用户名: 密码: 验证码:
海底腐蚀管道破坏机理和极限承载力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国海洋油气资源的开发,海底管道对海上油气田的开发、生产和产品的运输起着关键性的作用,被称为海上油气田的“生命线”,海底管道建设日益增多。海底管道所处的海洋环境恶劣,管道发生腐蚀损伤不可避免。管道发生腐蚀后,会引起管壁整体或局部变薄,使得管道的静态和动态抗力减小,若不及时更换或维修,会引起海底管道的破坏和原油泄露事故。腐蚀是引起海底管道破坏的主要因素之一,为了避免此类事故的发生,需要准确预测腐蚀管道的剩余强度,及时正确决策腐蚀海底管道是否能继续运行。因此研究海底腐蚀管道在工作荷载以及环境荷载作用下的破坏机理和极限荷载具有重大的理论意义和实用价值。
     基于经典的Tresca和Mises屈服准则,给出了完好管道和无限长腐蚀管道极限内压荷载解析解。建立了海底管道非线性分析模型,分析了轴向腐蚀管道在内压荷载作用下的破坏机理,提出了基于参考应力的应力失效准则来确定管道的失效内压,探究了腐蚀深度、腐蚀长度、腐蚀宽度、腐蚀位置、轴向应力、管材等参数对管道极限内压荷载的影响,与现有腐蚀管道计算方法进行了比较,并基于计算结果回归了轴向腐蚀管道失效内压荷载计算公式,通过与实验数据对比,验证了本公式的适用性和准确性。
     研究了轴向和环向相邻腐蚀管道在内压荷载作用下的破坏机理和极限内压荷载的计算方法,研究了腐蚀轴向间距、环向间距和腐蚀深度等参数对管道失效模式和失效内压的影响,提出了轴向相邻腐蚀相互作用准则和环向相邻腐蚀相互作用准则。基于轴向和环向相邻腐蚀相互作用准则,提出了轴向投影和环向投影的双向投影的方法,采用等效长度、等效宽度、等效深度的概念,给出复合相邻腐蚀管道极限内压荷载计算步骤,发展了群腐蚀管道的极限内压荷载计算方法,为复杂腐蚀形式的管道的剩余强度评估提供了一定的参考依据。
     基于理想弹塑性模型,给出了管道在剪力、扭矩、内压、轴向力联合作用下管道极限弯矩荷载无量纲一般解析解,探究了剪力、扭矩、内压和轴向力对管道极限弯矩荷载的影响,给出了相互作用曲线和曲面。基于线性强化弹塑性模型,给出了轴向力作用下管道极限弯矩荷载的解析解和近似解;并采用幂次强化模型,给出了内压和轴向力联合作用下管道的极限弯矩荷载计算方法。通过与实验数据对比表明,基于理想弹塑性假设的解析解预测值可以作为联合荷载作用下管道的极限弯矩荷载的下限值。当管道受到轴向拉力作用时,考虑管材的应变强化作用,管道极限弯矩荷载的预测值与实验值吻合更好。
     基于Hill屈服准则,考虑了管材的各向异性,推导了不规则腐蚀缺陷管道在内压和轴向力联合作用下极限弯矩荷载解析解,并编制了相应的通用程序CPC。为了腐蚀管道评估的工程实用性,发展了等深度、椭圆和抛物线三种理想化形状腐蚀缺陷管道的解析解,通过算例验证了解析解与广义解结果具有很好的吻合性。探究了腐蚀深度、腐蚀宽度和腐蚀形状等参数对极限弯矩荷载的影响。研究表明除了腐蚀深度和宽度外,腐蚀形状对极限弯矩荷载有显著影响,将实际腐蚀简化为等深度腐蚀,将会过低估计管道的极限弯矩荷载。
Submarine pipelines, which serve as the arteries of the oil and gas industry, have been widely accepted as one of the most economical ways of transporting oil and gas over long distances. These pipelines typically connect an inlet, such as an offshore platform or an onshore compressor station, to an outlet, which can be another offshore platform or an onshore receiver station. Due to the harsh environment that most of these pipelines are located in and the corrosive medium that these pipes are transporting, deterioration due to corrosion is inevitable. Consequently appropriate residual strength evaluation of corroded pipelines is vitally important. Timely repair or replacement can avoid over deterioration and failure which would result in not only large economical loss but also severe environmental pollution.
