用户名: 密码: 验证码:
沉淀聚合制备单分散高分子微球及其自组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单分散聚合物微球及其组装形成的组合粒子在许多领域具有重要的应用价值。传统的制备单分散聚合物微球的方法都需要在聚合过程中加入表面活性剂或稳定剂,导致聚合体系的组分更复杂,产物纯度降低。上世纪90年代发展起来的沉淀聚合技术因聚合过程中无需加入表面活性剂和稳定剂使单分散微球的研究获得突破性进展。然而,迄今为止沉淀聚合制备单分散微球的相关研究仍普遍存在溶剂毒性高、微球产率低等问题。针对这一问题,本工作以低毒性溶剂乙醇及其与水的混合物作反应介质,探讨了获得高产率单分散微球的新途径,并在此基础上使用一种简单的微球自组装方法—液滴模板法制备了高尔夫球型的组合粒子。
     以三羟甲基丙烷三丙烯酸酯(TMPTA)作交联剂,苯乙烯(St)作共聚单体,偶氮二异丁腈(AIBN)作引发剂,分别在乙醇和乙醇-水混合溶剂中沉淀聚合反应4h制备了单分散交联微球。实验发现,当TMPTA用量保持在10 wt%~60 wt%之间时,反应能够制得单分散微球。通过提高交联剂用量、引发剂用量和改变反应介质中水的用量探讨了提高单体转化率的方法。结果表明,提高引发剂用量和增加溶剂中水的用量都能有效提高单体转化率并制得粒径分布较窄的微球。保持其它条件不变,在乙醇中使用2 wt% AIBN仅能得到79%的单体转化率,提高AIBN用量至6 wt%或在介质中增加水的用量至28 vol%,单体转化率可以达到95%以上。
     使用三至五官能度的交联剂,包括季戊四醇三丙烯酸酯(PETA)、季戊四醇四丙烯酸酯(PETRA)和双季戊四醇五丙烯酸酯(DPHA)与St在乙醇及其与水的混合物中反应8h制备了单分散聚合物微球。研究发现,制得单分散微球所需PETA、PETRA和DPHA的用量范围分别为5 wt%~35 wt%、5 wt%~35 wt%和5 wt%~15 wt%。增加交联剂的官能度能够有效提高单体转化率并制得粒径分布较窄的微球。使用35 wt%PETA或PETRA,6 wt%的AIBN,以含水量25 vol%的乙醇作介质,在制得单分散微球的同时分别能够获得93%和99%的单体转化率。保持其它条件不变,使用15 wt%DPHA,以含水量20 vol%的乙醇作介质,沉淀聚合亦可以得到77%的单体转化率。
     以N-异丙基丙烯酰胺(NIPAM)作单体,N,N’-亚甲基双丙烯酰胺(MBAAM)作交联剂,过硫酸铵(APS)作引发剂,水作反应介质,通过沉淀聚合制备了温敏性的水凝胶微球。结果表明,保持MBAAM用量在5 wt%~10 wt%之间,聚合制得了单分散的水凝胶微球。在此范围内增加交联剂用量,反应的单体转化率显著提高,微球粒径逐渐增大,溶胀率逐渐减小,微球的温敏性逐渐减弱。对微球-水复合体系的透光率测试结果表明,水凝胶微球的低临界溶解温度在30℃~36℃之间,随交联剂用量增加微球体积转变的温度范围逐渐增大。固定单体浓度为2 wt%,MBAAM用量10 wt%,保持APS用量在0.5 wt-/~2 wt%之间,沉淀聚合制得了单分散的水凝胶微球。在此范围内提高APS用量,单体转化率略有增大,微球粒径逐渐减小。对微球热失重分析结果表明,所制备微球的内部和外层由不同交联度的聚合物组成。控制微球的交联度、溶液的pH及温度可实现P(NIPAM-MBAAM)微球对蛋白的吸附与脱附。
     以乙醇与水的混合物作为连续相,加入甲苯构建液滴模板,通过沉淀聚合得到的P(TMPTA-St)初级粒子的自组装制备了高尔夫球型组合粒子。改变振荡器的振荡频率、甲苯用量、醇/水比例、交联剂用量以及反应时间,组装形成的组合粒子形貌发生显著变化。当甲苯用量为18 mL,乙醇/水体积比为7/3,TMPTA用量为20 wt%,反应时间4 h,振荡频率为120/min时,组装得到了形态规则的高尔夫球型组合粒子。对粒子自组装的机理研究表明,初级粒子在乙醇-水的混合溶剂中形成,粒子与甲苯的相容性作为驱动力使其向甲苯中定向迁移并有序组装。扫描电镜观察的结果表明,高尔夫球型组合粒子具有明显的核壳结构。高尔夫球型组合粒子表面具有纳米级孔结构和次级结构。将高尔夫球型组合粒子涂覆于压敏胶膜表面,其疏水性显著增强。
Monodisperse polymer microspheres and supraparticles fabricated from microsphere assembly had significant application values in many fields. The traditional methods to prepare monodisperse microspheres all needed surfactants or stabilizers, which made the components of the polymerization system more complicated and led to microspheres with lower purity. Precipitation polymerization developed in the 1990's made a breakthrough in the preparation of monodisperse microspheres because it didn't need surfactants or stabilizers. However, the development of precipitation polymerization was limited with the commonly existing problems, such as high toxicity of solvents and low yield of microspheres. Facing this challenge, we used low-toxic solvents, ethanol, water and their mixture to explore the new way to obtain monodisperse microspheres with high yield. Based on this work, a facile route to achieve self-assembly of primary particles on an organic droplet was employed to prepare golf-ball-like supraparticles.
