用户名: 密码: 验证码:
栽培花生产量、品质和抗病性的遗传分析与QTL定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生是重要的油料作物和经济作物。我国是世界上主要的花生生产、消费和出口国。因而,开展花生产量、品质、抗病性等重要性状的遗传分析、遗传图谱的构建及QTL定位具有重要的理论意义和应用价值。产量、品质和抗病性都属于典型的复杂数量性状,传统的育种方法很难实现花生诸多性状的的同步提高。现代遗传学和分子生物学的发展可将控制复杂性状的多个因子分解成简单的孟德尔遗传因子进行研究,实现对复杂数量性状的操控,实现产量、品质和抗病性等诸多性状的分子标记辅助选择和改良。本研究以多个花生重组近交系群体和F2群体为材料,采用以PCR为基础的分子标记技术,构建了花生分子遗传图谱,并结合多年份多环境的农艺性状的调查结果对花生产量、品质和抗病性等性状进行QTL定位和遗传效应研究,主要研究结果如下:
     1、构建了栽培花生品种间杂交后代的重组自交系群体(郑8903×豫花4号)。对该群体产量、品质和抗病性相关的20个性状的调查表明,该群体除抗网斑病性状外,其余性状在群体中均符合正态分布,达到群体构建的预期目标,适合于进行数量性状的遗传和QTL定位等研究。
     2、以本实验室构建的重组自交系群体为研究对象,对其进行多年份的重复试验,采用P1、P2及RIL家系联合分析方法对花生的产量及其相关性状、品质性状和抗病性进行主基因+多基因遗传模型分析,结果表明:主茎高、结果枝数、单株饱果数、出仁率符合3对主基因遗传模型;百果重、百仁重符合2对主基因加多基因遗传模型;蛋白质含量的遗传符合无主基因遗传模型;脂肪含量的遗传符合2对主基因加多基因遗传模型;油酸(18:1Δ9c)、亚油酸(18:2Δ9c,12c)和棕榈酸(16:0)的遗传符合2对主基因遗传模型;硬脂酸(18:0)和花生酸(20:0)的遗传符合2对主基因加多基因遗传模型;油亚比和山嵛酸(22:0)的遗传符合3对主基因遗传模型;网斑病抗性符合3对主基因加多基因遗传模型。遗传率分析结果表明,油酸、亚油酸、油亚比和棕榈酸的主基因遗传率均在60%以上,网斑病抗性的主基因遗传率在80%以上,属干主基因控制的遗传性状。
     3、以重组自交系群体(郑8903×豫花4号)构建的框架图为基础,结合“郑9001×郑8903”、“白籽x豫花4号”、“开农白2号×豫花4号”等三个作图群体,以共有标记作为桥梁,构建了包含17个连锁群,共有101个标记的栽培花生复合遗传图谱,总图距为953.88 cM。
     4、使用WinQTLCart 2.5和QTLNetwork 2.0两种分析软件进行QTL的检测,获得与形态、产量、品质(脂肪、蛋白、脂肪酸)、网斑病抗性相关的加性QTL位点62个筛选出与18个性状QTL位点紧密连锁(遗传距离小于3 cM)的SSR标记22个,向分子标记辅助选择育种技术的建立迈出了坚实的一步。
Peanut is an important oil crops and economic crops. China is the biggest country on production, consumption, and export of peanut in the world. Yield, quality and disease resistance are typical complex quantitative traits, traditional breeding methods is difficult to simultaneously improve many traits in peanut. With the development of modern genetics and molecular biology, complex traits can be decomposed into simple Mendelian genetic factor, so it is possible to manipulate the complex quantitative traits in crop improvement for yield, quality and disease resistance, using the method of marker-assisted selection (MAS). Therefore it is necessary and very important theoretically and practically to study the inheritance of yield, quality, disease resistance and the other important traits in peanut, to construct the linkage map, as well as the QTL mapping. In present research, molecular genetic map was constructed in peanuts, using several genetic populations included recombinant inbred lines (RILs) and F2 population as materials, based on SSR molecular markers and integrate experimental data of two year's environments, the genetic effects of agronomic traits on yield, quality, and disease resistance, as well as their QTL are studied, and the main results are as follows:
     1. A recombinant inbred lines (RIL) derived from Zheng8903×Yuhua 4 in Arachis hypogaea L was developed. Investigation of 20 traits related to yield, quality and disease resistance showed that all the traits except of resistance disease trait in groups were conformed to the normal distribution, suitable in studying for inheritance of quantitative traits and QTL mapping.