     The burst capacity of submarine pipeline with longitudinal corrosion defects is investigated with the intention of the optimizing the cost effectiveness in corrosion allowance limit design and residual strength assessment of corroded pipeline. Based on the elastic-plastic, large-deformation finite element method, the failure behavior and limit load of submarine pipeline with longitudinal corrosion defect subject to internal pressure are studied. The effect of corrosion depth, length, width and location on burst capacity is also discussed. Based on the FEA results, a set of regression equations are proposed for burst capacity prediction of submarine pipeline with longitudinal corrosion defects. The limit loads predicted by the proposed solutions are compared with those predicted by various solutions provided by the assessment codes and literatures. Furthermore, the predicted limit loads are compared with the laboratory test results and it is concluded that solutions proposed in this paper are in extremely good agreement with the experimental test data, which will give more accurate results than the existing methods.
     Based on the elastic plastic finite element method, the failure behavior and burst capacity of submarine pipeline with interacting corrosion defects i.e. longitudinally and circumferentially aligned double corrosion defects are analyzed. The effect of corrosion depth, longitudinal and circumferential spacing between double corrosion defects on failure behavior and burst capacity are investigated and the corresponding interaction rules for longitudinally and circumferentially aligned corrosion are proposed. Through the projection of the corrosion profile on the longitudinal and circumferential direction, a new method is proposed for pipeline with more general interaction type named as compounded aligned corrosion defects. Furthermore, the evaluation procedure is extended for pipeline with colonies of corrosion defects. Due to the incorporation of the effective length, width and depth in those solutions, the resistance effect of uncorroded region between each corrosion defects can be reasonably taken into account. Therefore, the procedure is proved to be able to yield more accurate predictions than those in current assessment codes after compare with the experimental results.
     A set of nondimensional solutions for predicting the full plastic bending capacity of intact pipes in the presence of shear force, torsion moment, internal pressure and axial force is presented based on Mises yield criteria. Using Hencky's total strain theory of plasticity, bending capacity of pipes can be determined analytically and numerically assuming an elastic-linear hardening and power law hardening material. Good comparison is observed when bending capacities obtained from analytical solutions are compared with experimental results from full-size tests of steel pipes. It is shown that strain hardening pipes yield higher bending capacity than pipes with assumed elastic-perfectly plastic material, as commonly assumed in current code, which may underestimate the bending capacity of steel pipes, especially for pipeline in the presence of axial tension.
     Bending capacity of corroded pipes can be determined analytically assuming a full plastic failure mode for the pipe. A set of generalized solutions for bending capacity of the pipeline can be developed if the shape of the corrosion defect is known a priori. The generalized solutions derived in this paper are able to account for the combined action of internal pressure and axial force. For practical purposes, the generalized solutions thus derived are simplified into approximate closed-form equations using three idealized corrosion shapes, namely, constant-depth, elliptical, and parabolic corrosions. Numerical examples indicate that the closed-form approximate solutions provide good comparison with the generalized solutions. The closed-form approximate solutions are subsequently compared to experimental results from full-size tests of pipes with different corrosion depth and width. Parameter study conducted indicates that the shape of the corrosion defect has significant influence on the bending capacity of the corroded pipes. It is further pointed out that the idealization of the corrosion geometry by constant-depth, as commonly assumed in current code related to corroded pipes, will inevitably underestimate the bending capacity of the pipe, especially for the case of deep corrosion defect.
引文
[1]王彦.中国海洋石油跨实际发展战略[J].中国海洋石油报,1997:10-15.
    [2]周延东,刘日柱.我国海底管道的发展状况与前景[J].中国海上油气,1998,10(4):1-5.
    [3]王金英,赵冬岩.渤海海底管道工程的现状、特点和问题.石油学报[J].1993,14(4):134-140.