     First, monodisperse microspheres were prepared through precipitation polymerization of trihydroxymethyl propane triacrylate (TMPTA)-styrene (St) in ethanol and ethanol-water mixture with azobisisobutyronitrile (AIBN) as initiator when TMPTA amounts was kept at 10%~60% relative to the total mass of monomers. Impact of TMPTA amounts, initiator concentrations and water content in the solvent mixture were studied. Monodisperse microspheres were obtained within 4 hours along with higher monomer conversion. Results demonstrated clearly that increase in initiator amount and use of water as a cosolvent were indeed very effective to promote the polymerization to high conversions and to get uniform microspheres. With no water under otherwise the same experimental conditions, only about 79% of monomer conversion was detected; while monomer conversion was remarkably increased to 95% when 28 vol% of water was added into ethanol. To reach to this high conversion with no water in the medium,6 wt% of AIBN was needed.
     Secondly, with pentaerythritol triacrylate (PETA)、pentaerythritol tetraacrylate (PETRA) or dipentaerythritol pentaacrylate (DPHA) as crosslinkers, St as co-monomer and AIBN as initiator, the precipitation polymerizations were carried out in ethanol and ethanol-water mixture. It was found that uniform microspheres were obtained when the amounts of PETA, PETRA and DPHA were kept at 5 wt%~35 wt%,5 wt%~35 wt% and 5 wt%~15 wt%, respectively. Results indicated that increasing functionality of crossslinkers was an effective method to promote the polymerization to high conversions. Using 35 wt% of PETA or PETRA and 6 wt% of AIBN, uniform microspheres and high conversions of 93% and 99% respectively were obtained by precipitation polymerization in the mixed solvents with 25 vol% of water. Under otherwise the same experimental conditions but 15 wt% of DPHA, precipitation polymerization in the mixed solvents containing 20 vol% of water led to a conversion of 77%.
     Thirdly, N-isopropylacrylamide (NIPAM) and an aqueous crosslinker, methylenebisacrylamide (MBAAM) were employed to prepare thermal-sensitive hydrogel microspheres via precipitation polymerization in water with ammonium persulfate (APS) as initator. Poly(NIPAM-MBAAM) microspheres with narrow size distribution were synthesized in a defined range of MBAAM levels, namely between 5% and 10% relative to the total mass of monomers. With increase in MBAAM, the polymerization conversion was significantly promoted and the swelling ratio of mcirospheres gradually decreased, which indicated that thermal-sensitivity of hydrogel microspheres was gradually weakened. Photometer was carried out to measure the thermal-sensitivity of these microspheres. It was found the hydrogel microspheres had lower critical temperatures (LCST) at 30~36℃, but the LCST occurred in a wider temperature range with increase in crosslinker. Amounts of APS imposed an import influence on morphology of poly(NIPAM-MBAAM). Uniform hydrogel microspheres were obtained when 0.5 wt%~2 wt% of APS was used with other conditions kept unvaried. In this range, adding more APS into the polymerization system led to increase of monomer conversion and decrease of microsphere size. Thermogravimetric analysis (TGA) results indicated that the structure of the microspheres was composed of two parts of polymers:one is of high-crosslinking in the core and the other is of low-or non-crosslinking on the surface layer. The experiment results demonstrated that the adsorption and desorption of protein on the microsperes could be controlled by adjusting the crosslinking of polymer, pH and temperature of the complex system of microsphere and water.
     Finally, an easy way to achieve self-assembly of primary particles on an organic droplet was presented. With the mixed solvents of ethanol and water as continuous phase, toluene was added into them to fabricate the droplet template. Self assembly was then optimized with regard to shaking frequency, polymerization time, toluene volume in the ternary solvent system as well as the amount of TMPTA in the monomers. Golf-ball-like supraparticles were achieved by assembly of poly(TMPTA-St) primary particle obtained from the precipitation polymerization when the experimental condition was fixed at:TMPTA amount of 20 wt%, reaction media composed of 18 mL of toluene, 56 mL of ethanol and 24 mL of water, shaking frenquency at 120/min and reaction time of 4 h. The investigation of formation mechanism of golf-ball-like supraparticles indicated that the primary particles were formed in the mixture of ethanol and water. The compatibility of the primary particles and toluene acted as a driving force making the primary particles directionally migrate into toluene droplet. The golf-ball-like supraparticles were demonstrated with a core-shell structure through the observation with scanning electronic microscope. After coating the supraparticles on the surface of the film of pressure sensitive adhesive, its hydrophobicity was significantly enhanced.
