Division. Proceedingsof the American Society of Civil Engineers1973,99(ST6):973-985.
    [108] Kassimali, A., Abbasnia, R. Large deformation analysis of elastic space frames[J].Journal of Structural Engineering ASCE.1991,117(7):2069-2087.
    [109] Ekhande, S.G., Selvappalam, M., Madugula, M.K.S. Stability functions for3-dimensional beam-columns[J]. Journal of Structural Engineering ASCE.1989,115(2):467-482.
    [110] Chan, S.L., Zhou, Z.H. Pointwise equilibrium polynomial element for nonlinearanalysis of frames[J]. Journal of Structural Engineering ASCE.1994,120(6):1703-1717.
    [111] Chan, S.L., Zhou, Z.H. Second-order elastic analysis of frames using single imperfectelement per member[J]. Journal of Structural Engineering ASCE.1994,121(6):939-945.
    [112] Kim, S.E., Park, M.H., Choi, S.H. Direct design of three-dimensional frames usingpractical advanced analysis [J]. Engineering Structures.2001,23(11):1491-1502.
    [113] Kim, S.E., Uang, C.M., Choi, S.H. Practical advanced analysis of steel framesconsidering lateral-torsional buckling[J]. Thin-Walled Structures.2006,44(7):709-720.
    [114] Kim, S.E., Park, J.W. Inelastic second-order analysis of frame structures using thestability-based beam-column element[J]. Advances in Structural Engineering2009,12(4):513-527.
    [115] Hancock, G.J. Elastic method of analysis of rigid jointed frames including second ordereffects[J]. Journal of the Australian Institute of Steel Construction.1994,28(3):10-18.
    [116] Izzuddin, B.A., Smith, D.L. Large-displacement analysis of elasticplastic thin-walledframes. I: formulation and implementation[J]. Journal of Structural Engineering ASCE.1995,122(8):905-914.
    [117] Izzuddin, B.A., Smith, D.L. Large-displacement analysis of elasticplastic thin-walledframes. I: verificaition and application[J]. Journal of Structural Engineering ASCE.1995,122(8):915-925.
    [118] Teh, L.H., Clarke, M.J. Plastic-zone analysis of3D steel frames using beam elements[J].Journal of Structural Engineering ASCE.1999,125(11):1328-1239.
    [119] Chang, S.P., Park, H.G., Kim, M.Y., Kim, S.B., Geometrically nonlinear analysis ofthin-walled space frames[C], Transactions of the15th International Conference onStructural Mechanics in Reactor Technology (SMiRT-15).1999: Seoul, Korea.
    [120] Wang, X.F., Yang, Q.S. Geometrically nonlinear finite element model of spatialthin-walled beams with general open cross section[J]. Acta Mechanica Solida Sinica.2009,22(1):64-72.
    [121] So, A.K.W., Chan, S.L. Buckling and Geometrically nonlinear analysis of frames usingone element/member[J]. Journal of Constructional Steel Research.1991,20(4):271-289.
    [122] Teh, L.H. Cubic beam elements in practical analysis and design of steel frames[J].Engineering Structures.2001,23(10):1243-1255.
    [123] Goto, Y., Chen, W.F. Second-order elastic analysis for frame design[J]. Journal ofStructural Engineering ASCE1987,113:1501-1519.
    [124] Bathe, K.J., Bolourchi, S. Large displacement analysis of3-dimensional beamstructures[J]. International Journal for Numerical Methods in Engineering.1979,14(7):961-986.
    [125] White, D.W. Plastic-hinge methods for advanced analysis of steel frames[J]. Journal ofConstructional Steel Research.1993,124(2):121-152.
    [126] Liew, J.Y.R., White, D.W., Chen, W.F. Second-order refined plastic hinge analysis forframe design[J]. Journal of Structural Engineering ASCE.1993,119(11):3196-3237.
    [127] Kim, S.E., Kim, M.K., Chen, W.F. Improved refined plastic hinge analysis accountingfor strain reversal[J]. Engineering Structures.2000,22(1):15-25.
    [128] Liew, J.Y.R., Tang, L.K. Advanced plastic hinge analysis for the design of tubular spaceframes[J]. Engineering Structures.2000,22(7):769-783.
    [129] Shugyo, M. Elastoplastic large deflection analysis of three-dimensional steel frames[J].Journal of Structural Engineering ASCE.2003,129(9):1259-1267.
    [130] Powell, G.H., Chen, P.F.S.3D beam-column element with generalized plastic hinges[J].Journal of Engineering Mechanics.1986,112(7):627-641.
    [131] King, W.S., White, D.W., Chen, W.F. Second-order inelastic analysis for steel-framedesign[J]. Journal of Structural Engineering ASCE.1992,118(2):408-428.