    [4]MMS.Proceeding of the international workshop on the damage to underwater pipelines[R].New Orleans,USA,Minerals Management Service,1995.
    [5]Kalliontzis C.Numerical simulation of submarine pipelines in dynamic contact with a moving seabed[J].Earthquake Engineering and Structural Dynamics,1998,27:465-486.
    [6]Kershenbaum N Y,Mebarkia S A,Choi H S.Behavior of marine pipelines under seismic faults[J].Ocean Engineering,2000,27:473-487.
    [7]Xu T,Laufidsen B,Bai Y.Wave-induced fatigue of multi-span pipelines[J].Marine Structure,1999,12:83-106.
    [8]周晶,陈严飞,李昕,等.复杂荷载作用下海底腐蚀管线破坏机理研究进展[J].海洋工程,2008,26(1):127-137.
    [9]金伟良,付勇,赵冬岩,等.具有裂纹损伤的海底管道断裂及疲劳评估[J].海洋工程,2005,23(3):7-16.
    [10]李磊岩,李华军,粱丙臣,等.海底管道管跨段在内外流体作用下的竖向动力特性研究[J].中国海洋大学学报,2005,35(1):162-166.
    [11]高福平,顾小芸,吴应湘.考虑波-管-土耦合作用的海底管道在位稳定性分析方法[J].海洋工程,2005,23(1):6-12.
    [12]余建星,俞永情,李红涛,等.海底管跨涡激振动疲劳可靠性研究[J].船舶力学,2005,9(2):109-114.
    [13]孙政策,段梦兰,张文,等.地震波条件下海底管道抗震设计方法研究[J].石油学报,2005,25(2):115-121.
    [14]祖楠,黄维平.考虑流固耦合时的海底管道悬跨段非线性动力分析[J].中国海洋大学学报,2006,36(1):168-172.
    [15]侯宝容.海洋腐蚀环境理论及其应用[M].北京:科学出版社,1999.
    [16]夏兰廷,黄桂桥,张三平,等.金属材料的海洋腐蚀与防护[M].北京:冶金工业出版社,2003.
    [17]方华灿.油气长输管道的安全可靠性分析[M].北京:石油工业出版社,2002.
    [18]赵金州,喻西崇,李长俊.缺陷管道适用性评价技术[M].北京:中国石化出版社,2005.
    [19]帅健,于桂杰.管道及储罐强度与设计[M].北京:石油工业出版社,2007.
    [20]Cosham A,Hopkins P,Macdonald K A.Best practice for the assessment of defects in pipelines corrosion[J].Engineering Failure Analysis,14(7):1245-1265.
    [21]Choi H S,Bomba J G.Acceptance criteria of defects in undersea pipeline using internal inspection[J].Ocean Engineering,2003,30:1613-1624.
    [22]ASME-B31G,Manual of determining the remaining strength of corroded pipelines[S].America Society of Mechanic Engineering,USA,1991.
    [23]API-RP579,Recommended practice for fitness-for-service[S].America Petrulurn Institute,USA,2000.
    [24]BS-7910,Guidance on the method for assessing the acceptability of flaws in metallic structure[S].British Standard,Britain,2005.
    [25]DNV-RP-F101,Recommend practice corroded pipelines[S].Det Norske Veritas,Norway,2004.
    [26]CAN/CSA-Z184-M86,Gas pipeline system[S].Canadian Standard Association,Canada,1996.
    [27]Kinfer J F.Corroded pipe:strength and repair methods.Fifth Symposium Line Pipe Research Paper L1[C],USA,1971.
    [28]Kinfer J F,Vieth P H.New method corrects criterion for evaluation corroded pipe[J].Oil and Gas Journal,1990,6:56-59.
    [29]O'Grady T J,Hisey D T,Kiefner J F.Pressure calculation for corroded pipe developed[J].Oil and Gas Journal,1992,90(42):84-89.
    [30]Fu B,Kirkwood M G.Prediction failure pressure of internally corroded line pipe using the finite element method.International Conference on Offshore Mechanics and Arctic Engineering[C],OMAE,Copenhagen,Denmark,1995:165-184.
