用户名: 密码: 验证码:
废糟液全循环对絮凝酵母乙醇连续发酵的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料乙醇作为一种可再生清洁能源,对缓解石油资源短缺、降低环境污染具有重要意义。目前糖质和淀粉质原料发酵生产的燃料乙醇占市场总量的90%以上,但生产成本高一直是这一产业面临的主要问题,使其严重依赖政府补贴。能耗是仅次于原料消耗的燃料乙醇生产第二大成本,主要用于乙醇蒸馏和废糟液处理,特别是粮食类淀粉质原料燃料乙醇生产过程中,废糟液处理普遍采用的多效蒸发系统。显然,废糟液直接循环使用是减少废液排放和降低其处理能耗最具有竞争力的策略。本论文研究开发了废糟液循环条件下絮凝酵母乙醇连续发酵新工艺。由于酵母细胞在发酵罐内实现自固定化而不随发酵液的排出而流失,发酵液乙醇蒸馏过程中酵母细胞自溶产生的有害副产物显著减少,为提高废糟液循环比例,乃至实现全循环,奠定了良好基础。
     本文首先研究了废糟液全循环对絮凝酵母生长和乙醇发酵过程的影响。与无废糟液循环发酵过程相比,废糟液全循环对乙醇发酵过程产生了明显的抑制,表现为发酵液中残糖浓度的升高,乙醇和生物量平均浓度分别降低了5.3%和10.9%。发酵液中副产物和金属离子检测结果表明,在废糟液全循环过程中,除琥珀酸和5-羟甲基糠醛外,其余10种副产物和4种金属离子均有明显积累,其积累浓度为对照组的3倍以上。其中Ca2+、甘油和丙酸的积累浓度最高,分别为1126mg/L,15080mg/L和2100mg/L。其余副产物浓度都远小于1g/L。进一步的碳流分布分析表明,废糟液全循环对酵母糖酵解和磷酸戊糖途径的碳流分配没有产生明显的抑制,但使酵母细胞对底物的吸收速率和糖酵解途径三个限速酶己糖激酶、6-磷酸果糖激酶和丙酮酸激酶活性逐渐降低,到整个废糟液全循环结束时,流向乙醇的碳流量降低了33%。
     为了找出主要抑制物,进行了添加副产物实验研究。单一副产物添加实验研究结果表明,柠檬酸、α-酮戊二酸、富马酸、乳酸、丙酮酸、琥珀酸、2-苯乙醇、糠醛和5-羟甲基糠醛浓度低于1g/L时,对絮凝酵母生长的抑制率低于5%,对乙醇发酵的抑制率低于4%,且低浓度单一金属离子可促进酵母生长和乙醇发酵。而丙酸浓度低于1g/L时,对絮凝酵母生长的抑制率低于20.3%,2g/L时对生长的抑制率达到30.2%,对乙醇发酵的抑制率低于5%。除丙酸外(MIC10:0.4g/L),其余所有副产物和金属离子在实际发酵液中的积累浓度远小于其最小抑制浓度(MIC10)。混合添加实验结果表明金属离子对酵母生长和乙醇发酵有促进作用,进一步的协同实验证实了丙酸是影响絮凝酵母生长和乙醇发酵的主要抑制物。
     系统研究了丙酸对絮凝酵母代谢过程的影响。丙酸对酵母生长的影响非常显著,当发酵培养基中丙酸浓度超过40mmol/L时,对絮凝酵母生长和乙醇发酵、糖酵解途径三个限速酶活性以及酵母絮凝均产生显著抑制。当培养基中丙酸浓度达到60mmol/L时对生长的抑制率达到67%,对乙醇发酵的抑制率达到66%,酵母絮凝颗粒粒径降低至50μm,接近游离酵母,不利于废糟液全循环絮凝酵母乙醇连续发酵的稳定运行。
     酵母代谢不生成丙酸,进一步分析检测发现玉米原料中半纤维素在酸性和高温条件下的分解是产生丙酸的主要来源,且其浓度随原料处理温度和时间的增加而升高,但玉米糖化液在60℃长时间储存时,丙酸浓度几乎无变化。据此提出了发酵培养基不经高温灭菌直接用于废糟液全循环乙醇连续发酵的工程策略,并通过实验进行了验证。实验结果表明发酵液各副产物浓度明显低于培养基高温灭菌的废糟液全循环工艺,其中丙酸浓度降低了62%,乙醇和生物量浓度分别提高了7.4%和59.3%,残还原糖浓度降低了40.1%,且优于培养基高温灭菌无废液循环乙醇发酵工艺各主要参数。保证了废糟液全循环絮凝酵母发酵连续发酵的稳定运行。
     这些研究结果对生产装置运行中提高废糟液直接循环使用比例,实现节能减排,具有重要的指导意义。
As a renewable and clean fuel, ethanol is an alternative to petroleum-based transportation fuels, and in the meantime alleviates environmental impact caused by the over-consumption of these products. At present, over90%fuel ethanol is produced from sugar-and starch-based feedstocks by microbial fermentations, and high production cost makes the industry heavily depended on governmental subsidies. While feedstock consumption is the major cost in the fuel ethanol production, energy consumption is the second largest, which mainly comes from ethanol distillation and stillage treatment, particularly for fuel ethanol production with grain-based feedstocks in which the multi-evaporation process is employed for stillage treatment. Apparently, stillage backset is an economically competitive strategy for reducing stillage as well as saving energy consumption for stillage treatment. In this work, a novel process has been developed for ethanol fermentation by the flocculating yeast under stillage backset conditions. Due to the self-immobilization of yeast cells within the fermentor through flocculation, harmful byproducts generated with the lysis of yeast cells during ethanol distillation were significantly reduced, making more stillage backset, even without discharge and all stillage backset.
     Impact on the fermentation process was investigated under all stillage backset conditions. Compared to ethanol fermentation without stillage backset, inhibition in yeast growth and ethanol fermentation was observed, the average concentration of ethanol and biomass were decreased by5.3%and10.9%respectivily. As a result, less biomass was accumulated within the fermentation system, and consequently more sugars were remained unfermented, with less ethanol produced. The analysis of byproducts indicated that except succinic acid and5-(hydroxymethyl) furfural, all other ten major byproducts and four metal ions accumulated significantly under the stillage backset condition. Compared to the control without stillage backset, their average concentrations increased at least3times. Exception of Ca2+, glycerol and propionic acid (were1126mg/L,15080mg/L and2100mg/L respectivily), concentrations of all other byproducts and metal ions were far less than1g/L. Metabolic flux analysis illustrated that the stillage backset had no significant impact on ratio of carbon flux distributions in the glycolysis and pentose phosphate pathway associated with yeast metabolism, but substrate uptake rate was inhibited, and the activities of rate-limiting enzymes hexokinase,6-phosphofructose and pyruvatekinae in the glycolysis were down-regulated, making the net carbon flow to ethanol production decreased33%at the end of ethanol fermentation with stillage backset.
     In order to identify the main inhibitors, effect of individual byproducts on the ethanol fermentation was studied by supplementing them into the medium and feeding into the fermentation system. When the concentration of citric acid, α-ketoglutaric acid, fumaric acid, lactic acid, pyruvic acid, succinic acid,2-phenylethanol, furfural and5-hydroxymethyl furfural were lower than1g/L, experimental results indicated that the growth and ethanol fermentation inhibition rate were lower than5%and4%respectively. And the yeast growth and ethanol fermentation were facilitated when metal ions were in a low concentration. However, the growth inhibition rate were lower than20.3%when1g/L propionic acid was supplemented. Furthermore, exception of propionic acid (MIC10:0.4g/L), concentrations detected within the fermentation system of all other byproducts and metal ions were much lower than their minimum inhibition concentrations (MIC10). When a mixture of these byproducts with concentrations of their averages detected within the fermentation system under the stillage backset condition was supplemented, no synergic effect was observed, and propionic acid was still the dominated inhibitor on yeast growth and ethanol fermentation.
     The results of effect of propionic acid on ethanol fermentation by the flocculating yeast indicated that the significant decrease of ehanol production, key enzyme activities and yeast flocculation were observed, When the propionic acid concentration was larger than IC50(40mmol/L). and propionic acid exhibited the strongest inhibition in yeast growth and ethanol fermentation with an inhibition rate of67%and66%respectively, when supplemented with the concentration of60mmol/L. and the size of flocs closes to50μm, its performance likes the free cells, which is absolutely a bad news for the process by using flocculating yeast.
     However, propionic acid was produced by the dehydration of pentose sugars liberated from hemicelluloses in the feedstock under high temperature and acidic conditions associated with mash liqufication, hydrolysate sterilization and ethanol distillation, but propionic acid production was negligible during mash saccharification at60℃. and a practical strategy was developed for ethanol fermentation by the flocculating yeast under stillage backset conditions Without fermentation medium was sterilized at high temperature. The result indicated that the propionic acid accumulation within the fermentation system decreased62%, and more sugars were fermented and the reducing sugar was decreased by40.1%, with an increase of7.4%and59.3%in ethanol production and biomass respectivily.
     No doubt, the research progress is significant for fuel ethanol production with more stillage backset to reduce the discharge and save energy consumption for stillage treatment.
引文
[1]Wirth T.E., Gray C.B., Podesta J.D. Future of energy policy. Foreign Affairs,2003,82:132.
    [2]Kerr R.A., Service R.F. What can replace cheap oil-and when? Science,2005,309:101.
    [3]World Commission on Environment and Development. Our common future:report of the world commission on environment and development. UK:Oxford university press,1987, p.18-38.
    [4]Turkenburg WC. Renewable energy technologies. In:Goldemberg, J., editor, World Energy Assess-ment. United Nations Development Programme, New York,2000. p.219-272.