引文
[1]马光辉,苏志国.高分子微球材料.北京:化学工业出版社,2005.
    [2]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用.北京:化学工业出版社,2007.
    [3]Kim K., Kim D. High-performance liquid chromatography separation characteristics of molecular-imprinted poly(methacrylic acid) microparticles prepared by suspension polymerization. J. Appl. Polym. Sci.,2005,96:200-212.
    [4]Li K., Stover H. D. H. Highly crosslinked micron-range polymer microspheres by dispersion polymerization of divinylbenzene. J. Polym. Sci. Part A:Polym. Chem.,1993,31:2473-2479.
    [5]Ma G, Sone H., Omi S. Preparation of uniform-sized polystyrene-polyacrylamide composite microspheres from a W/O/W emulsion by membrane emulsification technique and subsequent suspension polymerization. Macromolecules,2004,37: 2954-2964.
    [6]Mestach D. Reactive surfactants for commercial polymer dispersions. Prog. Colloid Polym. Sci.,2004,124:37-41.
    [7]Li K., Stover H. D. H. Synthesis of monodisperse poly(divinylbenzene) microspheres. J. Polym. Sci. Part A:Polym. Chem.,1993,31:3257-3263.
    [8]Velev O. D., Lenhoff A. M., Kaler E. W. A class of microstructured particles through colloidal crystallization. Science,2000,287:2240-2243.
    [9]Ramos L., Lubensky T. C., Dan N., Nelson P., Weitz D. A. Surfactant-mediated two-dimensional crystallization of colloidal crystals. Science,1999,286: 2325-2328.
    [10]Feng L., Li S., Li Y., Li H., Zhang L., Zhai J., Song Y, Liu B., Jiang L., Zhu D. Super-hydrophobic surfaces:from natural to artificial. Adv. Mater.,2002,14: 1857-1860.
    [11]Vlasov Y. A., Bo X., Sturm J. C., Norris D. J. On-chip natural assembly of silicon photonic bandgap crystals. Nature,2001,414:289-293.
    [12]李艺.交联型单分散聚苯乙烯微球的合成及表征.北京化工大学硕士学位论文,2004.
    [13]Vanderhoff J. W., Brandford E. B. Polymer Colloid I (Fitch RM Ed). New York: Plenum Press,1971.
    [14]Dube M. A., Penlidis A. Emulsion terpolymerization of butylacrylate/methyl methacrylate/vinyl acetate:experimental results. J. Polym. Chem.,1997,35(9): 1659-1672.
    [15]Chem C. S., Hsu H. Semibatch emulsion copolymerization of methyl methacrylate and butyl acrylate. J. Appl. Polym. Sci.,1995,55:571-581.
    [16]Shim J. W., Kim J. W., Han S. H., Chang I. S., Kim H. K., Kang H. H., Lee O. S., Suh K. D. Zinc oxide/polymethylmethacrylate composite microspheres by in situ suspension polymerization and their morphological study. Colloid Surface A: Phys. Eng. Aspects,2002,30:105-111.
    [17]Nakashima T., Yamada Y, Yoshizawa H. Synthesis of monodisperse polystyrene microspheres by dispersion polymerization using sodium polyaspartate. Colloid Polym. Sci.,2007,285(13):1487-1493.
    [18]Omi S. Preparation of monodisperse microspheres using the shirasu porous glass emulsification technique. Colloid Surface A:Phys. Eng. Aspects,1996,109: 97-107.
    [19]Okubo M., Ikegami K., Yamamoto Y. Preparation of micro-size monodisperse polymer microspheres having chloromethyl group. Colloid Polym. Sci.,1989, 267(3):193-200.
    [20]Okubo M., Katayama Y., Yamamoto Y. Preparation of micron-size monodisperse polymermicrospheres having crosslinked structures and vinyl groups. Colloid Polym. Sci.,1991,269:217-221.
    [21]Chen S. A., Chang H. S. Kinetics and mechanism of emulsifier-free emulsion polymerization:styrene/surface-active ionic comonomer system J. Polym. Sci. A:Polym. Chem.,1985,23(10):2615-2630.
    [22]Chen S. A., Chang H. S. Kinetics and mechanism of emulsifier-free emulsion polymerization. Ⅲ. Styrene/non-ionic comonomer (2-hydroxyethyl meth-acrylate) system. J. Polym. Sci. A:Polym. Chem.,1990,28(9):2547-2561.
    [23]Downey J. S., Frank R. S., Li W. H., Stover H. D. H. Growth mechanism of poly(divinylbenzene) microspheres in precipitation polymerization. Macromolecules,1999,32:2838-2844.
    [24]Yan Q., Bai Y., Meng Z., Yang W. Precipitation polymerization in acetic acid: synthesis of monodisperse cross-linked poly(divinylbenzene) microspheres. J. Phys. Chem. B,2008,112:6914-6922.
    [25]Mestach D. Reactive surfactants for commercial polymer dispersions. Prog. Colloid Polym. Sci.,2004,124:37-41.