    [132] Attala, M.R., Deierlein, G.G., Mcguire, W. Spread of plasticity----quasi-plastic-hingeapproach[J]. Journal of Structural Engineering ASCE.1994,120(8):2451-2473.
    [133]刘永华,张耀春.空间钢框架精细塑性铰法高等分析[J].工程力学.2006,23(1):108-116.
    [134]张俊峰,郝际平.精细塑性铰法理论研究及面向对象程序设计[J].华中科技大学学报(城市科学版).2008,25(3):86-89,94.
    [135]郑廷银.钢结构高等分析理论与实用计算[M].北京:科学出版社,2007.
    [136]郑廷银,赵惠麟.空间钢框架结构的改进双重非线性分析[J].工程力学.2003,20(6):202-208,148.
    [137] Chiorean, C.G., Barsan, G.M. Large deflection distributed plasticity analysis of3D steelframeworks[J]. Computers&Structures.2005,83(19-20):1555-1571.
    [138] Thai, H.T., Kim, S.E. Nonlinear inelastic analysis of space frame[J]. Journal ofConstructional Steel Research.2011,67(4):585-592.
    [139] Meek, J.L., Lin, W.J. Geometric and material nonlinear analysis of thin-walledbeam-columns[J]. Journal of Structural Engineering ASCE.1990,116(6):1473-1490.
    [140] Bild, S., Chen, G., Trahair, N.S. Out-of-plane strength of steel beams[J]. Journal ofStructural Engineering ASCE.1992,118(8):1987-2003.
    [141] Pi, Y.L., Trahair, N.S. Nonlinear inelastic analysis of steel beam-columns. I: theroy[J].Journal of Structural Engineering ASCE.1994,120(7):2041-2061.
    [142] Pi, Y.L., Trahair, N.S. Nonlinear inelastic analysis of steel beam-columns. II:applications[J]. Journal of Structural Engineering ASCE.1994,120(7):2062-2085.
    [143] Jiang, X.M., Chen, H., Liew, J.Y.R. Spread-of-plasticity analysis of three-dimensionalsteel frames[J]. Journal of Constructional Steel Research.2002,58(2):193-212.
    [144] ANSYS, I., ANSYS Theory Reference.2011.
    [145] Simulia, D., Simulia Abaqus.2010.
    [146]蒋友谅.非线性有限元法[M].北京:北京工业学院出版社,1988.
    [147]刘正兴,孙燕,王国庆.计算固体力学[M].上海:上海交通大学出版社,2000.
    [148]宋天霞,邹时智,杨文兵.非线性结构有限元分析[M].武汉:华中理工大学出版社,1996.
    [149]王仁,黄文彬,黄筑平.塑性力学引论[M].北京:北京大学出版社,1992.
    [150]夏志皋.塑性力学[M].上海:同济大学出版社,1991.
    [151]陈惠发, A. F.萨里普. Elasticity and Plasticity[M].北京:中国建筑工业出版社,2005.
    [152] Forde, B.W.R., Foschi, R.O., F.Stiemer, S. Object-oriented finite element analysis[J].Computers&Structures.1990,34(3):335-374.
    [153] Filho, J.S.R.A., Devlop, P.R.B. Object-oriented programming in Scientific computations:the beginning of a new era[J]. Engineering Computations.1991,8:81-87.
    [154] Macckie, R.I. Object oriented programming of the finite element method[J].International Journal for Numerical Mehtods in Engineering.1992,35(2):425-436.
    [155] Adeli, H., Yu, G. An integrated computing environmentfor solution of complexengineering problems using the object-oriented programming paradigm and a blackboardarchitecture[J]. Computers&Structures.1995,54(2):255-265.
    [156]魏泳涛,于建华,陈君楷.面向对象有限元设计——程序构架[J].四川大学学报(工程科学版).2001,33(44):21-25.
    [157]吴晓涵.面向对象结构分析程序设计[M].北京:科学出版社,2002.
    [158]俞铭华,吴剑国等.有限元法与面向对象编程[M].北京:科学出版社,2004.
    [159]王春江,钱若军等.面向对象有限元方法及其C++实现[J].上海交通大学学报.2004,38(6):956-960.
    [160]张俊峰,郝际平,李天.几何材料非线性的新梁柱单元及程序编制[J].郑州大学学报(工学版).2010,31(3):65-69.
    [161]郑莉,董渊,张瑞丰. C++语言程序设计[M].第三版.北京:清华大学出版社,2003.
    [162]谭云杰.大象——Thinking in UML[M].北京:中国水利水电出版社,2009.
    [163] Booch, G., Rumbaugh, J., Jacobson, I. The unified modeling language user guide [M].Amsterdam: Addison Wesley Professional,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700