    [5]Kerr R.A. Global warming is changing the world. Science,2007,316:188-190.
    [6]Bai F.W., Anderson W.A., Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances,2008,26:89-105.
    [7]Krylova A.Y., Kozyukov E.A., Lapidus A.L. Ethanol and diesel fuel from plant raw materials:a review. Solid Fuel Chemistry,2008,42(6):358-364.
    [8]Lashinky A., Schwartz N.D. How to beat the high cost of gasoline. Fortune, February 06,2006.
    [9]Licht F.O. World ethanol markets:the outlook to 2015. Tunbridge Wells:F.O. Licht,2006.
    [10]Orellana C, Bonalume Neto R. Brazil and Japan give fuel to ethanol market. Nature Biotechnology, 2006,24(3):232.
    [11]Licht, F.O., World fuel ethanol production, From Industry in Renewable Fuels Association, statiatics, available online http://ethanolrfa.org/pages/World-Fuel-Ethanol-Production.
    [12]Solomon B.D., Barnes J.R., Halvorsen K.E. Grain and cellulosic ethanol:history, economics, and energy policy. Biomass and Bioenergy,2007,31(6):416-425.
    [13]Wu C.Z., Yin X.L., Yuan Z.H., et al. The development of bioenergy technology in China. Energy, 2010,35(11):4445-4450.
    [14]Sukumaran R.K., Surender V.J., Sindhu R., et al. Lignocellulosic ethanol in India:prospects, challenges and feedstock availability. Bioresoure Technology,2010,101 (13):4826-4833.
    [15]Heinimo J., Junginger M. Production and trading of biomass for energy-an overview of the global status. Biomass and Bioenergy,2009,33(9):1310-1320.
    [16]Prasad S., Singh A., Joshi H.C. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resource Conservation and Recycling,2007,50(1):1-39.
    [17]Knight P. Sugar and ethanol in Brazil and South America. International Sugar Journal,2006, 108:472-478.
    [18]申渝.酵母细胞超高浓度乙醇连续发酵振荡行为的研究.博士学位论文,大连理工大学,2009.
    [19]Rossillo-Calle F., Walter A. Global market for bioethanol:historical trends and future prospects. Energy for Sustainable Developement,2006.10(1):20-32.
    [20]Macedo I.C., Seabra J.E.A., Silva J.E.A.R. Green house gases emissions in the production and use of ethanol from sugarcane in Brazil:the 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy,2008,32(7):582-595.
    [21]Icoz E., Tugrul K.M., Saral A., et al. Research on ethanol production and use from sugar beet in Turkey. Biomass and Bioenergy,2009,33(1):1-7.
    [22]Yu J.L., Zhang X., Tan T.W. Ethanol production by solid state fermentation of sweet sorghum using thermotolerant yeast strain. Fuel Processing Technology,2008,89(11):1056-1059.
    [23]Dragone G., Mussatto S.I., Oliveira J.M., et al. Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chemistry,2009,112(4):929-935.
    [24]Roukas T. Ethanol production from non-sterilized beet molasses by free and immobilized Saccharomyces cerevisiae cells using fed-batch culture. Journal of Food Engineering,1996, 27(1):87-96.
    [25]Mahapatra A.K., Latimore M., Bellmer D.D., et al. Utilization of sweet sorghum for ethanol production a review. Kentucky:2011 ASABE Annual International Meeting presentation,2011, No.1111567.
    [26]Maiorella B.L., Blanch H.W., Wilke C.R. Biotechnology report. Economic evaluation of alternative ethanol fermentation processes. Biotechnology and Bioengineering,1984,26(9):1003-1025.
    [27]Persson T., Garcia A.G., Paz J., et al. Maize ethanol feedstock production and net energy value as affected by climate variability and crop management practices. Agricultural Systems,2009, 100(1-3):11-21.
    [28]Nigam J.N. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. Journal of Biotechnology,2001,87(1):17-27.
    [29]Kosugi A., Kondo A., Ueda M., et al. Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase. Renewable Energy,2009, 34(5):1354-1358.
    [30]Batchelor S.E., Cook P., Booth E.J., et al. Economics of bioethanol production from wheat in the UK. Renewable Energy,1994,5 (5-8):807-809.
    [31]Ballesteros M., Oliva J.M., Negro M.J., et al. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry,2004,39(12):1843-1848.
    [32]Silva J.P.A., Mussatto S.I., Roberto I.C. The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Applied Biochemistry and Biotechnology,2010,162(5):1306-1315.
    [33]Lin Y., Tanaka S. Ethanol fermentation from biomass resources:current state and prospects. Applied Microbiology and Biotechnology,2006,69(6):627-642.
    [34]Demirbas A. Bioethanol from cellulosic materials:a renewable motor fuel from biomass. Energy Source,2005,27(4):327-337.
    [35]Mussatto S.I., Dragone G., Guimaraes P.M.R., et al. Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances,2010,28:817-830.
    [36]Cardona C.A., Sanchez J. Fuel ethanol production:process design trends and integration opportunities. Bioresource Technology,2007,98(12):2415-2457.
    [37]Bothast R.J. New technologies in biofuel production. Southern Illinois University Edwardville: Agricultural Outlook Forum, February 24,2005.
    [38]Sanchez O.J., Cardona C.A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology,2008,99(13):5270-5295.
    [39]Basso L.C., de Amorim H.V., de Oliveira A.J., et al. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Research,2008,8(7):1155-1163.
    [40]Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiology and Mole-cular Biology Reviews,2008,72(3):379-412.
    [41]Nielsen J. Metabolic engineering. Applied Microbiology and Biotechnology,2001,55(3):263-283.
    [42]Parekh S., Vinci V.A., Strobel R.J. Improvement of microbial strains and fermentation processes. Applied Microbiology and Biotechnology,2000,54(3):287-301.
    [43]Cakar Z.P. Metabolic and evolutionary engineering research in Turkey and beyond. Biotechnology Journal,2009,4(7):992-1002.
    [44]Sauer U. Evolutionary engineering of industrially important microbial phenotypes. Advances in Biochemical Engineering/Biotechnology,2001,73:129-169.
    [45]Alper H., Moxley J., Nevoigt E., et al. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science,2006,314:1565-1568.
    [46]Hou L. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology,2010,160(4):1084-1093.
    [47]Shi D.J., Wang C.L., Wang K.M. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology,2009,36(1):139-147.
    [48]Cakar Z.P., Seker U.O., Tamerler C., et al. Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Research,2005,5(6-7):569-578.
    [49]Wei P., Li Z., Lin Y., et al. Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment. Biotechnology Letters,2007, 29(10):1501-1508.
    [50]Dinh T.N., Nagahisa K., Yoshikawa K., et al. Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray. Bioprocess and Biosystems Engineering,2009, 32(5):681-688.
    [51]Hu X.H., Wang M.H., Tan T., et al. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics,2007,175(3):1479-1487.
    [52]Yazawa H., Iwahashi H., Uemura H. Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae. Yeast,2007,24(7):551-560.
    [53]Li L., Ye Y., Pan L., et al. The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses. Biochemical and Biophysical Research Communications,2009, 387(4):778-783.
    [54]Rautio J.J., Huuskonen A., Vuokko H., et al. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression. Yeast,2007,24(9):741-760.
    [55]Hansen R., Pearson S.Y., Brosnan J.M., et al. Proteomic analysis of a distilling strain of Saccharomy ces cerevisiae during industrial grain fermentation. Applied Microbiology and Biotechnology,2006, 72(1):116-125.
    [56]Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science,2007,315: 801-804.
    [57]Almeida J.R.M., Bertilsson M., Gorwa-Grauslund M.F., et al. Metabolic effects of furaldehydes and impacts on biotechnological processes. Applied Microbiology and Biotechnology,2009,82:625-638.
    [58]Heer D., Sauer U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microbial Biotechnology,2008,1:497-506.
    [59]Albers E., Larsson C. A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. Journal of Induatrial Microbiology and Biotechnology,2009,36:1085-1091.
    [60]Modig T., Almeida J.R., Gorwa-Grauslund M.F., et al. Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate. Biotechnology and Bioengineering,2008, 100:423-429.
    [61]Lin F.M., Qiao B., Yuan Y.J. Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Applied and Environmental Microbiology,2009,75:3765-3776.
    [62]Lin F.M., Tan Y., Yuan Y.J. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural. Proteomics,2009,9:5471-5483.
    [63]Gorsich S.W., Dien B.S., Nichols N.N., et al. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology,2006,71:339-349.
    [64]Song M., Ouyang Z., Liu Z.L. Discrete dynamical system modelling for gene regulatory networks of 5-hydroxymethylfurfural tolerance for ethanologenic yeast. IET Systems Biology,2009, 3(3):203-218.
    [65]Petersson A., Almeida J.R., Modig T., et al. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast,2006,23:455-464.
    [66]Endo A., Nakamura T., Shima J. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bio-ethanol fermentation, in Saccharomyces cerevisiae. FEMS Microbiology Letters, 2009,299:95-99.
    [67]Endo A., Nakamura T., Ando A., et al. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bio-ethanol fermentation, in Saccharomyces cerevisiae. Biotechnology for Biofuels,2008,1:1-6.
    [68]Zhao X.Q., Bai F.W. Yeast flocculation:new story in fuel ethanol production. Biotechnology Advances,2009,27:849-856.
    [69]Domingues L., Vicente A.A., Lima N., et al. Applications of yeast flocculation in biotechnological processes. Biotechnology and Bioprocess Engineering,2000,5(4):288-305.
    [70]Verbelen P.J., De Schutter D.P., Delvaux F., et al. Immobilized yeast cell systems for continuous fermentation applications. Biotechnology Letters,2006,28(19):1515-1525.