    [26]Stover H. D. H., Li K., Li W. H. Method of forming polymer microspheres. USP 5599889,1997-02-04.
    [27]Li W. H., Stover H. D. H. Mono-or narrow disperse poly(methacrylate-co-divinyl benzene) microspheres by precipitation polymerization. J. Polym. Sci. Part A:Polym. Chem.,1999,37:2899-2907.
    [28]Li W. H., Li K., Stover H. D. H. Monodisperse poly(chloromethylstyrene-co-divinyl benzene) microspheres by precipitation polymerization. J. Polym. Sci. Part A:Polym. Chem.,1999,37:2295-2303.
    [29]Li W. H., Stover H. D. H. Monodisperse cross-linked core-shell polymer microspheres by precipitation polymerization. Macromolecules,2000,33: 4354-4360.
    [30]Zheng G. D., Stover H. D. H. Grafting of poly(alkyl(meth)acrylates) from swellable poly(DVB80-co-HEMA) microspheres by atom transfer radical polymerization. Macromolecules,2002,35:7612-7619.
    [31]Takekoh R., Li W. H., Burke N. A. D., Stover H. D. H. Multilayered polymer microspheres by thermal imprinting during microsphere growth. J. Am. Chem. Soc,2006,128:240-244.
    [32]Li W. H., Stover H. D. H. Porous monodisperse poly(divinylbenzene) microspheres by precipitation polymerization. J. Polym. Sci. Part A:Polym. Chem.,1998,36:1543-1551.
    [33]Frank R. S., Downey J. S., Stover H. D. H. Synthesis of divinylbenzene-maleic anhydride microspheres using precipitation polymerization. J. Polym. Sci. Part A: Polym. Chem.,1998,36:2223-2227.
    [34]Goh E. C. C., Stover H. D. H. Cross-linked poly(methacrylic acid-co-poly(ethylene oxide) methyl ether methacrylate) microspheres and microgels prepared by precipitation polymerization:a morphology study. Macromolecules, 2002,35:9983-9989.
    [35]Downey J. S., Mclsaac G., Frank R. S., Stover H. D. H. Poly(divinylbenzene) microspheres as an intermediate morphology between microgel, macrogel, and coagulum in cross-linking precipitation polymerization. Macromolecules,2001, 34:4534-4541.
    [36]Shim S. E., Yang S., Choi H. H., Choe S. Fully crosslinked poly(styrene-co-divinylbenzene) microspheres by precipitation polymerization and their superior thermal properties. J. Polym. Sci. Part A:Polym. Chem.,2004,42:835-845.
    [37]Shim S. E., Yang S., Jin M. J., Chang Y. H., Choe S. Effect of the polymerization parameters on the morphology and spherical particle size of poly(styrene-co-divinylbenzene) prepared by precipitation polymerization. Colloid Polym. Sci., 2004,283:41-48.
    [38]Shim S. E., Yang S., Choe S. Mechanism of the formation of stable microspheres by precipitation copolymerization of styrene and divinylbenzene. J. Polym. Sci. Part A:Polym. Chem.,2004,42:3967-3974.
    [39]Yang S., Shim S. E., Choe S. Stable poly(methyl methacrylate-co-divinylbenzene) microspheres via precipitation polymerization. J. Polym. Sci. Part A:Polym. Chem.,2005,43:1309-1311.
    [40]Jin J. M., Yang S., Shim S. E., Choe S. Synthesis of poly(acrylamide-co-divinyl benzene) microspheres by precipitation polymerization. J. Polym. Sci. Part A: Polym. Chem.,2005,43:5343-5346.
    [41]Jin J. M., Lee J. M., Ha M. H., Lee K., Choe S. Highly crosslinked poly(glycidyl methacrylate-co-divinyl benzene) particles by precipitation polymerization. Polymer,2007,48:3107-3115.
    [42]Ha M., Lee K., Choe S. Crosslinkable functional moiety for the formation of highly crosslinked stable microspheres in the precipitation polymerization. Polymer,2008,49:4592-4601.
    [43]Joso R., Pan E. H., Stenzel M. H., Davis T. P., Christopher B. K., Barner L. Ambient temperature synthesis of well-defined microspheres via precipitation polymerization initiated by UV-irradiation. J. Polym. Sci. Part A:Polym. Chem., 2007,45:3482-3487.
    [44]Lime F, Irgum K. Monodisperse polymeric particles by photoinitiated precipitation polymerization. Macromolecules,2007,40:1962-1968.
    [45]Lukaszczyk J., Cebulska A. Synthesis of polymeric microspheres based on 3-chloro-2-hydroxypropyl methacrylate. Macromol. Symposia,2001,164:71-80.
    [46]Gawdzik B., Maciejewska M. Synthesis of isobutyl maleate-divinylbenzene microspheres by different techniques of heterogeneous polymerizations. J. Appl. Polym. Sci.,2004,91:2008-2015.
    [47]Maciejewska M., Gawdzik B. Preparation and porous structure characterization of 4,4-diphenylmethane dimethacrylate/divinylbenzene polymeric particles. J. Appl. Polym. Sci.,2005,95:863-870.