    [31]Batte A D,Fu B,Kirkwood M G,Vu D.New methods for determining the remaining strength of corroded pipeline.International Conference on Offshore Mechanics and Arctic Engineering[C],OMAE,Yokohama,Japan,1997:221-228.
    [32]Klever F J,Palmer A C,Kyriakides S.Limit state design of high temperature pipeline.International Conference on Offshore Mechanics and Arctic Engineering[C],OMAE,Houston,Texas,USA,1994:196-203.
    [33]Stewart G,Kiever F J,Ritchie D.An analytical model to predict the burst capacity of pipeline.International Conference on Offshore Mechanics and Arctic Engineering[C],OMAE,Houston,Texas,USA,1994:177-188.
    [34]Klever F J.Burst strength of corroded pipe:flow stress revisited.Offshore Technology Conference[C],OTC,Houston,Texas,USA,1992:185-191.
    [35]Klever F J,Stewart G,van der Valk C AC.New development in burst strength predictions for locally corroded pipelines.International Conference on Offshore Mechanics and Arctic Engineering[C],OMAE,Copenhagen,Denmark,1995:161-173.
    [36]Chouchaoui B A.Evaluation the remaining strength of corroded pipelines[D].Department of Mechanical Engineering,University of Waterloo,Canada,1993.
    [37]Cronin D S.Assessment of corrosion damage in pipelines[D].Department of Mechanic Engineering,University of Warterloo,Canada,2000.
    [38]Cronin D S,Roy J,Pick R J.Prediction of the failure pressure for complex corrosion defects[J].International Journal of Pressure Vessels and Piping,2002,79:279-287.
    [39]Chouchaoui B A,Pick R J.A three level assessment of the residual strength of corroded line pipe.International Conference on Offshore Mechanics and Arctic Engineering[C],OMAE,Houston,USA,1994:9-18.
    [40]Cronin D S,Pick R J.A new multi-level assessment procedure for corroded line pipe.Proceedings of the International Pipeline Conference[C],ASME,Calgary,Alberta,Canada,2000:801-808.
    [41]Cronin D S,Pick R J.Experimental database for corroded pipe:evaluation of RESTRENG and B31G.Proceedings of the International Pipeline Conference[C],ASME,Calgary,Alberta,Canada,2000:757-767.
    [42]Cronin D S.Prediction of corrosion defect failure pressure for finite length defects.Proceedings of the International Pipeline Conference[C],ASME,Calgary,Alberta,Canada,2000:1303-1311.
    [43]Stephens D R,Leis B N.Development of an alternative criterion for residual strength of corrosion defects in moderate-to-high-toughness pipe.Proceedings of International Pipeline Conference[C],ASME,Calgary,Alberta,Canada,2000:781-792.
    [44]Choi J B,Goo B K,Kim J C.Development of limit load solutions for corroded gas pipelines[J].International Journal of Pressure Vessels and Piping,2003,80:121-128.
    [45]Kim W S,Kim Y P,Kho Y T,et al.Full scale burst test and finite element analysis on corroded gas pipeline.Proceeding of the International Pipeline Conference[C],ASME,Calgary,Alberta.2002:1501-1508.
    [46]Netto T A,Ferraz U S,Estefen S F.The effect of corrosion defects on the burst pressure of pipelines[J].Journal of Constructional Steel Research,2005,61:1185-1204.
    [47]Loureiro J F,Netto T A,Estefen S F.On the effect of corrosion defects in the burst pressure of pipelines.International Conference on Offshore Mechanics and Arctic Engineering[C],OMAE,Rio de Janeiro,Brazil,2001:229-237.
    [48]Zhu X K,Leis B N.Influence of yield-to-tensile strength-ratio on failure assessment of corroded pipelines[J].Journal of Pressure Vessel Technology,ASME,2005,127:436-442.
    [49]Zhu X K,Leis B N.Theoretical and numerical prediction of burst pressure of pipelines[J].Journal of Pressure Vessel Technology,ASME,2007,129:644-652.