    [71]Cunha A.F., Missawa S.K., Gomes L.H., et al. Control by sugar of Saccharomyces cerevisiae flocculation for industrial ethanol production. FEMS Yeast Research,2006,6:280-287.
    [72]Wang F.Z., Shen W., Rao Z.M., et al. Construction of a flocculating yeast for fuel ethanol production. Biotechnology Letters,2008,30:97-102.
    [73]Liu N., Wang D., Wang Z.Y., et al. Genetic basis of flocculation phenotype conversion in Saccharomyces cerevisiae. FEMS Yeast Research,2007,7:1362-1370.
    [74]Wang D., Wang Z., Liu N., et al. Genetic modification of industrial yeast strains to obtain controllable NewFlo flocculation property and lower diacetyl production. Biotechnology Letters, 2008,30:2013-2018.
    [75]Choi G.W., Kang H.W., Moon S.K. Repeated-batch fermentation using flocculent hybrid, Saccharomyces cerevisiae CHFY0321 for efficient production of bio-ethanol. Applied Microbiology and Biotechnology,2009,84:261-269.
    [76]Li F., Zhao X.Q., Ge X.M., et al. An innovative consecutive batch fermentation process for very high gravity ethanol fermentation with self-flocculating yeast. Applied Microbiology and Biotechnology, 2009,84:1079-1086.
    [77]Apar D.K., Ozbek B. a-Amylase inactivation during corn starch hydrolysis process. Process Biochemistry,2004,39:1877-1892.
    [78]Shigechi H., Fujita Y., Koh J., et al. Energy-saving direct ethanol production from low-temperature-cooked corn starch using a cell-surface engineered yeast strain codisplaying glucoamylase and a-amylase. Biochemical Engineering Journal,2004,18:149-153.
    [79]Bothast R.J., Schlicher M.A. Biotechnological processes for conversion of corn into ethanol. Applied Microbiology and Biotechnology,2005,67:19-25.
    [80]Burmaster B. Improved ethanol fermentation using oxidation reduction potential. US, invention, WO2007064545, June,07,2007.
    [81]Tiffany D.G., Eidman V.R.,2003. Factors associated with success of fuel ethanol producers. Staff Paper Series P03-7. USA:University of Minnesota, p.54.
    [82]Kosaric N., Velikonja J. Liquid and gaseous fuels from biotechnology:challenge and opportunities. FEMS Microbiology Reviews,1995,16(2-3):111-142.
    [83]Echegaray O., Carvalho J., Fernandes A., et al. Fed-batch culture of Saccharomyces cerevisiae in sugarcane blackstrap molasses:invertase activity of intact cells in ethanol fermentation. Biomass and Bioenergy,2000,19(1):39-50.
    [84]Alfenore S., Cameleyre X., Benbadis L., et al. Aeration strategy:a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Applied Microbiology and Biotechnology,2004,63(5):537-542.
    [85]Monte Alegre R., Rigo M., Joekes I. Ethanol fermentation of a diluted molasses medium by Saccharomyces cerevisiae immobilized on chrysotile. Brazilian Archives of Biology and Technology, 2003,46(4):751-757.
    [86]Laluce C., Souza C.S., Abud C.L., et al. Continuous ethanol production in a nonconventional five-stage system operating with yeast cell recycling at elevated temperatures. Journal of Industrial Microbiology and Biotechnology,2002,29(3):140-144.
    [87]Hojo O., Hokka C.O., Souto Maior A.M. Ethanol production by a flocculant yeast strain in a CSTR type fermentor with cell recycling. Applied Biochemistry and Biotechnology,1999,78(1-3):535-545.
    [88]Bai F.W., Chen L.J., Anderson W.A., et al. Parameter oscillations in a very high gravity medium continuous ethanol fermentation and their attenuation on a multistage packed column bioreactor system. Biotechnology and Bioengineering,2004,88(5):558-566.
    [89]Claassen P.A.M., van Lier J.B., Lopez Contreras A.M., et al. Utilisation of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology,1999,52(6):741-755.
    [90]Brethauer S., Wyman C.E. Review:Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technology,2010,101(13):4862-4874.
    [91]Kourkoutas Y., Bekatorou A., Banat I.M., et al. Immobilization technologies and support materials suitable in alcohol beverages production:a review. Food Microbiology,2004,21(4):377-397.
    [92]Branyik T., Vicente A.A., Dostalek P., et al. Continuous beer fermentation using immobilized yeast cell bioreactor systems. Biotechnology Progress,2005,21(3):653-663.
    [93]Zanin G.M., Santana C.C., Bon E.P.S., et al. Brazilian bioethanol program. Applied Biochemistry and Biotechnology,2000,84-86(1-9):1147-1161.
    [94]Mensour N.A., Margaritis A., Briens C.L., et al. New developments in the brewing industry using immobilised yeast cell bioreactor systems. Journal of Institue of Brewing,1997,103(6):363-370.
    [95]Linko M., Haikara A., Ritala A., et al. Recent advances in the malting and brewing industry. Journal of Biotechnology,1998,65:85-98.
    [96]Purwadi R., Brandberg T., Taherzadeh M.J. A possible industrial solution to ferment lignocellulosic hydrolyzate to ethanol:continuous cultivation with flocculating yeast. International Journal of Molecular Sciences,2007,8:920-932.
    [97]Talebnia F., Taherzadeh M.J. In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S. cerevisiae. Journal of Biotechnology,2006,125(3): 377-384.
    [98]苏小军,熊兴耀,谭兴和,等.燃料乙醇发酵技术研究进展.湖南农业大学学报(自然科学版),2007,33(4):480-485.
    [99]Zhao X.Q., Bai F.W. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. Journal of Biotechnology,2009,144:23-30.
    [100]Lei J.J., Zhao X.Q., Ge X.M., et al. Ethanol tolerance and the variation of plasma membrane composition of yeast floc populations with different size distributions. Journal of Biotechnology, 2007,131:270-275.
    [101]Xue C., Zhao X.Q., Bai F.W. Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions. Biotechnology and Bioengineering,2010,105:935-944.
    [102]Pham T.K., Wright P.C. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. Journal of Proteome Research,2008,7:4766-4774.
    [103]Thomas K.C., Hynes S.H., Ingledew W.M. Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Applied and Environmental Microbiology,2002,68(4):1616-1623.
    [104]Kim Y., Mosier N.S., Hendrickson R., et al. Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage. Bioresource Technology,2008,99(12):5165-5176.
    [105]Ljiljana M., Dusanka P., Olgica G., et al. Progress in the production of bioethanol on starch-based feedstocks. Chemical Industry and Chemical Engineering Quarterly,2009,15(4):211-226.
    [106]Pejin D., Mojovit L., Grujic O., et al. The bioethanol production with the thin stillage recirculation. Chemical Industry and Chemical Engineering Quarterly,2009,15(1):49-52.
    [107]Gumienna M., Lasik M., Szambelan K., et al. Reduction of water consumption in bioethanol production from triticale by recycling the stillage liquid phase. Acta Science Polonica Technology Alimentation,2011,10(4):467-474.
    [108]Zhu J.Y., Pan X.J. Woody biomass pretreatment for cellulosic ethanol production:technology and energy consumption evaluation. Bioresource Technology,2010,101(13):4992-5002.
    [109]姜秀党,张跃玺,陈伟红.乙醇工业的清洁生产和综合利用-南阳乙醇总厂的发展道路.食品与发酵工业,1999,25(2):75-77.
    [110]Pant D., Adholeya A. Biological approaches for treatment of distillery wastewater:a review. Bioresource Technology,2007,98(12):2321-2334.
    [111]Sheehan G.J., Greenfield P.F. Utilization, treatment and disposal of distillery wastewater. Water Research 1980,14(3):257-277.
    [112]de Menezes T.J.B. The treatment and utilization of alcohol stillage. In:Wise D.L., editor. International Biosystems, Boca Raton:CRC Press,1989, vol. Ⅲ:p.1-14.
    [113]Clark J.H. Chemistry of Waste Minimisation. London:Blackie Academic and Professional,1995, p.22-26.
    [114]Boyle C. Cleaner production in New Zealand. Journal of Cleaner Production,1999,7(1):59-67.
    [115]Frijns J., Vlient B.V. Small-scale industry and cleaner production strategies. World Development, 1999,27(6):967-983.
    [116]宋世伟,薛纪渝.清洁生产技术方案综合评价方法初探.环境保护科学,1999,25(1):16-21.
    [117]Hamner B. Cleaner production training in Asia:experience from the ASEAN environmental improvement project. Journal of Cleaner Production,1999,7(1):75-81.
    [118]Chin P.M., Ingledew W.M. Effect of recycled laboratory backset on fermentation of wheat mashes. Journal of Agricultural and Food Chemistry,1993,41:1158-1163.
    [119]Egg R.P., Sweeten J.M., Coble C.G. Grain sorghum stillage recycling:effect on ethanol yield and stillage quality. Biotechnology and Bioengineering,1985, XXVII:1735-1738.
    [120]Hsiao T.Y., Glatz C.E., Glatz B.A. Broth recycle in a yeast fermentation. Biotechnology and Bioengineering,1994,44(10):1228-1234.
    [121]Julian G.S., Bothast R.J., Krull L.H. Glycerol accumulation while recycling thin stillage in com fermentations to ethanol. Journal of Indusrial Microbiology,1990,5:391-394.
    [122]Bankovic-Ili c I., Lazic M., Veljkovic V., et al. Dzibra-sekundarni proizvod alkoholne fermentacije,7th Sympsium "New Technologies and Economical Development", Leskovac,19-20 October 2007, CD edition,100-107.
    [123]Quintero J.A., Monoya M.I., Sanchez O.J., et al. Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case. Energy,2008,33(3):385-399.