     2. Using the developed RILs population derived from a cross of "Zheng8903×Yuhua 4" as the material, and joint segregation analysis of major gene with minor genes mixed inheritance model as method, the inheritance of yield, quality and the resistance to web blotch disease in peanut were analyzed. As the results showed that main stem length, total bearing branches, mature pods per plant and kernel percent were controlled by three major genes, and those of 100-pod weight and 100-kernel weight followed two major genes with several minor genes. The inheritance of protein content in peanut was complied with the non-major gene model, and the fat was controlled by two major gene with several minor genes, while those of oleic acid content, linoleic acid content and palmitic acid content were controlled by two major genes only, and O/L and Behenic acid content were controlled by three major genes. The disease resistance to web blotch was controlled by three major genes with several minor genes as well. For the heritability, the results showed that those of oleic acid content, linoleic acid content and palmitic acid content were over 60%, and that of the disease resistance to web blotch was over 80%, which belong to the quality traits controlled by major gene(s).
     3. Using a RIL population derived from the cross of "Zheng8903×Yuhua 4" as the basic population, combined with other the RIL population derived from "Zheng9001×Zheng8903" and two F2 population, "Baizi×Yuhua 4", "Kainongbai 2×Yuhua 4", with the help of the Join Map 3.0 and Map Chart 2.1, a composite linkage map of Arachis hypogaea L. including 17 linkage groups and 101 marker loci was constructed. The linkage map was 953.88 cM in total length with the longest linkage group of 14 SSR markers and was 158.8 cM.
     4. The 62 additive QTLs related to shape, yield, quality(fat, protein, fatty acids) and the disease resistance to web blotch in peanut were mapped through the jointed linkage map based on a RILs population derived from Zheng8903×Yuhua 4, and field investigation data from two years and two locations, using the software of WinQTLCart 2.5 and QTLNetwork 2.0. And selected 18 loc trait closely linked QTL (genetic distance of less than 3 cM) of the 22 SSR markers, molecular marker assisted breeding to the establishment of technology has taken a solid step forward.
引文
1.陈四龙,李玉荣,程增书,廖伯寿,雷永,刘吉生.花生含油量杂种优势表现及主基因+多基因遗传效应分析.中国农业科学,2009,42(9):3048-3057
    2. 陈华,许喜兰,李晓青,杨海棠.花生产量及其构成因素的灰色关联度分析.陕西农业科学,2007,1:39-41
    3. 陈强,张小平,李登煜.我国主要花生品种的AFLP分析.应用与环境生物学报,2003,92:117-121
    4.迟玉成,张景欣.花生网斑病综合防治技术.作物杂志,1998,1:15-16
    5. 丁景平,韩柱强,周瑞阳,高国庆,杨玉萍.花生油酸亚油酸比值(O/L)的遗传分析.中国油料作物学报,2007,29(3):233-237
    6. 盖钧镒,章元明,王建康.植物数量性状遗传体系.北京科学出版社,2003,pp120-126
    7.盖钧镒,章元明,王建康.植物数量性状QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析.作物学报,2000,26:385-391
    8.韩柱强,高国庆,韦鹏霄.利用SSR标记分析栽培花生多态性及亲缘关系.花生学报,2003,32:295-300
    9. 韩柱强,高国庆,韦鹏霄Analysis of DNA Polymorphism and Genetic Relationships in Cultivated Peanut (Arachis hypogaea L.) Using Microsatellite Markers.作物学报,2004,3011:1097-1101