    [50]Freire J L F,Vieira R D,Benjamin A C.Pan 1:Experimental techniques in the field pipeline integrity[J].Experimental Techniques,2006,30(4):44-50.
    [51]Freire J L F,Vieira R D,Benjamin A C.Pan 2:Experimental strain analysis of metal loss defects in pipeline[J].Experimental Techniques,2006,30(5):42-47.
    [52]Freire J L F,Vieira R D,Castro J T P,et al.Part3:Burst tests of pipeline with extensive longitudinal mental loss[J].Experimental Techniques,2006,30(6):60-65.
    [53]Diniz J L C,Vieira R D,Castro J T,et al.Stress and strain analysis of pipelines with localized mental loss[J].Experimental Mechanics,2006,46(6):765-775.
    [54]Souza R D,Benjamin A C,Vieira R D,et al.Part 4:Rupture tests of pipeline segments containing long real corrosion defects[J].Experimental Techniques,2007,31(1):46-51.
    [55]Chiodo M S G,Ruggieri C.Failure assessment of corroded pipelines with axial defects using stress-based criteria:numerical studies and verification analysis[j].International Journal of Pressure Vessel and Piping,2009,86:164-176.
    [56]韩良浩,柳曾典.内压作用下局部减薄管道的极限荷载分析[J].压力容器,1998,4:1-4.
    [57]蔡文军,陈国明,潘东民.腐蚀管道剩余强度非线性分析[J].石油学报(自然学科版),1999.23(1):66-68.
    [58]谭开忍,肖熙.含有腐蚀缺陷海底管道极限载荷分析[J].海洋工程,2006,24(3):63-67.
    [59]Bjφrnφy O H,Marley M J.Assessment of corroded pipelines:past,present and ftture.International Offshore and Polar Engineering Conference[C],ISOPE,Stavanger,Norway,2001:93-100.
    [60]Bjφrnφy O H,Sigurdsson G,Mariey M J.Background and development of DNV-RP-F101 "Corroded Pipeline".International Offshore and Polar Engineering Conference[C],ISOPE,Stavanger,Norway,2001:102-109.
    [61]Coulson K,Worthingham R.New guidelines promise more accurate damage assessment[J].Oil and Gas Journal,1990,88(16):41-45.
    [62]Coulson K,Worthingham R.Standard damage-assessment approach is overly conservative[J].Oil and Gas Journal,1990,88(26):54-58,
    [63]O'Grady T J,Hisey D T,Kiefner J F.A systematic method for the evaluation of corroded pipelines[J].Pipeline Engineering,ASME,1992,46:27-35.
    [64]O'Grady T J,Hisey D T,Kicfner J F.Method for evaluation corroded pipe addresses variety of patterns[J].Oil and Gas Journal,1990,90(41):77-82.
    [65]Hopkin P,Jones D G.A study of the behavior of long and complex-shaped corrosion in transmission pipelines,international Conference on Offshore Mechanics and Arctic Engineering[C],OMAE,1992:65-73.
    [66]Chouchaoui B A,Pick R J.Behaviour of circumferenfially aligned corrosion pits[J].International Journal of Pressure Vessels and Piping,1994,57:197-200.
    [67]Chouchaoui B A,Pick R J.Behavior of longitudinally aligned corrosion pits[J].International Journal of Pressure Vessels and Piping,1996,67:17-35.
    [68]Benjamin A C,Cunha D JS,New method for prediction of the failure pressure of interacting corrosion defect,international Offshore and Polar Engineering Conference[C],ISOPE,Lisbon,Portugal,2007,2:3456-3465.
    [69]Benjamin A C,Andrade E Q,Jacob B P,et al.Failure behavior of colonies of corrosion defects composed of symmetrically arranged defects.International Pipeline Conference[C],ASME,Calgary,Alberta,2006:793-799.
    [70]Benjamin A C,Freire J L F,Vieira R D.Burst test on pipeline containing closely spaced corrosion defects.International Conference on Offshore Mechanics and Arctic Engineering[C],OMAE,Hamburg,Germany,2006:103-116.