    [124]Zhang W., Xiong R.C., Wei G. Biological flocculation treatment on distillery wastewater and recirculation of wastewater. Journal of Hazardous Materials,2009,172:1252-1257.
    [125]Zhang C.M., Mao Z.G., Wang X., et al. Effective ethanol production by reutilizing waste distillage anaerobic digestion effluent in an integrated fermentation process coupled with both ethanol and methane fermentations. Bioprocess and Biosystems Engineering,2010,33:1067-1075.
    [126]白凤武,袁文杰,赵心清,葛旭萌.驯化选育的自絮凝酵母变异株及其应用.中国,发明专利,ZL 200610025259,2010年5月.
    [127]刘传斌,白凤武,邵梅,等.自絮凝颗粒酵母乙醇高浓度连续发酵的研究.微生物学报,2001,41(3):367-371.
    [128]李东侠,白凤武,宋琪,等.自絮凝颗粒酵母乙醇连续发酵过程精馏废液循环回用工艺研究.应用与环境生物学报,1999,5(5):533-536.
    [129]Russell I. Understanding yeast fundamentals. In:Jacques KA, Lyons TP, Kelsall DR editors. The alcohol textbook (4th edn). Nottingham:Nottingham University Press; 2004. p.92.
    [130]Russell I. Understanding yeast fundamentals. In:Jacques KA, Lyons TP, Kelsall DR editors. The alcohol textbook (4th edn). Nottingham:Nottingham University Press; 2004. p.104.
    [131]Ray B., Impact of bacterial injury and repair in food microbiology:its past, present and future. Journal of Food Protection,1986,49(8):651-655.
    [132]Russell N.J., Evans R.I., Ter Steeg P.F., et al. Membranes as a target for stress adaption. International Journal of Food Microbiology,1995,28:255-261.
    [133]Hill C., O'Driscoll B., Booth I. Acid adaption and food poisoning microorganisms. International Journal of Food Microbiology,1995,28:245-254
    [134]Herbert R.A. Microbial growth at low temperature. In:Gould G.W., editor. Mechanisms of action of food preservation procedures. London:Elsevier Applied Science,1989, p.71-96.
    [135]Attfield P.V. Stress tolerance:the key to effective strains of industrial baker's yeast. Nature Biotechnology,1997,15:1351-1357.
    [136]Krouwel P.G. Braber L. Ethanol production by yeast at supraoptimal temperatures. Biotechnology Letters,1979,1(10):403-408.
    [137]Sa-Correia I., Van Uden N. Temperature profiles of ethanol tolerance:Effects of ethanol on the minimum and the maximum temperature for growth of the yeast Saccharomyces cerevisiae and Kluyveromyces fragilis. Biotechnology and Bioengineering,1983,25(6):1665-1667.
    [138]Banat I.M., Nigam P., Singh D., et al. Review:Ethanol production at elevated temperatures and alcohol concentrations:Part Ⅰ-Yeasts in general. World Journal of Microbiology and Biotechnology, 1998,14(6):809-821.
    [139]Piper P.W. The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiology Letters,1995,134(2-3):121-127.
    [140]Casey G.P., Magnus C.A., Ingledew W.M. High-gravity brewing:effects of nutrition on yeast composition, fermentative ability and alcohol production. Applied and Environmental Microbiology, 1984,48(3):639-646.
    [141]Stewart G.G., Yeast management-the balance between fermentation efficiency and beer quality. Technical Quarterly-Master Brewers Association of the Americas,2001,38(1):74-53.
    [142]Csonka L.N., Hanson A.D. Prokaryotic osmoregulation:genetics and physiology. Annual Reviews Microbiology,1991,45:569-606.
    [143]Hammond J., Davis D., Lee M., et al. Does osmotic pressure affect yeast performance in high-gravity fermentation? Proceedings Congress European Brewing Convolution, Budapest,2001,28:316-325.
    [144]Boulton C.A., Brookes P.A. Brewing:science and practice. UK:CRC Press,2004.
    [145]D'Amore T. Improving yeast fermentation performance. Journal of Institue Brewing,1992, 98:375-382.
    [146]Cahill G., Murray D.M., Walsh P.K., et al. Effect of the concentration of propagation wort on yeast cell volume and fermentation performance. Journal of American Society of Brewing Chemists,2000, 58(1):14-20.
    [147]Hounsa C.G., Brandt E.V., Thevelein J., et al. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology,1998,144(3):671-680.
    [148]Gasch A.P., Werner-Washburne M. The genomics of yeast responses to environmental stress and starvation. Functional and Integrative Genomics,2002,2(4-5):181-192.
    [149]Canetta E., Adya A.K., Walker G.M. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology. FEMS Microbiology Letters,2006,255(2):308-319.
    [150]Fernandes L., Corte-Real M., Loureiro V., et al. Glucose respiration and fermentation in Zygosaccharomyces bailii and Saccharomyces cerevisiae express different sensitivity patterns to ethanol and acetic acid. Letters in Applied Microbiology,1997,25(4):249-253.
    [151]Marza E., Camougrand N., Manon S. Bax expression protects yeast plasma membrane against ethanol-induced permeabilization. FEBS Letters,2002,521(1-3):47-52.
    [152]Alexandre H., Rousseaux I., Charpentier C. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiology Letters,1994,124(1):17-22.
    [153]Odumeru J.A., D'Amore T., Russell I., et al. Alterations in fatty acid composition and trehalose concentration of Saccharomyces brewing strains in response to heat and ethanol shock. Journal of Induatrial Microbiology and Biotechnology,1993,11(2):113-119.
    [154]Narendranath N.V., Thomas K.C., Ingledew W.M. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. Journal of Industrial Microbiology and Biotechnology,2001,26(3):171-177.
    [155]Wilkins M.R., Belyea R.L., Singh V., et al. Analysis of heat transfer fouling by dry-grind maize thin stillage using an annular fouling apparatus. Cereal Chemistry,2006,83(2):121-126.
    [156]Meredith J. Understanding energy use and energy users in contemporary ethanol plants. In:Jacques K.A., Lyons T.P., Kelsall D.R. editors. The alcohol textbook (4th edn). Nottingham:Nottingham University Press,2004. p.355-361.
    [157]Ingledew W.M. Alcohol Production by Saccharomyces cerevisiae:a yeast primer. In:Jacques K., Lyons T.P., Kelsall D.R., editors, The alcohol textbook (3rd edn). Nottingham:Nottingham University Press.1999, p.49-87.
    [158]Thomas K.C., Hynes S.H., Ingledew W.M. Effect of lactobacilli on yeast growth, viability and batch and semi-continuous alcoholic fermentation of corn mash. Journal of Applied Microbiology,2001, 90:819-828.
    [159]Ingledew W.M. Water reuse in fuel alcohol plants:effect on fermentation is a "zero discharge" concept attainable? In:Jacques KA, Lyons TP, Kelsall DR editors. The alcohol textbook (4th edn). Nottingham:Nottingham University Press; 2004. p.350.
    [160]Hodge J.E. Dehydrated foods, chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry.1953,1:928-943.
    [161]Banerjee N., Bhatnagar R., Viswanathan L. Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology,1981,11:226-228.
    [162]Palmqvist E., Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. Ⅱ:Inhibitors and mechanisms of inhibition. BioresourceTechnology,2000,74(1):25-33.
    [163]Pfeifer P., Bonn G., Bobleter O. Influence of biomass degradation products on the fermentation of glucose to ethanol by Saccharomyces carlbergensis W34. Biotechnology Letters,1984,6(8):541-546
    [164]Villa G.P., Bartroli R., Lopez R., et al. Microbial transformation of furfural to furfuryl alcohol by Saccharomyces cerevisiae. Acta Biotechnologica,1992,12(6):509-512.
    [165]Taherzadeh M.J., Gustafsson L., Niklasson C., et al. Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering,1999,87(2):169-174.
    [166]Taherzadeh M.J., Gustafsson L., Niklasson C., et al. Physiological effects of 5-hydroxy methyl furfural on Saccharomyces cerevisiae. Applied Microbiology and Biotechnology,2000, 53(6):701-708.
    [167]Liu Z.L., Slininger P.J., Dien B.J., et al. Adaptive response of yeasts to furfural and 5-hydroxymethyI furfural and new chemical evidence for HMF conversion to 2, 5-bishydroxymethylfuran. Journal of Industrial Microbiology and Biotechnology,2004, 31(8):345-352.
    [168]Taherzadeh M.J., Gustafsson L., Niklasson C., et al. Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid. Journal of Bioscience and Bioengineering,2000,90(4):374-380.
    [169]Modig T., Liden G., Taherzadeh M.J. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochemical Journal,2002,363:769-776.
    [170]Sanchez B., Bautista J. Effects of furfural and 5-hydroxymethylfurfrual on the fermentation of Saccharomyces cerevisiae and biomass production from Candida guilliermondii. Enzyme and Microbial Technology,1988,10:315-318.
    [171]Larsson S., Palmqvist E., Hahn-Hagerdal B., et al. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology,1999,24:151-159.
    [172]Russel J.B. Another explanation for the toxicity of fermentation acids at low pH:anion accumulation versus uncoupling. Journal of Applied Bacteriology,1992,73:363-370.
    [173]Verduyn C. Physiology of yeasts in relation to biomass yields. Antonie Van Leeuwenhoek,1991, 60(3-4):325-353.
    [174]Verduyn C, Postma E., Scheffers W.A., et al. Effect of benzoic acid on metabolic fluxes in yeasts:a continuous culture study on the regulation of respiration and alcoholic fermentation. Yeast,1992, 8(7):501-517.
    [175]Pampulha M.E., Loureiro-Dias M.C. Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Applied Microbiology and Biotechnology,1989,20:286-293.