    10.何风华.水稻单片段替换系群体的建立及QTL分析.博士学位论文,广州:华南农业大学,2003:1-73
    11.胡中立,章志宏.质量-数量性状的遗传参数估计.Ⅱ.利用DH群体或RIL群体.武汉大学学报(自然科学版),1998,144:784-788
    12.胡中立,章志宏,章元明.质量-数量性状遗传参数估计的P1、P2、DH联合分析方法.作物学报,2000,26:631-634
    13.华福平,朱磊,张毅.花生荚果产量与主要性状间的灰色关联度分析.陕西农业科学,2008,5:70-73
    14.黄培堂译.分子克隆实验指南(第三版).科学出版社.2002
    15.姜慧芳,段乃雄.花生种质资源描述规范和数据标准.中国农业出版社,2006
    16.姜慧芳,陈本银,任小平.利用重组近交系群体检测花生青枯病抗性SSR标记.中 国油料作物学报,2007b,291:26-30
    17.姜慧芳,廖伯寿,任小平,雷永,傅廷栋,Mace E, Crouch J H抗青枯病花生种质的遗传多样性.作物学报,2006,32:1156-1165
    18.姜慧芳,廖伯寿,任小平,雷永,Emma M,傅廷栋,Crouch J H用SSR和AFLP技术分析花生抗青枯病种质遗传多样性的比较.遗传学报,2007a,34(6):544-554
    19.姜慧芳,任小平,黄家权,雷永,廖伯寿.野生花生脂肪酸组成的遗传变异及远缘杂交创造高油酸低棕榈酸花生新种质.作物学报,2009,35(1):25-32
    20.姜慧芳,任小平,雷永.花生青枯病抗性分子标记的初步研究.花生学报,2003,323:319-323
    21.姜慧芳,任小平,廖伯寿,傅廷栋.抗青枯病花生资源的种子大小及主要品质性状的遗传分化.中国油料作物学报,2006,28(2):144-150
    22.金建猛,谷建中,刘向阳,任丽,范君龙.花生农艺性状与产量的灰色关联度分析.种子科技,2009,05:3 1-33
    23.赖明芳,曾彦,漆燕,夏友霖,崔富华.花生主要经济性状遗传特点分析.中国油料作物学报,2007,29(2):42-45
    24.雷永,廖伯寿,王圣玉.花生黄曲霉侵染抗性的AFLP标记.作物学报,2005,3110:1349-1353
    25.类承斌,万勇善,刘风珍.分子标记技术在花生上的应用研究.中国农学通报,2005,08
    26.李少华,董申平,郭拥军,高三明,李秀梅.花生主要性状与产量的关系.湖北农业科学,2004,1:49-50
    27.李绍伟,李军华,任丽,金建猛,范君龙,邓丽.花生产量与主要农艺性状的灰色关联度分析.陕西农业科学,2007,1:37-39
    28.李双铃,任艳,陶海腾.山东花生主栽品种AFLP指纹图谱的构建.花生学报,2006,351:18-21
    29.李林章,谢从华,柳俊.茄科雷尔氏菌(Ralstonia solanacearum)分子生物学基础及其致病机制.中国马铃薯,2005,195:290-294
    30.李维明,Worl A. J用籼/粳交重组自交系群体构建的分子遗传图谱及其与籼/粳交群体的分子图谱的比较.中国水稻科学,2000,14:71-78
    31.廖伯寿,许泽永,姜慧芳.植物细菌性青枯病抗性的分子标记研究与育种潜力.中国 油料作物学报,2001,23(3):66-68
    32.刘恩生.花生蛋白质、脂肪含量及其它农艺性状的配合力和遗传参数分析.华北农学报,1987,2(3):18-26
    33.刘冠明,郑亦雄,黎国良.20个花生品种的SSR标记指纹图谱构建.中国农学通报,2006a,226:49-51
    34.刘冠明,郑奕雄,陈建萍.汕油系列和粤油系列花生品种遗传多样性的SSR标记分析.安徽农业科学,2006b,3411:2338-2339
    35.罗虹,周桂元,彭映华,吴燕秋.花生脂肪含量的遗传多样性及与荚果性状的关系.广东农业科学,2006,12:21-22
    36.梅德圣,李云昌,王汉中.作物产量性状QTL定位的研究现状及应用前景.中国农学通报,2003,195:83-88
    37.莫惠栋.质量-数量性状的遗传分析Ⅰ.遗传组成和主基因基因型鉴别.作物学报.1993,19(1):1-6
    38.莫惠栋.质量-数量性状的遗传分析Ⅱ.世代平均数和遗传方差.作物学报,1993,19(3):193-200
    39.全鑫,宋玉立,何文兰,薛保固,徐静,张新友.花生网斑病国内外研究进展.河南农业科学,2008,7:13-16
    40.沈波,庄杰云,张克勤,夏奇清,盛晨霞,郑康乐.水稻叶片性状和根系活力的QTL定位.遗传学报,2003,30(2):1133-1139
    41.石延茂,徐秀娟.花生网斑病经济阈值模型研究初报.莱阳农学院学报,1992,9(4):308-309
    42.宋献军.控制水稻粒宽/粒重主效QTL的定位、克隆和功能研究.博士学位论文,中国科学院研究生院,2007
    43.孙大容.花生育种学.中国农业出版社,1998.111-121
    44.孙大容.花生育种学.中国农业出版社,1998.297-300
    45.孙春梅,李绍伟,任丽,李军华,金建猛.花生品种品质分析及品质育种方向.安徽农业科学,2005,33(11):2005-2006
    46.唐荣华,高国庆,贺梁琼,韩柱强,单世华,钟瑞春,周翠球,蒋菁,李杨瑞,庄伟建.SSR分子标记检测出的花生类型内遗传变异(英文).遗传学报,2007,34(5):449-459
    47.唐荣华,高国庆,韩柱强,张君诚,钟瑞春,庄伟建.花生种质资源的遗传变异与 DNA分子多态性.花生学报,2003,32增刊:277-284
    48.唐荣华,贺梁琼,高国庆.多粒型花生的SSR分子标记.花生学报,2004,332:11-16
    49.万勇善,谭忠.花生油脂O/L比率及主要经济性状的配合力分析.山东农业科学,1995(1):8-11
    50.万勇善,谭忠,范晖,李向东,张高英,刘凤珍,王溯.花生脂肪酸组分的遗传效应研究.国油料作物学报,2002,24:26-28
    51.王振跃,王守正,李洪连,袁红霞.河南省花生网斑病的初步研究.河南农业科学,1993,7:23-25
    52.翁跃进,Gurtu S N N S花生AFLP指纹图谱.中国油料作物学报,1999,211:10-12
    53.吴兰荣,陈静,胡文广.利用花生野生种创新花生种质及其RAPD遗传鉴定.中国油料作物学报,2003,252:9-11
    54.吴为人,李维明,卢浩然.建立一个重组自交系群体所需的自交代数.福建农业大学学报,1997,26:129-132