    [71]Benjamin A C,Freire J L F,Vieira R D.Part 6:Analysis of pipeline containing interacting corrosion defects[J].Experimental Techniques,2007,31(3):74-82.
    [72]Silva R C C,Guerreiro J N C,Loula A F D.A study of pipe interacting corrosion defects using the FEM and neutral networks.Advanced in Engineering Material,2007,38:868-875.
    [73]董事尔,何东升,张鹏,等.双点腐蚀管道的弹塑性有限元分析[J].机械,2005,32(9):20-22.
    [74]DNV96,Rules for submarine pipeline systems[S].Det Norskc Veritas,Norway,1996.
    [75]DNV-OS-F101,Submarine pipe systems[S].Det Norske Veritas,Norway,2000.
    [76]BS-8010,Codes of practice for pipeline-Part 2:subsea pipeline[S].British Standard,Britain,2004.
    [77]Andrew C P,Roger A K.Subsea pipe Engineering[M].PennWell Books,2004.
    [78]Bai Y,Bai Q.Subsea pipelines and risers[M].Elsevier,2005.
    [79]Brazier L G.On the flexure of thin cylindrical shells and other thin sections.Proceeding of Royal Society[C],Series A,1927,116:104-114.
    [80]Bouwkamp J G,Stephen R M.Large diameter pipe under combined loading[J].Journal of Transportation Engineering,1973,99(TE3):521-536.
    [81]Sherman D R.Test of Circular steel tubes in bending[J].Journal of the Structural Division,ASCE, 1976,102(ST11):2181-2195.
    [82]Corona E,Kyriakides S.On the collapse of inelastic tubes under combined bending and pressure[J].International Journal of Solids and Structures,1988,24(5),505-535.
    [83]Karamanos S A,Tassoulas J L.Tubular members Ⅰ:Stability analysis and preliminary results[J].Journal of Engineering Mechanics,ASCE,1996,122(1):64-71.
    [84]Karamanos S A,Tassoulas J L.Tubular members Ⅱ:Local buckling and experimental verification[J].Journal of Engineering Mechanics,ASCE,1996,122(1):72-78.
    [85]Bai Y,Igland R T,Moan T.Ultimate limit state of pipes under tension and bending[J].International Journal of Offshore and Polar Engineering,1994,4(4):312-319.
    [86]Bai Y,Igland R,Moan T.Tube collapse under combined pressure,tension and bending[J].International Journal of Offshore and Polar Engineering,1993,3(2):121-129.
    [87]Bai Y,Igland R,Moan T.Tube collapse under combined external pressure,tension and bending[J].Journal of Marine Structures.1997,10(5):389-410.
    [88]Hauch S,Bal Y.Bending Moment capacity of pipes[J].Journal of Offshore Mechanics and Arctic Engineering,2000,122(4):243-252.
    [89]Galambos T V.Guide to stability design criteria for metal structures[M].5~(th) Edition,John Wiley &Sons,1998.
    [90]Mohareb M,Murray D W.Mobilization of fully plastic moment capacity for pressurized pipes[J].Journal of Offshore Mechanic and Arctic Engineering,1999,121:237-241.
    [91]Mohareb M,Kulak G L,Murray D W.Testing and analysis of steel pipe section[J].Journal of Transportation Engineering,2001,127(5):408-417.
    [92]Mohareb M.Plastic Interaction relations for pipe sections[J].Journal of Engineering Mechanics,2002,128(1):112-120.
    [93]Gresnigt A M.Plastic design of buried steel pipelines in settlement areas[R],HERON,1986.
    [94]Gresnigt A M,Steenbergen H M G M.Plastic deformation and local buckling of pipelines loaded by bending and torsion.International Offshore and Polar Engineering Conference[C],ISOPE,Montreal,Canada,1998:143-152.
    [95]Gresnigt,A M,Van Foeken R J,Chen S L.Collapse of UOE Manufactured Steel Pipes.International Offshore and Polar Engineering Conference[C],ISOPE,Seattle,USA,2000:170-181.