    [48]Bai F., Yang X. L., Huang W. Q. Synthesis of narrow or monodisperse poly(divinylbenzene) microspheres by distillation-precipitation polymerization. Macromolecules,2004,37:9746-9752.
    [49]Bai F., Yang X. L., Li R., Huang B., Huang W. Q. Monodisperse hydrophilic polymer microspheres having carboxylic acid groups prepared by distillation precipitation polymerization. Polymer,2006,47:5775-5784.
    [50]Li G. L., Yang X. L. Facile synthesis of hollow polymer microspheres with movable cores with the aid of hydrogen-bonding interaction. J. Phys. Chem. B., 2007,111:12781-12786.
    [51]Li G. L., Yang X. Y., Wang B., Wang J. Y., Yang X. L. Monodisperse temperature-responsive hollow polymer microspheres:synthesis, characterization and biological application. Polymer,2008,49:3436-3443.
    [52]Bai F., Yang X. L., Huang W. Q. A morphological study of poly (divinylbenzene-co-acrylic acid) in crosslinking precipition polymerization. Chinese J. Polym. Sci.,2006,24:163-171.
    [53]Bai F., Yang X. L., Zhao Y. Z., Huang W. Q. Synthesis of core-shell microspheres with active hydroxyl groups by two-stage precipitation polymerization. Polym. Int.,2005,54:168-174.
    [54]Bai F., Yang X. L., Huang W. Q. Narrow-disperse or monodisperse crosslinked and functional core-shell polymer particles prepared by two-stage precipitation polymerization. J. Appl. Polym. Sci.,2005,100:1776-1784.
    [55]阎青,白耀文,孟哲,杨万泰.乙酸中沉淀聚合制备窄分散聚二乙烯基苯微球.高分子学报,2007,(11):1102-1104.
    [56]Cui H. L., Chen H., Qu R. J., Wang C. H., Sun C. M., Zhou W. Y., Yu M. M., Jiang H. Y. Highly crosslinked poly (styrene-co-divinylbenzene) microspheres prepared by precipitation polymerization:effects of the polymerization parameters on the characteristics of the particles. J. Appl. Polym. Sci.,2009,111: 3144-3149.
    [57]Zhu L., Zhu Y., Pan Y., Huang Y W., Huang X. B., Tang X. Z. Fully crosslinked poly[cyclotriphosphazene-co-(4,4-sulfonyldiphenol)] microspheres via precipitation polymerization and their superior thermal properties. Macromol. React. Eng.,2007,1:45-52.
    [58]Zhu Y, Huang X. B., Li W. Z., Fu J. W., Tang X. Z. Preparation of novel hybrid inorganic-organic microspheres with active hydroxyl groups using ultrasonic irradiation via one-step precipitation polymerization. Mater. Lett.,2008,62: 1389-1392.
    [59]陈胜利,董鹏,袁桂梅,赵俊颖,王晓冬,周倩.亚微米/纳米聚苯乙烯微球粒度标准物质的研制.武汉理工大学学报,2007,29:96-100.
    [60]Perrier R., Heroguez V., Thienpont A., Babot O., Toupance T. Functional crosslinked polymer particles synthesized by precipitation polymerization for liquid chromatography. J. Chromatogr. A.,2008,1179:2-8.
    [61]Mehtal R. C., Thanoo B. C., Deluca P. P. Peptide containing microspheres from low molecular weight and hydrophilic poly(d,1-lactide-co-glycolide). J. Control. Release,1996,41:249-257.
    [62]Urban D., Takamura K. Polymer dispersions and their industrial applications. Weinheim:Wiley-VCH.2002.
    [63]Fudouzi H., Xia Y. Photonic papers and inks:color writing with colorless materials. Adv. Mater.,2003,15:892-896.
    [64]Ugelstad J., Stenstad P., Kilaas L., Prestvik W. S., Rian A., Nustad K., Herje R., Berge A. Biochemical and biomedical application of monodisperse polymer particles. Macromol. Symposia,1996,101:491-500.
    [65]张凯,曾敏,雷毅,江璐霞.分散聚合反应.化学通报,2002,65:1-5.
    [66]Hayashi T., Ikada Y. Protease immobilization onto polyacrolein microspheres. Biotechnol. Bioeng.,1990,35:518-524.
    [67]Kawaguchi H., Fujimoto K., Mizuhara Y. Hydrogel microspheres Ⅲ. Temperature-dependent adsorption of proteins on poly-N-isopropylacrylamide hydrogel microspheres. Colloid Polym. Sci.,1992,270(1):53-57.
    [68]何炳林,黄文强.离子交换与吸附树脂,上海:上海科技教育出版社.1995.
    [69]Li G., Yang X., Bai F., Huang W. Raspberry-like composite polymer particles by self-assemble heterocoagulation based on a charge compensation process. J. Colloid Interf. Sci.,2006,297:705-710.
    [70]Li G., Yang X., Wang J. Raspberry-like polymer composite particles via electrostatic heterocoagulation. Colloid Surface A:Phys. Eng. Aspects,2008, 322:192-198.