    [176]Kaback H.R., Milner L.S. The relationship of a membrane-bound D-(-)-lactic dehydrogenase to amino acid transport in isolated bacterial membrane preparations. Proceedings of the National Academy of Science of U.S.A.,1970,66(3):1008-1015.
    [177]Konings W.N., Freese E. L-Serine transport in membrane vesicles of Bacillus subtilis energized by NADH or reduced phenazine methosulfate. FEBS Letters,1971,14(1):65-68.
    [178]Bauer B.E., Rossington D., Mollapour M., et al. Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. European Journal of Biochemistry,2003,270:3189-3195.
    [179]Ludovico P., Sousa M.J., Silva M.T., et al. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid, Microbiology,2001,147(9):2409-2415.
    [180]Kundig W., Roseman S., Sugar transport. I. Isolation of a phosphotransferase system from Escherichia coli. Journal of Biology and Chemistry,1971,246:1393-1406.
    [181]Etschmann M., Bluemke W., Sell D., et al. Biotechnological production of 2-phenylethanol. Applied Microbiology and Biotechnology,2002,59(1):1-8.
    [182]Seward R., Willetts J.M., Dinsdale M.G., et al. The effects of ethanol, hexan-1-ol, and 2-phenylethanol on cider yeast growth, viability, and energy status; synergistic inhibition. Journal of Institute Brewing,1996,102:439-443.
    [183]Freeman A., Woodley J.M., Lilly M.D. In situ product removal as a tool for bioprocessing. Nature Biotechnology,1993,11:1007-1012.
    [184]Akita O., Ida T., Obata T., et al. Mutants of Saccharomyces cerevisiae producing a large quantity of β-phenethyl alcohol and β-phenethyl acetate. Journal of Fermentation and Bioengineering,1990, 69(2):125-128.
    [185]Albertyn J., Hohmann S., Thevelein J.M., et al. GPD1, which encods glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Molecular and Cellular Biology,1994,14(6):4135-4144.
    [186]Ansell R., Granath K., Hohmann S., et al. The two isozymes for yeast NAD+-dependent glycerol-3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. The EMBO Journal,1997,16(9):2179-2197.
    [187]Blomberg A., Adler L. Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. Journal of Bacteriology,1989,171:1087-1092.
    [188]Edgley M., Brown A.D. Yeast water relations:physiological changes induced by solute stress in Saccharomyces cerevisiae and Saccharomyces rouxii. Microbiology,1983,129(11):3453-3463.
    [189]Varela J.C.S., van Beekvelt C., Planta R.J., et al. Osmostress-induced changes in yeast gene expression. Molecular Microbiology,1992,6:2183-2190.
    [190]金海如,方慧英,诸葛健.供氧对产丙三醇假丝酵母产丙三醇发酵研究.生物工程学报,2000,16:203-206.
    [191]Thevelein J.M., Hohmann S. Trehalose synthase:guard to the gate of glycolysis in yeast? Trends in Biochemical Sciences,1995,20(1):3-10.
    [192]Omori T., Takashita H., Omori N., et al. High glycerol producing amino acid analogue-resistant Saccharomyces cerevisiae mutant. Journal of Fermentation and Bioengineering,1995,80:218-222.
    [193]Vijaikishore P., Karanth N.G. Glycerol production by immobilized cells of Pichia farinosa. Biotechnology Letters,1986,8(4):257-260.
    [194]陈思芸,萧熙佩.酵母生物化学.第1版.济南:山东科学技术出版社,1990.p.55-61.
    [195]Myers R.H., Montgomery D.C., Anderson-Cook C.M. Response surface methodology:process and product optimisation using designed experiments. New York:Wiley Interscience,1991.
    [196]Olsson L., Hahn-Hagerdal B. Fermentative performance of bacteria and yeasts in lignocellulosic hydrolysates. Process Biochemistry,1993,28:249-257.
    [197]Pampulha M. E., Loureiro V. Interaction of the effects of acetic acid and ethanol on inhibition of fermentation in Saccharomyces cerevisiae, Biotechnology Letters,1989,11(4):269-274.
    [198]von Sivers M., Zacchi G, Olsson L., et al. Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Progress,1994,10(5):555-560.
    [199]Rivard C.J., Engel R.E., Hayward T.K., et al. Measurement of the inhibitory potential and detoxification of biomass pretreatment hydrolyzate for ethanol production. Applied Biochemistry and Biotechnology,1996,57-58(1):183-191.
    [200]Stewart G.G., D'Amore T., Panchal C.J., et al. Factors that influence the ethanol tolerance of brewer's yeast strains during high gravity wort fermentations. Master Brewers Association of the Americas 1988,25(2):47-53.
    [201]Ken-Dror S., Preger R., Avi-Dor Y. Role of betaine in the control of respiration and osmoregulation of a halotolerant bacterium. FEMS Microbiology Letters,1986,39(1-2):115-120.
    [202]Delfini C., Costa A. Effects of the grape must lees and insoluble materials on the alcoholic fermentation rate and the production of acetic acid, pyruvic acid, and acetaldehyde. American Journal Enology and Viticulture,1993,44(1):86-92.
    [203]Iconomou L., Psarianos C, Kanellaki M., et al. The promotion of molasses alcoholic fermentation using Saccharomyces cerevisiae in the presence of y-alumina. Applied Biochemistry and Biotechnology,1991,31(1):83-96.
    [204]Li X.Z. Improvement in ethanol production from beet molasses by soy flour supplementation. Biotechnology Letters,1995,17(3):327-330.
    [205]Kuhbeck F., Muller M., Back W. Effect of hot trub and particle addition on fermentation performance of Saccharomyces cerevisiae. Enzyme and Microbial Tchnology,2007, 41(6-7):711-720.
    [206]Bafrncova P., Smogrovicova D., Slavikova I., et al. Improvement of very high gravity ethanol fermentation by media supplementation using Saccharomyces cerevisiae, Biotechnology Letters, 1999,21(4):337-341.
    [207]Viegas C.A., Sa-Correia I., Novais J.M. Nutrient-enhanced production of remarkably high Concentrations of ethanol by Saccharomyces baysoy flouranus through soy flour supplementation. Biotechnology Letters,1985,50(5):1333-1335.
    [208]Ingledew W.M., Sosuliski F.W., Magnus C.A. An assessment of yeast foods and their utility in brewing and enology. Journal of American Society of Brewing Chemists,1986,44(4):166-170.
    [209]Thomas K.C., Ingledew W.M. Fuel alcohol production:effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Applied and Environmental Microbiology,1990, 56:2046-2050.
    [210]Abbott D.A., Ingledew W.M. Buffering capacity of whole corn mash alters concentrations of organic acids required to inhibit growth of Saccharomyces cerevisiae and ethanol production. Biotechnology Letters,2004,26:1313-1316.
    [211]Talebnia F., Niklasson C., Taherzadeh M.J. Ethanol production from glucose and dilute-acid hydrolyzates by encapsulated S. cerevisiae. Biotechnology and Bioengineering,2005,90(3):345-353.
    [212]Brandberg T., Sanandaji N., Gustafsson L., et al. Continuous fermentation of undetoxified dilute acid lignocellulose hydrolysate by Saccharomyces cerevisiae ATCC 96581 using cell recirculation. Biotechnology Progress,2005,21(4):1093-1101.
    [213]Rudolf A., Alkasrawi M., Zacchi G. A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme and Microbial Technology, 2005,37(2):195-204.
    [214]Nilsson A., Taherzadeh M.J., Liden G. On-line estimation of sugar concentration for control of fed-batch fermentation of lignocellulosic hydrolyzates by Saccharomyces cerevisiae. Bioprocess and Biosystems Engineering,2005,25(3):183-191.
    [215]Martin C., Jonsson, L.J. Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme and Microbial Technology,2003,32(3-4):386-395.
    [216]Brandberg T., Franzen C.J., Gustafsson L. The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate. Journal of Bioscience and Bioengineering,2004,98(2):122-125.
    [217]Palmqvist E., Almeida J.S., Hahn-Hagerdal B. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnology and Bioengineering,1999, 62(4):447-454.
    [218]Sarvari Horvath I., Franzen C.J., Taherzadeh M.J., et al. Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Applied and Environmental Microbiology,2003,69(7):4076-4086.
    [219]Nilsson A., Gorwa-Grauslund M.F., Hahn-Hagerdal B., et al. Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Applied and Environmental Microbiology,2005,71(12):7866-7871.
    [220]Wahlbom C.F., Hahn-Hagerdal B. Furfural,5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnology and Bioengineering,2002,78(2):172-178.
    [221]Sonderegger M., Jeppsson M., Larsson C., et al. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnology and Bioengineering, 2004,87(1):90-98.
    [222]Panagiotou G., Olsson L. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnology and Bioengineering,2007, 96(2):250-258.
    [223]Lee W.G., Park B.G., Chang Y.K., et al. Continuous ethanol production from concentrated wood hydrolysates in an internal membrane-filtration bioreactor. Biotechnology Progress,2000, 16(2):302-304.
    [224]Nilsson A., Taherzadeh M.J., Lidein G. Use of dynamic step response for control of fed-batch conversion of lignocellulosic hydrolyzates to ethanol. Journal of Biotechnology,2001,89(1):41-53.
    [225]Palmqvist E., Galbe M., Hahn-Hagerdal B. Evaluation of cell recycling in continuous fermentation of enzymatic hydrolysates of spruce with Saccharomyces cerevisiae and online monitoring of glucose and ethanol. Applied Microbiology and Biotechnology,1998,50(5):545-551.
    [226]岳国君,武国庆,郝小明.我国燃料乙醇生产技术的现状与展望.化学进展,2007,19(7/8):1084-1090.