    [96]Gresnigt A M,Van Foeken R J.Local buckling of UOE and Seamless Steel Pipes.Proceedings of International Offshore and Polar Engineering Conference[C],ISOPE,Stavanger,Norway,2001:131-142.
    [97]Gresnigt A M.,Karamanos S A,Andreakadis K P.Lateral loading of internally pressurized steel pipes[J].Journal of Pressure Vessel Technology,ASME,2007,129:630-638.
    [98]Gresnigt A M,Dijkstra O D,Van Rongen H J M.Design of pipelines in high strength steel.International Offshore and Polar Engineering Conference[C],ISOPE,Osaka,Japan,1994:186-194.
    [99]Vitali L,Bruschi R,Mork K J,et al.HOTPIPE Project:Capacity of pipes subject to internal pressure,axial force and bending moment.International Offshore and Polar Engineering Conference[C],ISOPE,Brest,France,1999:22-33.
    [100]Vitali L,Torselletti E,Spinazze M,et al.Bending capacity of pipes subject to point loads.International Conference on Offshore Mechanics and Arctic Engineering[C],OMAE,Cancun,Mexico, 2003:675-686.
    [101]Sehaumann P,Keindorf C,Bruggemann H.Elasto-plastic behavior and buckling analysis of steel pipelines exposed to internal pressure and additional loads.International Conference on Offshore Mechanics and Arctic Engineering[C],OMAE,Halkidiki,Greece,2005:597-607.
    [102]Bruschi R,Bartolini L,Spinazze M,et at.A numerical lab to prediction the strength capacity of offshore pipeline.International Conference on Offshore Mechanics and Arctic Engineering[C],OMAE,Halkidiki,Greece,2005:597-607.
    [103]Corona E,Lee L H,Kyriakides S,Yield anisotropy effects on buckling of circular tube under bending[J].International Journal of Solids and Structures,2006,43(22-23):7099-7118.
    [104]Dama E,Karamanos S A,Gresnigt,A M.Failure of locally buckled pipelines[J].Journal of Pressure Vessel Technology,2007,129:272-129.
    [105]Karminen M F,Broek D,Hahn G T,et at.Toward an elastic fracture mechanics predictive capability for reactor piping[J].Nuclear Engineer Design,1978,48:117-134.
    [106]Rahman S,Wilkowski G.Net-section-collapse analysis of cireumferentially cracked cylinders-part Ⅰ:arbitrary-shaped cracks and generalized equations[J].Engineering Fracture Mechanics,1998,61(2):177-197.
    [107]Rahman,S.Net-section-collapse analysis of circumferentially cracked cylinders-part Ⅱ:idealized cracks and closed-form solutions[J].Engineering Fracture Mechanics,1998,61(2):213-230.
    [108]Kim Y J,Oh C K,Park C Y,et,at.Net-section limit load approach for failure strength estimates of pipes with local wall thinning[J].International Journal of Pressure Vessels and Piping,2006,83(7):546-555.
    [109]Bai Y,Hauch S R.Analytical collapse capacity of corroded pipes.International Offshore and Polar Engineering Conference[C],ISOPE,Colorado,USA,1998,182-188.
    [110]Bai Y,Hauch S R.Local buckling and plastic collapse of corroded pipes with yield anisotropy.International Offshore and Polar Engineering Conference[C],ISOPE,Brest,France,1999,74-81.
    [111]Hauch S,Bai Y.Bending moment capacity of groove corroded pipes.International Offshore and Polar Engineering Conference[C],ISOPE,Seattle,USA,2000,253-262.
    [112]Bai Y,Hauch S.Collapse capacity of corroded pipes under combined pressure,longitudinal force and bending.International Journal of offshore and Polar Engineering,Stavanger,Norway,2001,11(1):55-63.
    [113]ABS,Guide for building and classing subsea pipeline system[S].American Bureau of Shipping,USA,2005.
    [114]Miyazaki K,Kanno S,Ishiwata M,el at.Fracture behavior of carbon steel pipe with local wall thinning subjected to bending load[J].Nuclear Engineering and Design,1999,191:195-204.