    [71]Ramos L., Lubensky T. C., Dan N., Nelson P., Weitz D. A. Surfactant-mediated two-dimensional crystallization of colloidal crystals. Science,1999,286: 2325-2328.
    [72]Subramanian V., Wolf E. E., Kamat P. V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc.,2004,126:4943-4950.
    [73]Klein S. M., Manoharan V. N., Pine D. J., Lange F. F. Synthesis of spherical polymer and titania photonic crystallites. Langmuir,2005,21:6669-6674.
    [74]Vlasov Y. A., Bo X., Sturm J. C., Norris D. J. On-chip natural assembly of silicon photonic bandgapcrystals. Nature,2001,414:289-293.
    [75]Holtz J. H., Asher S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature,1997,389:829-832.
    [76]Okubo M., Ichikawa K. Production of anomalous polymer microspheres having uneven surfaces by "stepwise" heterocoagulation technique. Colloid Polym. Sci., 1990,268:791-796.
    [77]Okubo M., Lu Y, Wang Z. Production of soft core/hard shell composite polymer particles by the stepwise heterocoagulation method with heat treatment. Colloid Polym. Sci.,1998,276:833-837.
    [78]Ottewill R. H., Schofield A. B., Waters J. A., Williams N. S. J. Preparation of core-shell polymer colloid particles by encapsulation. Colloid Polym. Sci.,1997, 275:274-283.
    [79]Kulbaba K., Cheng A., Bartole A., Greenberg S., Resendes R., Stover H. D. H. Polyferrocenylsilane microspheres:synthesis, mechanism of formation, size and charge tunability, electrostatic self-assembly, and pyrolysis to spherical magnetic ceramic particles. J. Am. Chem. Soc.,2002,124:12522-12534.
    [80]Yamaguchi K., Ito M., Taniguchi T., Kawaguchi S., Nagai K. Preparation of core-shell composite polymer particles by a novel heterocoagulation based on hydrophobic interaction. Colloid Polym. Sci.,2004,282:366-372.
    [81]Li R., Yang X., Li G., Li S., Huang W. Core-corona polymer composite particles by self-assembled heterocoagulation based on a hydrogen-bonding interaction. Langmuir,2006,22:8127-8133.
    [82]Xia Y. N., Gates B., Yin Y. D., Lu Y. Monodispersed colloidal spheres:old materials with new applications. Adv. Mater.,2000,12:693-713.
    [83]Jiang P., Bertone J. F., Hwang K. S. Single-crystal colloidal multi-layers of controlled thickness. Chem. Mater.,1999,11:2132-2140.
    [84]Gu Z. Z., Fujishima A., Sato O. Fabrication of high-quality opal films with controllable thickness. Chem. Mater.,2002,14:760-765.
    [85]Astratov V. N., Bogomolov V. N., Kaplyanskii A. A. Optical spectroscopy of opal matrices with CdS embedded in its pores:Quantum confinement and photonic band gap effects. Nuovo. Cimento.,1995,17:1349-1354.
    [86]Mayoral R., Requena J., Moya J. S.3D long-range ordering in a SiO2 submicrometer-sphere sintered superstructure. Adv. Mater.,1997,9:257-260.
    [87]Vickreva O., Kalinina O., Kumacheva E. Colloid crystal growth under oscillatory shear. Adv. Mater.,2000,12:110-112.
    [88]Yi G. R., Moon J. H., Yang S. M. Macrocrystalline colloidal assemblies in an electric field. Adv. Mater.,2001,13:1185-1188.
    [89]Xu X., Friedman G., Humfeld K. D., Majetich S. A., Asher S. A. Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids. Chem. Mater.,2002,14:1249-1256.
    [90]Park S. H., Xia Y. Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters. Langmuir,1999,15:266-273.
    [91]Dimitrov A. S., Nagayama K. Continuous convective assembling of fine particles into two-dimenstional arrays on solid surfaces. Langmuir,1996,1:1303-1311.
    [92]Kubo S., Gu Z. Z., Takahashi K., Ohko Y., Sato O., Fujishima A. Control of the optical band strucrure of liquid crystal-infiltrated inverse opal by a photoinduced netmatic-isotropic phase transition. J. Am. Chem. Soc.,2002,124:10950-10951.
    [93]Chen X., Chen Z., Fu N., Lu G., Yang B. Versatile nanopatterned surfaces generated via three-dimensional colloidal crystals. Adv. Mater.,2003,15(17): 1413-1417.
    [94]陈鑫,孙志强,陈志民,张恺,杨柏.双基片垂直沉积法制备稳定的胶体晶体晶片.科学通报,2005,50(4):321-326.
    [95]He X., Ge X., Liu H., Wang M., Zhang Z. Synthesis of cagelike polymer microspheres with hollow core/porous shell structures by self-assembly of latex particles at the emulsion droplet interface. Chem. Mater.,2005,17:5891-5892.
    [96]Velev O. D.; Furusawa K.; Nagayama K. Aaaembly of latex particles by using emulsion droplets as templates.1. Microstructrred hollow spheres. Langmuir, 1996,12:2374-2384.