    [227]Zhao C.Y. Comprehensive treatment of distillers waste liquor in alcohol production. Industrial Water Treatment,2003,23(2):62-64.
    [228]方亚叶,石贵阳.乙醇废糟液综合治理.酿酒,2003,130(1):74-78.
    [229]Kim J.S., Kim B.G., Lee C.H., et al. Development of clean technology in alcohol fermentation industry. Journal of Cleaner Production,1997,5(4):263-267.
    [230]Lu X., Li Y.F., Duan Z.Y., et al. A novel, repeated fed-batch, ethanol production system with extremely long term stability achieved by fully recycling fermented supernatants. Biotechnology Letter,2003,25:1819-1826.
    [231]Banerjee N., Viswanathan L. Effect of browning reaction products on the cell composition of Saccharomyces cerevisiae and Aspergillus niger. Proceedings Annual Convention of the Sugar Technology Association, India,1976,41:G75-G80.
    [232]Bhat H.K., Qazi G.N., Chopra C.L. Effect of 5-hydroxymethylfurfural on production of citric acid by Aspergillus niger. Indian Journal Experimental Biology,1984,22:37-38.
    [233]Francois J., Schafttingen E.V., Hers H.G. Effect of benzoate on the metabolism of fructose 2, 6-biphosphate in yeast. European Journal of Biochemistry,1986,54:141-145.
    [234]Kaback H.R. Transport. Annual Review of Biochemiatry,1970,39:561-598.
    [235]Stark D. Extractive bioconversion of 2-phenylethanol from L-phenylalanine by Saccharomyces cerevisiae. Dissertation 2001, EPFL Lausanne
    [236]Banerjee N., Viswanathan L. Effect of furfural and 5-hydroxymethylfurfural on the growth and alcohol production by yeasts. Proceedings Annual Convention of the Sugar Technology Association of India,1974,40:G1-G4.
    [237]Michnick S., Roustan J.L., Remize F., et al. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast,1997,13:783-793.
    [238]Blomberg A., Adler L. Physiology of osmotolerance in fungi. Advances in Microbial Physiology, Cambrige, Academic press limited,1992,33:145-212.
    [239]孜力汗,刘晨光,王娜,等.多种通气策略下的高浓度乙醇生产.中国生物工程杂志,2013, 33(6):86-92.
    [240]Shen Y., Zhao X.Q., Ge X.M., et al. Metabolic flux and cell cycle analysis indicating new mechanism underlying process oscillation in continuous ethanol fermentation with Saccharomyces cerevisiae under VHG conditions. Biotechnology Advances,2009,27:1118-1123.
    [241]Xu T.J., Zhao X.Q., Bai F.W. Continuous ethanol production using self-flocculating yeast in a cascade of fermentors. Enzyme and Microbial Technology,2005,37:634-640.
    [242]Rufian-Henares J.A., Garcia-Villanova B., Guerra-Hernandez E. Determination of furfural com-pounds in enteral formula. Journal of Liquid Chromatography Related Technologies,2001, 24:3049-3061.
    [243]Gibson B.R., Lawrence S.J., Leclaire J.P.R., et al. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiology Review,2007,31:535-569.
    [244]Nickerson K.W., Atkin A.L., Hornby J.M. Quorum sensing in dimorphic fungi:Farnesol and beyond. Appllied and Environmental Microbiology,2006,72:3805-3813.
    [245]Zhang CM., Jiang L., Mao Z.G., et al. Effects of propionic acid and pH on ethanol fermentation by Saccharomyces cerevisiae in cassava mash. Applied Biochemistry and Biotechnology,2011, 165:883-91.
    [246]Maiorella B., Blanch H.W. Wilke C.R. By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnology and Bioengineering,1983,25(1):103-121.
    [247]Karelina M., Arneborg N.N. The effect of citric acid and pH on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures. Food Microbiology,2007, 24:101-105.
    [248]Stark D., Zala D., Munch T., et al. Inhibition aspects of the bioconversion of 1-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae. Enzyme and Microbial Technology,2003, 32:212-223.
    [249]Nissen T.L., Kielland-Brandt M.C., Nielsen J., et al. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metabolic Engineering,2000,2:69-77.
    [250]Moon N.J. Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures. Journal of Applied Microbiology,1983,55:452-460.
    [251]Tomas V.S., Zetic V.G., Stanzer D., et al., Zinc, copper and manganese enrichment in yeast Saccharomyces cerevisiae. Food Technology and Biotechnology.2004,42:115-120.
    [252]Couri S., Pinto G.A.S., Senna L.F., et al., Influence of metal ions on pellet morphology and polygalacturonase synthesis by Aspergillus niger. Braz J Microbiol,2003,34:16-21.
    [253]Tosun A., Ergun M. Use of experimental design method to investigate metal ion effects in yeast fermentations. Journal of Chemical Technology and.Biotechnology,2007,82:11-15.
    [254]Bromberg S.K., Bower P.A., Duneombe G.R., et al. Requirements for zinc, manganese, calcium and magnesium in wort. Journal of the American Society of Brewing Chemists,1997,55:123-128.
    [255]Blackwell K.J., Tobin J.M., Avery S.V. Manganese uptake and toxicity in magnesium-supplemented and unsupplemented Saccharomyces cerevisiae. Appl Microbiol Biotechnol,1997,47:180-184.
    [256]Sneyd J., Wetton B.T., Charles A.C., et al. Intercellular calcium waves mediated by diffusion of inositol trisphosphate:a two-dimensional model. American journal of Physiological Cell Physiology, 1995,268:C1537-C1545.
    [257]Walker G.M. The roles of magnesium in biotechnology. Critical Reviews in Biotechnology,1994, 14:311-354.
    [258]Vallee B.L., Hoch F.L. Znic, a component of yeast alcohol dehydrogenase. Proceedings of National Academy of Science of USA,1955,41:327-338.
    [259]葛旭萌.自絮凝酵母颗粒在线表征与发酵过程动力学.博士论文,大连理工大学,2005年.
    [260]Walker G.M., Birch R.M., Chandrasena G., et al. Magnesium, calcium and fermentative metabolism in industrial yeast. Journal of the American Society of Brewing Chemists,1996,54:13-18.
    [261]Birch R.M., Walker G.M. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme and Microbial Technology,2000,26:678-687.
    [262]胡纯铿.自絮凝颗粒酵母耐酒精机制研究.博士学位论文,大连理工大学,2003年.
    [263]Hill J., Nelson E., Tilman D., et al. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences,2006, 103:11206-11210.
    [264]Dale R.T., Tyner W.E. Economics and technical analysis of ethanol dry milling:Model description. Staff Paper# 06-04, Agricultural Economics Department, Purdue University, West Lafayette, Indiana, United States.2006.
    [265]Shojaosadati S.A., Sanaei H.R., Fatemi S.M. The use of biomass and stillage recycle in conventional ethanol fermentation. Journal of Chemical Technology and Biotechnology,1996,67(4):362-366.
    [266]Bialas W., Szymanowska D., Grajek W. Fuel ethanol production from granular corn starch using Saccharomyces cerevisiae in a long term repeated SSF process with full stillage recycling. Bioresource Technology,2010,101:3126-3131.
    [267]Castro G.A. Reduction of stillage's volume in the production of ethanol by recirculation applying liquid-liquid extraction. Master's Thesis, National University of Colombia,2006.
    [268]付瑞燕,李寅.利用代谢工程技术提高工业微生物对胁迫的抗性.生物工程学报,2010,26(9):1209-1217.
    [269]池小琴.酿酒酵母海藻糖代谢工程与抗逆性相关机制研究.博士学位论文,浙江大学,2010年.
    [270]Nissen T.L., Schulze U., Nielsen J. et al. Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology,1997,143(1):203-218.
    [271]蔡显鹏,陈双喜,储炬,等.基于过程参数相关分析的鸟苷发酵过程优化.微生物学报,2002,42(2):232-235.
    [272]Herbert D., Phipps P.J., Strange R.E. Chemical analysis of microbial cells. Methods in Microbiology, Academic press INC, Florida,1971,5B:209-344.
    [273]Verduyn C, Postma E., Scheffers W.A., et al. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. Microbiology,1990,136(3):395-403.
    [274]Benthin S., Nielsen J., Villadsen J. A simple and reliable method for the determination of cellular RNA content. Biotechnology Techniques,1991,5(1):39-42.
    [275]Abrahao-Neto J., Infanti P., Vitolo M. Hexokinase production from S. cerevisiae culture conditions. Applied Biochemistry Biotechnology,1996,57/58:407-412.
    [276]Blumberg K., Stubbe J. Chemical specificity of pyruvate kinase from yeast. Biochimica et Biophysica Acta Enzymology,1975,384(1):120-126.
    [277]Bergmeyer H.U. Methods of enzymatic analysis. Verlag Chemie, California,2nd ed.1974, Volume I: 451.
    [278]萨姆布鲁斯(美)著,黄培堂译.分子克隆实验指南(第三版).科学出版社,北京,2008.
    [279]汪家政,范明主编.蛋白质技术手册.科学出版社,北京,2000年8月,p.77-108.
    [280]Varela C., Pizarro F., Agosin E. Biomass content governs fermentation rate in nitrogen-deficient wine musts. Applied and Environmental Microbiology,2004,70(6):3392-3400.
    [281]Ge X.M., Zhao X.Q., Bai F.W. On-line monitoring and characterization of flocculating yeast cell floes during continuous ethanol fermentation. Biotechnology Bioengineering,2005,90(5):523-531.
    [282]Smukalla S., Caldara M., Pochet N., et al. VerstrePen K.J., FLO1 is avariable green beard gene that drives biofilm like cooperation in budding yeast. Cell,2008,135(4):726-737.