    55.吴献忠,张卫,李荣花,刘思国.花生网斑病研究进展.莱阳农学院学报,2000,17(4):294-297
    56.徐宜民,甘信民,曹玉良,顾淑媛,刘法生.花生主要营养品质性状和农艺性状配合力的研究.中国农业科学,1995,28(2):15-23
    57.徐秀娟,石延茂.花生网斑病的发生与防治研究.山东农业科技,1992,(4):29-39
    58.徐秀娟,石延茂.不同时期使用农抗120控制花生网斑病侵染的试验研究.生物防治通报,1993,9(4):167-169
    59.许泽永,张宗以.三种主要花生病毒浸染对花生生产和产量影响的研究.中国农业科学,1986,4:51-56
    60.杨海棠,崔党群,马东波.河南省花生品种产量性状的遗传改良.花生学报,2005,34(4):7-11
    61.叶冰莹,陈由强,朱锦懋.应用RAPD技术分析花生品种变异.中国油料作物学报,1999,213:15-18
    62.殷冬梅,张新友,汤丰收.花生属野生种质的RAPD鉴定.河南农业科学,2003,11:15-17
    63.殷冬梅,尚明照,崔党群.花生主要农艺性状的遗传模型分析.中国农学通报,2006,22(7):261-265
    64.禹山林.美国大花生脂肪酸的遗传分析.中国油料作物学报,2000,22(1):34-37
    65.愈孕珍,孙军德,刘志恒.花生云斑病的调查研究报告.植物保护,1998,14(2):24-25
    66.章元明,盖钧镒.利用DH或RIL群体检测QTL体系并估计其遗传效应.遗传学报,2000,27(7):634-640
    67.章元明,盖钧镒.数量性状分离分析中分布参数估计的IECM算法.作物学报,2000,26(6):699-705
    68.章元明,盖钧镒,戚存扣.数量性状分离分析的精确度及其改善途径.作物学报,2001,6:110-116
    69.章元明,盖钧镒,王永军.利用P1、P2和DH或RIL群体联合分离分析的拓展.遗传,2001,23(5):467-470
    70.张顺昌.橄榄型油菜EST-SSR的开发和千粒重及品质相关性状QTL定位.硕士学位论文,华中农业大学,2008
    71.张建成,王传堂,杨新道.SSR和STS标记在花生栽培品种鉴定中的应用研究.植物遗传资源学报,2006,72:215-219
    72.翟衡,郝玉金,管雪强.植物对寄生性线虫侵染的抗性反应.山东农业大学学报,1998,292:263-269
    73.朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报,1999,333:327-335
    74. Andersen P C, Gorbet D W. Influence of year and planting date on fatty acid chemistry of high oleic acid and normal peanut genotypes. J Agric Food Chem,2002,50:1298-1305
    75. Branch W D. Registration of'GEORGIA-02C peanut. Crop Sci,2003,43:1883-1884
    76. Barkley N A, Chenault Chamberlin K D, Wang M L, Pittman R N. Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Mol Breeding,2009, DOI 10.1007/s 11032-009-9338-z
    77. Boldt A, Fortunato D, Conti A, Petersen A, Ballmer-Weber B, Lepp U, Reese G, Becker W M. Analysis of the composition of an immunoglobulin E reactive high molecular weight protein complex of peanut extract containing Ara h I and Ara h 3/4. Proteomics, 2005,5:675-686
    78. Bruner A C, Jung S, Abbott A G, Powell G L. The naturally occurring high oleate oil character in some peanut varieties results from reduced olecoyl-pc desaturase activity from mutation of aspartate 150 to asparagine. Crop Sci,2001,41:522-526
    79. Burow M D, Simpson C E, Paterson A H, Starr J L. Identification of peanut (Arachis hypogaea L.) RAPD markers diagnostic of root-knot nematode (Meloidogyne arenaria (Neal) Chitwood) resistance. Mol Breed,1996,2:369-379
    80. Burow M D, Simpson C E, Starr J L. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.):broadening the gene pool of a monophyletic polyploid species. Genetics,2001,159:823-837
    81. Burow M D, Starr J L, Simpson C E, Paterson A H. Identification of RAPD markers in peanut (Arachis hypogaea L.) associated with root-knot nematode resistance derived from A. cardenasii. Molec Breed,1996,2:307-319
    82. Bostein D R, White R L, Sklonick M. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet,1980,32:314-318
    83. Cordeiro G M, Casu R, Mcintyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci,2001,160:1115-1123