    [97]Velev O. D., Furusawa K., Nagayama K. Aaaembly of latex particles by using emulsion droplets as templates.2. Ball-like and composite aggregates. Langmuir, 1996,12:2385-2391.
    [98]Velev O. D., Lenhoff A. M., Kaler E. W. A class of microstructured particles through colloidal crystallization. Science,2000,287:2240-2243.
    [99]Manoharan V. N., Elsesser M. T., Pine D. J. Dense packing and symmetry in small clusters of microspheres. Science,2003,301:483-487.
    [100]Cho Y., Yi G., Kim S., Jeon S., Elsesser M. T., Yu H., Yang S., Pine D. J. Particles with coordinated patches or windows from oil-in-water emulsions Chem. Mater.,2007,19:3183-3193.
    [101]Cho Y., Yi G.., Lim J., Kim S., Manoharan V. N., Pine D. J., Yang S. Self-organization of bidisperse colloids in water droplets. J. Am. Chem. Soc.,2005, 127:15968-15975.
    [1]陈胜利,董鹏,袁桂梅,赵俊颖,王晓冬,周倩.亚微米/纳米聚苯乙烯微球粒度标准物质的研制.武汉理工大学学报,2007,29:96-100.
    [2]Mehtal R. C., Thanoo B. C., Deluca P. P. Peptide containing microspheres from low molecular weight and hydrophilic poly(d,l-lactide-co-glycolide). J. Control. Release,1996,41:249-257.
    [3]Perrier C. R., Herogueza V., Thienpontb A., Babotc O., Toupancec T. Functional crosslinked polymer particles synthesized by precipitation polymerization for liquid chromatography. J. Chromatogr. A.,2008,1179:2-8.
    [4]郭红莲,程丙英,张道中.用聚苯乙烯小球模拟生物组织中的光强分布.物理学报,2003,52(2):324-327.
    [5]李建林,刘全俊,陈海华,魏红梅,顾忠泽,陆祖宏,谢笔均.聚苯乙烯光子晶体的制备及其在传感中的应用.化学学报,2006,64:1489-1494.
    [6]Kim K., Kim D. High-performance liquid chromatography separation characteristics of molecular-imprinted poly(methacrylic acid) microparticles prepared by suspension polymerization. J. Appl. Polym. Sci.,2005,96:200-212.
    [7]Li K., Stover H. D. H. Highly crosslinked micron-range polymer microspheres by dispersion polymerization of divinylbenzene. J. Polym. Sci. Part A:Polym. Chem.,1993,31:2473-2479.
    [8]Okubo M., Ikegami K., Yamamoto Y. Preparation of micron-size monodisperse polymer microspheres having chloromethyl group. Colloid Polym. Sci.,1991, 267:193-200.
    [9]Ma G., Sone H., Omi S. Preparation of uniform-sized polystyrene-polyacrylamide composite microspheres from a W/O/W emulsion by membrane emulsification technique and subsequent suspension polymerization. Macromolecules,2004,37: 2954-2964.
    [10]Li K., Stover H. D. H. Synthesis of monodisperse poly(divinylbenzene) microspheres. J. Polym. Sci. Part A:Polym. Chem.,1993,31:3257-3263.
    [11]Li W. H., Stover H. D. H. Mono-or narrow disperse poly(methacrylate-divinylbenzene) microspheres by precipitation polymerization. J. Polym. Sci., Part A:Polym. Chem.,1999,37:2899-2907.
    [12]Frank R. S., Downey J. S., Stover H. D. H. Synthesis of divinylbenzene-maleic anhydride microspheres using precipitation polymerization. J. Polym. Sci., Part A:Polym. Chem.,1998,36:2223-2227.
    [13]Li W. H., Li K., Stover H. D. H. Monodisperse poly (chloromethylstyrene-co-divinylbenzene) microspheres by precipitation polymerization. J. Polym. Sci., Part A:Polym. Chem.,1999,37:2295-2303.
    [14]Shim S., Yang S., Choi H., Choe S. J. Fully crosslinked poly (styrene-co-divinylbenzene) microspheres by precipitation polymerization and their superior thermal properties. J. Polym. Sci., Part A:Polym. Chem.,2004,42:835-845.
    [15]Yang S., Shim S., Choe S. Stable poly(methyl methacrylate-co-divinylbenzene) microspheres via precipitation polymerization. J. Polym. Sci., Part A:Polym. Chem.,2005,43:1309-1311.
    [16]Jin J., Yang S., Shim S., Choe S. Synthesis of poly(acrylamide-co-divinylbenzene) microspheres by precipitation polymerization. J. Colloid Polym. Sci.,2005,43: 5343-5346.
    [17]Yan Q., Bai Y., Meng Z., Yang W. Precipitation polymerization in acetic acid: synthesis of monodisperse cross-linked poly (divinylbenzene) microspheres. J. Phys. Chem. B,2008,112:6914-6922.
    [18]阎青,白耀文,孟哲,杨万泰.乙酸中沉淀聚合制备窄分散聚二乙烯基苯微球.高分子学报,2007,(11):1102-1104.