    [283]Luyten K., Riou C., Blondin B. The hexose transporters of Saccharomyces cerevisiae play different roles during enological fermentation. Yeast,2002,19(8):713-726.
    [284]Kruckeberg A.L. The hexose transporter family of Saccharomyces cerevisiae. Archives of Microbiology,1996,166(5):283-292.
    [285]Boles E., Hollenberg C.P. The molecular genetics of hexose transport in yeasts. FEMS Microbiology Reviews,1997,21 (2):85-111.
    [286]Ozcan S., Johnston M. Function and regulation of yeast hexose transporters. Microbioogy and Molecular Biology Reviews,1999,63(3):554-569.
    [287]Reifenberger E., Boles E., Ciriacy M. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. European Journal of Biochemistry,1997,245(2):324-333.
    [288]刘增然,李树立,张光一.酿酒酵母的糖转运机理研究进展.食品与发酵工业,2004,30(11):65-69.
    [289]Busturia A., Lagunas R. Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae. Microbiology,1986,132(2):379-385.
    [290]Lagunas R., Dominguez C., Busturia A., et al. Mechanisms of appearance of the Pasteur effect in Saccharomyces cerevisiae:inactivation of the sugar transport systems. Journal of Bacteriology,1982, 152(1):19-25.
    [291]Shen C.W., Konings W.N., Freese E. Effects of acetate and other short-chain fatty acids on sugar and amino acid uptake of Bacillus subtilis. Journal of bacteriology,1972, 111(2):525-530.
    [292]Entian K.D., Barnett J.A. Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochemical Sciences,1992,17(12):506-510.
    [293]Gancedo J.M. Yeast carbon catabolite repression. Microbiology and Molecular Biology Reviews, 1998,62(2):334-361.
    [294]Carlson M. Regulation of glucose utilization in yeast. Current Opinion in Genetics and Development, 1998,8(5):560-564.
    [295]Carlson M. Glucose repression in yeast. Current Opinion in Microbiology,1999,2(2):202-207.
    [296]Lambert R.J., Stratford M. Weak-acid preservatives:modelling microbial inhibition and response. Journal of Applied Microbiology,1999,86(1):157-64.
    [297]lmai T., Ohono T. The relationship between viability and intracellular pH in the yeast Saccharomyces cerevisiae. Applied and Environmental Microbiology,1995,61(10):3604-3608.
    [298]Pampulha M.E., Loureiro-Dias M.C. Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Applied and Microbiology Biotechnology,1990,34(3):375-380.
    [299]Alms G.R., Sanz P., Carlson M., et al. Reglp targets protein phosphatase 1 to dephosphorylate hexokinase Ⅱ in Saccharomyces cerevisiae:characterizing the effects of a phosphatase subunit on the yeast proteome. The EM BO Journal,1999,18:4157-4168
    [300]Herrero P., Fernandez R., Moreno F. The hexokinase isoenzyme PⅡ of Saccharomyces cerevisiae is a protein kinase. Microbiology,1989,135(5):1209-1216
    [301]Randez-Gil F., Sanz P., Entian K.D., et al. Carbon source-dependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast. Molecular and Cellular Biology,1998, 18(5):2940-2948.
    [302]Sousa M.J., Ludovico P., Rodrigues F., et al. Stress and cell death in yeast induced by acetic acid, in Bubulya P. Cell metabolism-cellhomeostasis and stress response. Rijeka:Intech Europe,2012, p. 73-100.
    [303]Teixeira M.C., Mira N.P., Sa-Correia I. A genome-wide perspective on the response and tolerance to food-relevant stresses in Saccharomyces cerevisiae. Curr Opin Biotech,2011,22(2):150-156.
    [304]Piper P.W. Resistance of yeasts to weak organic acid food preservatives, in Laskin A, Gadd G, Sariaslani S. Advances in Applied Microbiology. Burlington:Academic Press,2011. p.97-113.
    [305]Bisson L. Stuck and sluggish fermentation. American Journal Enology and Viticulture,1999, 50(1):107-119.
    [306]Kim J., Alizadeh P., Harding T., et al. Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock:potential commercial applications. Applied and Environmental Microbiology,1996,62:1563-1569.
    [307]Parrou J.L., Teste M.A., Francois J. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae:genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology,1997,143:1891-1900.
    [308]Salmon J.M. Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations. Applied and Environmental Microbiology,1989,55:953-958.
    [309]Van der Aar P.C., Lopes T.S., Klootwijk J., et al. Consequences of phosphoglycerate kinase overproduction for the growth and physiology of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology,1990,32:577-587.
    [310]Daran-Lapujade P., Rossell S., van Gulik W.M., et al. The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proceedings of the National Academy of Science of the United States of America,2007,104(40):15753-15758.
    [311]Kim J.S., Kim B.G., Lee C.H. Distillery waste recycle through membrane filtration in batch alcohol fermentation. Biotechnology Letters,1999,21(5):401-405.
    [312]Taherzadeh M.J., Niklasson C., Liden G. Acetic acids friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae? Chemical Engineering Science,1997, 52(15):2653-2659.
    [313]Couallier E.M., Payot T., Bertin A.P., et al. Recycling of distillery effluents in alcoholic fermentation. Applied Biochemistry and Biotechnology,2006,133(3):217-237.
    [314]Baek S.W., Kim J.S., Park Y.K., et al. The effect of sugar decomposed on the ethanol fermentation and decomposition reaction of sugars. Biotechnology and Bioprocess Engineering,2008, 13(3):332-341.
    [315]Palmqvist E., Grage H., Meinander N.Q., et al. Main and interaction effects of acetic acid, furfural, and phydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnology and Bioengineering,1999,63(1):46-55.
    [316]Stevens S., Hofmeyr J.H.S. Effects of ethanol, octanoic and decanoic acids on fermentation and the passive influx of protons through plasma membrane of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology,1993,38(5):656-663.
    [317]Jones R.P., Greenfield P.F. A review of yeast ionic nutrition. Part I. Growth and fermentation requirements. Process Biochemistry,1984,4:48-59.
    [318]Jones R.P., Gadd G.M. Ionic nutrition of yeast-physiological mechanisms involved and implications for biotechnology. Enzyme and Microbial Technology,1990,12(6):402-418.
    [319]Neal A.L., Weinstock J.O., Lampen J.O. Mechanisms of fatty acid toxicity for yeast. Journal of Bacteriology,1965,90(1):126-131.
    [320]Serrano R.M., Kielland-Brandt M.C., Fink G.R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+, K+), K+-and Ca2+-ATPases. Nature,1986,319:689-693.
    [321]Wilson J.R.J., Lyall J., McBride R.J., et al. Partition coefficients of some aromatic alcohols in an n-heptane/water system and their relationship to minimum inhibitory concentration against Pseudomonas aeruginosa and Staphylococcus aureus. Journal of Clinical Pharmacy and Therapeutics, 1981,6(1):63-66.
    [322]Ingram L.O., Buttke T.M. Effects of alcohols on micro-organisms. Advances in Microbial Physiology,1984,25:253-300.
    [323]Lester G. Inhibition of growth, synthesis, and permeability in Neurospora crassa by phenethyl alcohol. Journal of Bacteriology,1965,90(1):29-37.
    [324]Fabre C.E., Blanc P.J., Goma G.2-Phenylethyl alcohol:an aroma profile. Perfumer and Flavorist, 1998,23(3):43-45.
    [325]Kroh L.W. Caramelisation in food and beverages. Food Chemistry,1994,51(4):373-379.
    [326]Birch R.M., Ciani M., Walker G.M. Magnesium, calcium and fermentative metabolism in wine yeast. Journal of Wine Research,2003,14(1):3-15.
    [327]Russell I. Understanding yeast fundamentals. In:Jacques KA, Lyons TP, Kelsall DR editors. The alcohol textbook (4th edn). Nottingham:Nottingham University Press; 2004. p.106-107.
    [328]薛闯,锌离子添加和颗粒尺寸调控对自絮凝酵母SPSC01乙醇耐性的影响及其作用机制,博士学位论文,大连理工大学,2010年.
    [329]Heggart H.M., Margaritisn A., Pilkington H., et al. Factors affecting yeast viability and vitality. MBAA Technical Quarterly,1999,36(4):383-406.
    [330]Jones R.P., Pamment N., Greenfield P.F. Alcohol fermentation by yeast-The effect of environmental and other variables. Process Biochemistry,1981,16(3):42-49.
    [331]Jones R.P., Greenfield P.F. A review of yeast ionic nutrition-Part 1:Growth and fermentation requirements. Process Biochemistry,1984,19(2):48-60.
    [332]Li C.J., Chu C.Y., Huang L.H., et al. Synergistic anticancer activity of triptolide combined with cisplatin enhances apoptosis in gastric cancer in vitro and in vivo. Cancer Letters,2012, 319(2):203-213.
    [333]Russell I. Understanding yeast fundamentals. In:Jacques KA, Lyons TP, Kelsall DR editors. The alcohol textbook (4th edn). Nottingham:Nottingham University Press; 2004. p.85-119.
    [334]Pronk J.T., van der Linden-Beuman A., Verduyn C., et al. Propionate metabolism in Saccharomyces cerevisiae:implications for the metabolon hypothesis. Microbiology,1994,140(4):717-722.
    [335]Halarnkar P.P., Blomquist G.J. Comparative aspects of propionate metabolism. Comparative Biochemistry and Physiology,1989,92(2):227-231.
    [336]Gerbling H., Gerhardt B. Peroxisomal degradation of branched-chain 2-oxo acids. Plant Physiology, 1989,91(4):1387-1392.
    [337]Lucas K.A., Filley J.R., Erb J.M., et al. Peroxisomal metabolism of propionic acid and isobutyric acid in plants. The Journal of Biological Chemistry,2007,282:24980-24989.