    84. Chieka Z A, Corbet D W, Shokes F M. Components of resistance to late leaf spot in peanut II correlations among components and their significance in breeding for resistance. Peanut Sci.1988(15):76-81
    85. Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics,1994,138:963-971
    86. Chu Y, Ramos L, Holbrook C C, Ozias-Akins P. Frequency of a loss-of-function mutation in oleoyl-PC desaturase (ahFAD2A) in the mini-core of the US peanut germplasm collection. Crop Sci,2007,47:2372-2378
    87. Edwards M D. Molecular-marker-facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics,1987,116: 113-125
    88. Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, MitchellS. Microsatellite identification and characterization in peanut (Arachis hypogaea L.). Theor Appl Genet,2004,108(6):1064-1070
    89. Gorbet D W, Knauft D A. Registration of'SunOleic 95R' peanut. Crop Sci,1997,37: 1392
    90. Gimenes M A, Lopes C R, Valls, J F M. Genetic relationships among arachis species based on AFLP. Genet Mol Biol,2002,25:349-353
    91. Hopkins M S, Casa A M, Wang T, Mitchell S E, Dean R E, Kocher G D, Dresovich S. Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci,1999,39:1243-1247
    92. Holbrook C C, Dong W B. Development and evaluation of a mini core collection for the US peanut germplasm collection. Crop Sci,2005,45:1540-1544
    93. Hammond E G, Duvick D, Wang T, Dodo H, Pittman R N. Survey of the fatty acid composition of peanut(Arachis hypogaea L.)germplasm and characterization of their epoxy and eicosenoic acids. J Am Oil Chem Soc,1997,74:1235-1239
    94. He G, Meng R, Gao H, Guo B, Gao G, Newman M, Pittman R, Prakash C S. Simple sequence repeat markers for botanical varieties of cultivated peanut(Arachis hypogaea L.). Euphytica,2005,142:131-136
    95. He G H, Meng R H, Newman M, Gao G Q, Pittman R N, Prakash C S. Microsatellites as DNA markers in cultivated peanut(Arachis hypogaea L.), BMC Plant Biol,2003, 3(3):1-6
    96. He G H, Prakash C S. Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica,1997,97:143-149
    97. He G, Prakash C. Evaluation of genetic relationships among botanical varieties of cultivated peanut(Arachis hypogaea L.) using AFLP markers. Genet Resour Crop Ev, 2001,48:347-352
    98. Halward T M, Phillips R L, Vasil I K. RFLP map of peanut DNA-based markers in plants. Nethelands:Kluwer Academic Publishers,1994:246-260
    99. Halward T, Stalker H T, Kochert G. Development of an RFLP linkage map in peanut species. Theor Appl Genet,1993,87:379-394
    100.Halward T M, Stalker H T, Larue E A, Kochert G A. Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome,1991,34:1013-1020
    101.Hu J G, Vick B A. Target region amplification polymorphism:a novel marker technique for plant genotyping. Plant Mol Biol Rep,2003,21:289-294
    102.Isleib T G, Wilson R F, Novitzky W P. Partial dominance, pleiotropism, and epistasis in the inheritance of the high oleate trait in peanut. Crop Sci,2006,46:1331-1335