    [115]Miyazaki K,Kanno S,Ishiwata M,et at.Fracture and general yield for carbon steel pipes with local wall thinning[J].Nuclear Engineering and Design,2002,211:61-68.
    [116]Miyazaki K,Nebu A,Ishiwata M,et al.Fracture strength and behavior of carbon steel pipes with local thing subjected to cyclic bending load[J].Nuclear Engineering and Design,2002,214:127-136.
    [117]Hasegawa K,Sakata K,Miyazaki K,et al.Fatigue strength for pipes with allowable flaws and design fatigue curve[J].International Journal of Pressure Vessels and Piping,2002,79:37-44.
    [118]Ahn S H,Nam K W,Yoo Y S,et at.Fracture behavior of straight pipe and elbow with local wall thinning[J].Nuclear Engineering and Design,2002,211:91-103.
    [119]Ahn S H,Nam K W,Yoo Y S,et al.Comparison of experimental and finite element analytical results for the strength ad the deformation of pipes with local wall thinning subjected to bending moment[J].Nuclear Engineering and Design,2006,236:140-155.
    [120]Kim J W,Park C Y.Effect of length of thinning area on the failure behavior of carbon steel pipe containing a defect of wall thinning[J].Nuclear Engineering and Design,2003,220:274-284.
    [121]Shim D J,Choi J B,Kim Y J.Failure strength assessment of pipes with local wall thinning under combined loading based on finite element analyses[J].Journal of Pressure Vessel Technology,2004126:179-183.
    [122]Kim Y J,Shim D J,Lira H,et al.Reference stress based approach to predict failure strength of pipes with local wall thinning under single loading[J].Journal of Pressure Vessel Technology,2004,126:194-201.
    [123]Shim D J,Kim Y J,Kim Y J.Reference stress based approach to predict failure strength of pipes with local wail thinning under combined loading[J].Journal of Pressure Vessel Technology,2005,127:77-83.
    [124]Han L H,He S Y.Limit moment of local wall thinning in pipe under bending[J].International Journal of Pressure Vessels and Piping,1999,76:539-542.
    [125]沈士明,郑逸翔.含局部减薄缺陷管道的极限荷载与安全评定[J].石油机械,2004,32(6):17-20.
    [126]沈士明,孙洪彬,郑逸翔.含腐蚀凹坑缺陷管道的极限载荷研究[J].石油机械,2000,28(10):23-26.
    [127]白洁,刘应华,陈刚,等.含凹坑缺陷压力管道的塑性极限分析[J].清华大学学报(自然学科版),2002,42(S1):11-14.
    [128]Zheng M,Luo J H.Modified expression for estimation the limit bending moment of local corroded pipeline[J].International Journal of Pressure Vessels and Piping,2004,81:725-729.
    [129]林冠发,李金波,仝明信,等.含缺陷管件的抗弯曲特性[J].钢铁,2005,40(12):41-45.
    [130]陈钢,张传勇,刘应华.内压和面内弯矩作用下含局部减薄弯头塑性极限载荷的有限元分析[J].工程力学,2005,22(2):43-49.
    [131]凌峰,陈钢,王飞,等.面外弯矩下含局部减薄缺陷三通的塑性极限载荷分析[J].工程力学,2006,23(4):149-154.
    [132]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [133]ADINA Theory and modeling guide[M].ADINA R&D,Inc.,2004.
    [134]Bathe K J.Finite element procedures[M].Englewood Cliffs,New Jersey:Prentice Hall,1996.
    [135]Mohareb M E.Deformation behavior of line pipe[D].Department of Structural Engineering,,University of Alberta,Canada,1993.
    [136]Lu F Sherbourne A N,Strain hardening beams under shear,bending,and axial forces[J].Journal of Engingeering Mechanics,ASCE,1993,119(11):2174-2193.
    [137]徐秉业,刘信生.应用弹塑性力学[M].北京:清华大学出版社,2003.
    [138]Hill R.Mathematical theory of plasticity[M].Oxford University Press,1950.
    [139]Kyrialddes S,Corona E.Mechanics of offshore pipelines[M].Elsevier,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700