    [338]Girisuta B., Danon B., Manurung R., et al. Experimental and kinetic modeling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresource Technology,2008, 99(17):8367-8375.
    [339]Shen D.K., Gu S., Bridgwater A.V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR. Journal of Analytical and Applied Pyrolysis,2010,87(2):199-206.
    [340]Sun Y.C., Wen J.L., Xu F., et al. Structural and thermal characterization of hemicelluloses isolated by organic solvents and alkaline solutions from Tamarix austromongolica. Bioresource Technology, 2011,102:5947-5651.
    [341]Sullivan A.L., Ball R. Thermal decomposition and combustion chemistry of cellulosic biomass. Atmospheric Environment,2012,47:133-141.
    [342]Burhenne L., Messmer J., Aicher T., et al. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. Journal of Analytical and Applied Pyrolysis,2013, 101:177-184.
    [343]Palma C. F. Modelling of tar formation and evolution for biomass gasification:A review. Applied Energy,2013,111:129-141.
    [344]Zheng R.P., Zhang H.M., Zhao J., et al. Direct and simultaneous determination of representative byproducts in a lignocellulosic hydrolysate of corn stover via gas chromatography-mass spectrometry with a Deans switch. Journal of Chromatography A,2011,1218:5319-5327.
    [345]Laurova M., Kacik F., Kacikova D., et al. Influence of hydrothermal treatment on dissolution of aspen. Forestry and Wood Technology,2008,64:14-21.
    [346]Hong J., Voloch M., Ladisch M.R., et al. Adsorption of ethanol-water mirtures by biomass materials. Biotechnology and Bioengineering,1982, XXIV:725-730.
    [347]Teoh H.M., Schmidt S.J., Day G.A., et al. Investigation of cornmeal components using dynamic vapor sorption and differential scanning calorimetry. Journal of Food Science,2001,66(3):434-440.
    [348]Artz W.E., Warren C., Villota R. Twin-screw extrusion modification of a corn fiber and corn starch extruded blend. Journal of Food Science 1990,55(3):746-750.
    [349]Cromwell G.L., Herkelman K.L., Stahly T.S. Physical, chemical, and nutritional characteristics of distillers dried grains with solubles for chicks and pigs. Journal of Animal Science,1993, 71:679-686.
    [350]Belyea R.L., Rausch K.D., Tumbleson M.E., Composition of corn and distillers dried grains with solubles from dry grind ethanol processing. Bioresource Technology,2004,94:293-298.
    [351]Widyaratne G.P., Zijlstra R.T. Nutritional value of wheat and corn distiller's dried grain with solubles:digestibility and digestible contents of energy, amino acids and phosphorus, nutrient excretion and growth performance of grower-finisher pigs. Canadian Journal of Animal Science, 2007,87:103-114.
    [352]Cowieson A.J. Factors that affect the nutritional value of maize for broilers. Journal of Animal and Feed Sciences,2005,119:293-305.
    [353]Swiatkiewicz S., Koreleski J. Effect of dietary level of maize-and rye distiller dried grains with solubles on nutrient utilization and digesta viscosity in laying hens. Journal of Animal and Feed Sciences,2007,16:668-677.
    [354]Liu N., Ru Y.J., Tang D.F., et al. Effects of corn distillers dried grains with solubles and xylanase on growth performance and digestibility of diet components in broilers. Animal Feed Science and Technology,2011,163:260-266.
    [355]Burros B.C., Young L.A., Carroad P.A. Kinetics of corn meal gelatinization at high temperature and low moisture. Journal of Food Science,1987,52(5):1372-1376.
    [356]Eddy A.A., Mechanisms of Solute Transport in Selected Eukaryotic Micro-Organisms, in:Rose A.H., Morris J.G. (editors). Advances in Microbial Physiology, Academic Press, London,1982, vol.23, pp 2-69.
    [357]Essia Ngang J.J., Letourneau F., Villa P. Alcoholic fermentation of beet molasses:effects of lactic acid on yeast fermentation parameters. Applied Microbiology and Biotechnology,1989, 31(2):125-128.
    [358]Maiorella B.L., Blanch H.W., Wilke C.R. Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae. Biotechnology and Bioengineering,1984,26(10):1155-1166.
    [359]Garay-Arroyo A., Covarrubias A.A., Clark I., et al. Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Applied Microbiology and Biotechnology,2004,63(6):734-741.
    [360]Graves T., Narendranath N.V., Dawson K., et al. Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. Journal of Industrial Microbiology and Biotechnology,2006,33(6):469-474.
    [361]Halma M., Hornbaekb T., Arneborg N., et al. Lactic acid tolerance determined by measurement of intracellular pH of single cells of Candida krusei and Saccharomyces cerevisiae isolated from fermented maize dough. International Journal of Food Microbiology,2004,94(1):97-103.
    [362]Panchal C.J., Russeil I., Stewart G.G. Osmotic pressure effects and intracellular accumulation of ethanol in yeast during fermentation. Journal of Industrial Microbiology,1988,2(6):365-372.
    [363]Kenyon C.P., Prior B.A., van Vuuren H.J.J. Water relations of ethanol fermentation by Saccharomyces cerevisiae:glycerol production under solute stress. Enzyme and Microbial Technology,1986,8(8):461-464.
    [364]Mollapour M., Shepherd A., Piper P.W. Novel stress responses facilitate Saccharomyces cerevisiae growth in the presence of the monocarboxylate preservatives. Yeast,2008,25(3):169-177.
    [365]Piper P., Calderon C.O., Hatzixanthia K., et al. Weak acid adaptation:the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology,2001,147(10):2635-2642.
    [366]Oura E. Reaction products of yeast fermentations. Process Biochemistry,1977,12:19-21.
    [367]Larsson C., Pahlman I.L., Guatafsson L. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae. Yeast,2000,16(9):797-809.
    [368]Busa W.B., Nuccitelli R. Metabolic regulation via intracellular pH. American Journal of Physiology, 1984,246(4):409-438.
    [369]Anand S., Prasad R. Rise in intracellular pH is concurrent with "start" progression of Saccharomyces cerevisiae. Journal of General Microbiology,1989,135:2173-2179.
    [370]Madshus I.H. Regulation of intracellular pH in eukaryotic cells. Biochemical Journal,1988, 250(1):1-8.
    [371]Baker P.F., Carruthers A. Transport of sugars and amino acids. In Current topics in membranes and transport. United Kingdom:Academic press.1984,22:p.91-128.
    [372]Verstrepen K.J., Derdelinckx G., Verachtert H., et al. Yeast flocculation:what brewers should know. Applied Microbiology and Biotechnology,2003,61 (3):197-205.
    [373]Verstrepen K.J., Klis F.M. Flocculation, adhesion and biofilm formation in yeasts. Molecular Microbiology,2006,60(1):5-15.
    [374]Teunissen A.W.R.H., Steensma H.Y. The dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast,1995,11 (11):1001-1013.
    [375]Guo B., Styles C.A., Feng Q. et al. A Saccharomyces gene family in volved in invasive growth, cell-cell adhesion, and mating. Proceedings of the National Academy of Sciences of the United States of America,2000,97(22):12158-12163.
    [376]Ge X.M., Zhang L. Bai F.W. Impacts of temperature, pH, divalent cations, sugars and ethanol on the flocculating of SPSC01. Enzyme and Microbial Technology,2006,39(4):783-787.
    [377]Stouthamer A.H. The search for a correlation between theoretical and experimental growth yields. International Review of Biochemistry and Microbial Biochemistry,1979,21:1-47.
    [378]Viegas C.A., Sa-Correia I. Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. Journal of General Microbiology,1991,137:645-651.
    [379]Casal M., Cardoso H., Leao C. Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology,1996,142:1385-1390.
    [380]Kasemets K., Kahru A., Laht T.M., et al. Study of the toxic effect of short- and medium-chain monocarboxylic acids on the growth of Saccharomyces cerevisiae using the C02-auxo-accelerostat fermentation system. International Journal of Food Microbiology,2006,111:206-215.
    [381]Abbott D.A., Knijnenburg T.A., de Poorter L.M.I., et al. Generic and specific transcriptional responses to different weak organic acids inanaerobic chemostat cultures of Saccharomyces cerevisiae. FEMS Yeast Reasearch,2007,7:819-833.
    [382]Fernandes A.R., Mira N.P., Vargas R.C., et al. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haalp and Haalp-regulated genes. Biochemical and Biophysical Research Communications,2005,337:95-103.
    [383]Hazan R., Levine A., Abeliovich H. Benzoic acid, a weak organic acid food preservative, exerts specific effects on intracellular membrane trafficking pathways in Saccharomyces cerevisiae. Applied and Environmental Microbiology,2004,70(8):4449-4457.
    [384]Bai F.W., Ge X.M., Anderson W.A., et al. Parameter oscillation attenuation and mechanism exploration for continuous VHG ethanol fermentation. Biotechnology and Bioengineering,2009, 102(1):113-121.
    [385]Skinner K.A., Leathers T.D. Bacterial contaminants of fuel ethanol production. Journal of Industrial Microbiology and Biotechnology,2004,31:401-408.
    [386]Narendranath N.V., Hynes S.H., Thomas K.C., et al. Effects of lactobacilli on yeast-catalyzed ethanol fermentations. Applied and Environmental Microbiology,1997,63:4158-4163.
    [387]Shapouri H., Duffield J.A., Wang M., The energy balance of corn ethanol revisited. Transaction of ASABE,2003,46(4):959-968.
    [388]Navarro A.R., Sepulveda M.C., Rubio M.C. Bio-concentration of vinasse from the alcoholic fermentation of sugar cane molasses. Waste Management,2000,20:581-585.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700