    103.Jensen J. Estimation of recombination parameters between a quantitative trait locus(QTL)and two marker gene loci. Theor Appl Genet,1989,78:613-618
    104.Jonnala R S, Dunford N T, Dashiell K E. Tocopherol, phytosterol and phospholipid compositions of new high oleic peanut cultivars. J. Food Compos. Anal.,2006,19: 601-605
    105.Jung S, Powell G, Moore K. The high oleate trait in cultivated peanut (Arachis hypogaea L.) molecular basis and genetics of the trait. Mol Gen Genet,2000a,263:806-811
    106.Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.). I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet,2000,263:796-805
    107.Jiang C J, Zeng Z B. Multiple traits analysis of genetic mapping for quantitative trait loci. Genetics,1995,140:1111-1127
    108.Kosambi D D.The estimation of map distances from recombination values. Ann Eugen, 1944,12:172-175
    109.Krapovickas A. The origin, variability and spread of groundnut(Arachis hypogaea L.). In: R.J. Ucko and C.W. Dimbleby (Eds) The domestication and exploitation of plants and animals. Duck worth, London.,1969:427-440
    110.Konieczny A, Ausubel F M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J,1993,4:403-410
    111.Khedikar Y P, Gowda M V C, Sarvamangala C, Patgar K V, Upadhyaya H D, Varshney R K. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet,2010, 121(5):971-984
    112.Kochert G, Halward T, Branch W D, Simpson C E. RFLP variability in peanut (Arachis hypogaea L) cultivars and wild species. Theor Appl Genet,1991,81:565-570
    113.Krakowsky M D, Lee M, Woodman-Clikeman W L, Long M J, Sharopova N. QTL mapping of resistance to stalk tunneling by the European corn borer in RILs of maize population B73×De811. Crop Sci,2004,44:274-282
    114.Knauft D A, Moore K M, Gorbet D W. Further studies on the inheritance of fatty acid composition in peanut. Peanut Sci,1993,20:74-76
    115.Kochert Q Stalker H T, Gimenes M, Galgaro L, Romero Lopez C, Moore K. RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea(Leguminosae). Am J Bot,1996,83:1282-1291
    116.Kao C H, Zeng Z B. General formulae for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics,1997,53:653-665
    117.Krishna G. K, Zhang J, Burow M. Genetic diversity analysis in Valencia peanut (Arachis hypogaea L) using microsatellite markers. Cell Mol Biol Lett,2004,9:685-697
    118.Kao C H, Zeng Z B, Teasdaler D. Multiple interval mapping for quantitative trait loci. Genetics,1999,152:1203-1216
    119.Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199
    120.Lopez Y, Nadaf H L, Smith O D, Simpson C E, Fritz A K. Expressed variants of 12-fatty acid desaturase for the high oleate trait in Spanish market-type peanut lines. Mol Breed, 2002,9:183-190
    121.Li G, Quiros C F. Sequence-related amplified polymorphism(SRAP), A new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet,2001,103:455-461
    122.Li H, Ribaut J M, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet,2007,116(2): 243-260
    123.Lopez Y, Smith O D, Senseman S A, Rooney W L. Genetic factors influencing high oleic acid content in Spanish market-type peanut cultivars. Crop Sci,2001,41:51-56
    124.Layrisse A, Wynne J C, Isleib T G. Combining ability for yield protein and oil of peanut lines from South American centers of diversity. Euphytica,1980,29 (3):561-570
    125.Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics,2007,175:361-374
    126.Mallikarjuna N. Gene introgression from Arachis glabrata into A. hypogaea, A. duranensis and A. diogoi. Euphytica,2002,124:99-105
    127.Murigneux A, Baud S, Beckert M. Molecular and morphological evaluation of doubled haploid lines in maize.2. Comparison with single-seed-descent lines. Theor Appl Genet, 1993,87:278-287
    128.McCouch S R, Cho Y G., Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet. Newslett,1997,14:11-13
    129.Moretzsohn M C, Hopkisn M S, Mitchell S E, Kresovich S. Valls J F, Ferreira M.E. Genetic diversity of peanut(Arachis hypogaea L.) and its wild relatives based on the analysis of hyper variable regions of the genome. BMC Plant Biol,2004,4(11):1-11
    130.Moore K M, Knauft D A. The inheritance of high oleic acid in peanut. J Hered,1989,80: 252-253
    131.Moretzsohn M.C, Leoi 1, Proite K, Guimaraes P M, Leal-bertioli S C, Gimenes M A, Martins W S, Valls J F M, Grattapaglia D, Bertioli D J. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet, 2005,111(6):1060-1071
    132.Mohan M, Nair S, Bhagwat A, Krishna T Q Yano M, Bhatia C R, Saski T. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol. Breed, 1997,3:87-103
    133.Mace E S, Phong D T, Upadhyaya H D, Chandra S, Crouch J H. SSR analysis of cultivated groundnut(Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases. Euphytica,2006,152:317-330
    134.Mercer L C, Wynne J C, Young C T. Inheritance of fatty acid content in peanut oil. Peanut Sci,1990,17:17-21
    135.Mace E S, Yuejin W, Boshou I, Upadhyaya H I, Chandra S. SSR-based diversity analysis of groundnut(Arachis hypogaea L.) germplasm resistant to bacterial wilt. Plant Genetic Res,2007,5:27-36
    136.Norden, A J, Gorbet DW., Knauft D A, Young C T. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci,1987,14:7-11
    137.Nikiforov T T, Rendle R B, Goelet P. Genetic bit analysis:a solid phase method for typing single nucleotide polymorphisms. Nucleic Acids Res,1994,22:41-67
    138.Olson M., Hood L, Cantor C. A common language for physical mapping of the human genome. Sci,1989,245:1434-1435
    139.Orita M, Suzuki Y, Sekiya T. Rapid and sensitive detection of point mutation and DNA polymorphisms using the polymerase chain reaction. Genomics,1989,5:874-879
    140.O'Keefe S F, Wiley V A, Knauft D A. Comparison of oxidative stability of high and normal oleic peanut oils. J Amer Oil Chem Soc,1993,70:489-492
    141.Proite K, Leal-Bertioli S C, Bertioli D J, Moretzsohn M C, da Silva F R, Martins N F, Guimaraes P M. ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol.,2007,7. doi:10.1186/1471-2229-7-7.
    142.Paran I, Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lecture. Theor Appl Genet,1993,858:985-993
    143.Pettit R E, Philley G L, Smith D H. Peanut web blotch:Ⅱ. symptoms and host rang of pathogen. Peanut Science, 1986(13):27-30
    144.Paik Ro O G, Smith R L, Kuauft D A. Restrication fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet,1992,84: 201-208
    145.Rossetto M, McNally J, Henry R J. Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the Vitaceae. Theor Appl Genet,2002,104:61-66
    146.Raina S N, Rani V, Kojima T, Ogihara Y, Singh K P, Devarumath R M. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea L.) cultivars and wild species. Genome,2001,44:763-772
    147.Reid D P, Szanto A, Glebe B. QTL for body weight and condition factor in Atlantic salmon (Salmo salar):comparative analysis with rainbow trout (Oncorhynchus mykiss) and Arctic Charr (Salvelinus alpinus). Heredity,2005,94(2):166-172
    148.Shchori Y, Ashri A. Inheritance of several macromutantions induced by diethyl sulfate in peanut Arachis hypogaea. Radiat Bot,1970,10(60):551-555
    149.Subramanian V, Gurtu S, Rao R C N, Nigam S N. Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome,2000,43:656-660
    150.Smith D H, McGee R E. Glycinemax:a potential host of the peanut web blotch fungus. Proceedings of the American Peanut Research and Education Society,1981, (13):100
    151.Selvaraj M G, Narayana M, Schubert A M, Ayers J L, Baring M R, Burow M D. Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electron J Biotechn, DOI:10.2225/vol12-issue2-fulltext-13
    152.Taber R A. Compendium of peanut disease. USA:American Phytopathological Society, 1984:9-10
    153.Tallury S P, Hilu K W, Milla S R, Friedd S A, Alsaghir M, Stalker H T, Quandt D. Genomic affinities in Arachis section Arachis (Fabaceae):molecular and cytogenetic evidence. Theor Appl Genet,2005,111:1229-1237
    154.Tautz D, Trick M, Dover G A. Cryptic simplicity in DNA is a major source of genetic variation. Nature,1986,322:652-656
    155.Upadhyay H D. Variability for drought resistance related traits in the mini core collection of peanut. Crop Sci,2005,45(4):1432-1440
    156.Upadhyay H D, Nigam S N. Detection of epistasis for protein and oil contents and oil quality parameters in peanut. Crop Sci,1999,39:115-118
    157.Voorrips RE. MapChart:software for the graphical presentation of linkage maps and QTLs, J Hered,2002,93(1):77-78
    158.Varshney R K, Bertioli D J, Moretzsohn M C. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet,2009,118:729-739
    159.Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agronomica Sinica,2009,35(2):239-245
    160. Wang J K, Chapman S C, Bonnett D G, Rebetzke G J. Simultaneous selection of major and minor genes:use of QTL to increase selection efficiency of coleoptile length of wheat(Triticum aestivum L.). Theor Appl Genet,2009,119(1):65-74
    161.Wang D G, Fan J B, Siao C J. Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Sci,1998,280:1077-1082
    162.Williams J G K, Kubelik A R, Livak K L. DNA Polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res,1990,1822:6531-6535
    163.Wang Z, Taramino G, Yang D, Liu G, Tingey SV, Miao GH, Wang GL. Rice ESTs with disease-resistance gene or defense-response gene-like sequences mapped to regions containing major resistance genes or QTLs. Mol Genet Genomics,2001,265(2):302-310
    164.Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL environment interactions by mixed linear model approaches. Theor Appl Genet,1999,99: 1255-1264
    165.Yan J Q, He C X, Benmoussa M, Wu P, Zhu J. Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet, 1998,97:267-274
    166.Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet,2005,110:1268-1274.
    167.Young N D, Zamir D, Ganal M W. Use of Isogenic lines and simultaneous probing to identify DNA markers tightly linked to the TM-2 a gene in tomato. Genetics,1988,120: 579-585
    168.Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA,1993,90(23):10972-10976.
    169.Zeng Z B. Precision mapping of quantitative trait loci. Genetics,1994,136:1457-1468
    170.Zhu H, Hayes P, Kleinbofs A, Kudrna D, Liu Z, Prom L, Steffenson B, Toojinda T, Vivar H, Gilchrist L. Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a double-haploid population of barley. Theor Appl Genet,1999,99:1221-1232
    171.Zhu S, Rossnagel B G, Kaeppler H F. Genetic analysis of quantitative trait loci for groat protein and oil content in oat. Crop Sci,2004,44:254-260
    172. Zabeau M, Vos P. Selective restriction fragment amplification:a general method for DNA finger printing.1992, European Patent EP0534858B2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700