    [19]胡杰,刘百玲,汪地强.乙醇-水介质中单分散聚甲基丙烯酸甲酯微球的制备.高分子学报,2003,4:540-543.
    [20]范婷,陈建定,黄广建.分散聚合法制备单分散聚苯乙烯微球.功能高分子学报.2007,19-20:172-177.
    [21]Kong X. Z., Gu X. L., Zhu X. L., Zhang L. N. Preparation of microsphere through precipitation polymerization of TMPTA-Styrene in ethanol and ethanol-water mixture. Macromol. Rapid Comm.,2009,30:909-914.
    [22]Goh E. C. C., Stover H. D. H. Cross-linked poly(methacrylic acid-co-poly (ethylene oxide) methyl ether methacrylate) microspheres and microgels prepared by precipitation polymerization:a morphology study. Macromolecules, 2002,35:9983-9989.
    [23]Shim S. E., Yang S., Jin M. J., Chang Y. H., Choe S. Effect of the polymerization parameters on the morphology and spherical particle size of poly(styrene-co-divinylbenzene) prepared by precipitation polymerization. Colloid Polym. Sci.,2004,283:41-48.
    [24]Bai F., Yang X. L., Huang W. Q. A morphological study of poly(divinylbenzene-co-acrylic acid) in crosslinking precipition polymerization. Chinese J. Polym. Sci.,2006,24:163-171.
    [25]Naka Y., Kaetsu I., Yamamoto Y., Hayashi K. Preparation of microspheres by radiation-induced polymerization. Ⅰ. Mechanism for the formation of monodisperse poly(diethylene glycol dimethacrylate) microspheres. J. Polym. Sci., Part A:Polym. Chem.,1991,29:1197-1202.
    [26]Bai F., Yang X., Huang W. Preparation of narrow or monodisperse poly (ethyleneglycol dimethacrylate) microspheres by distillation-precipitation polymerization. Eur. Polym. J.,2006,42:2088-2097.
    [27]Downey J. S., Frank R. S., Li W. H., Stover H. D. H. Growth mechanism of poly (divinylbenzene) microspheres in precipitation polymerization. Macromolecules, 1999,32:2838-2844.
    [28]Shim S. S., Cho Y. H., Yoon J. H., Kim B. K. Effects of silicone monomer on the grating formation of holographic PDLC. Eur. Polym. J.,2009,45:2184-2191.
    [29]杨建文,李峰,田维坚,陆祖康,包正康.分段自相关动态光散射法测量亚微米粒度.光学学报,1998,18:602-606.
    [30]董朝霞,林梅钦,李明远,吴肇亮.光散射技术在研究高分子溶液和凝胶方面的应用.高分子通报,2001,5:25-33.
    [31]腾家炽,贺莉清.光散射中多重散射的实验研究.量子电子学,1994,11:52-53.
    [32]Naka Y., Yamamoto Y Preparation of microspheres by radiation-induced polymerization Ⅱ:Mechanism of microsphere growth. J. Polym. Sci., Part A: Polym. Chem.,1992,30(7):1287-1298.
    [1]Li K., Stover H. D. H. Synthesis of monodisperse poly (divinylbenzene) microspheres. J. Polym. Sci. Part A:Polym. Chem.,1993,31:3257-3263.
    [2]Li W. H., Stover H. D. H. Mono-or narrow disperse poly (methacrylate-divinylbenzene) microspheres by precipitation polymerization. J. Polym. Sci., Part A:Polym. Chem.,1999,37:2899-2907.
    [3]Frank R. S., Downey J. S., Stover H. D. H. Synthesis of divinylbenzene-maleic anhydride microspheres using precipitation polymerization. J. Polym. Sci. Part A: Polym. Chem.,1998,36:2223-2227.
    [4]Li W. H., Li K., Stover H. D. H. Monodisperse poly (chloromethyl styrene-co-divinylbenzene) microspheres by precipitation polymerization. J. Polym. Sci. Part A:Polym. Chem.,1999,37:2295-2303.
    [5]Perrier R., Heroguez V., Thienpont A., Babot O., Toupance T. Functional crosslinked polymer particles synthesized by precipitation polymerization for liquid chromatography. J. Chromatogr. A.,2008,1179:2-8.
    [6]Ha M., Lee K., Choe S. Crosslinkable functional moiety for the formation of highly crosslinked stable microspheres in the precipitation polymerization. Polymer,2008,49:4592-4601.
    [7]Jiang H., Chen H., Liang Y., Liu X. Preparation of monodisperse poly(St-co-PETEA) microspheres by precipitation polymerization using ethanol as solvent. Polym. Advan. Technol.,2010, (DOI:10.1002/pat.1639)
    [8]Naka Y., Kaetsu I., Yamamoto Y., Hayashi K. Preparation of microspheres by radiation-induced polymerization. Ⅰ. mechanism for the formation of monodisperse poly(diethylene glycol dimethacrylate) microspheres. J. Polym. Sci., Part A:Polym. Chem.,1991,29:1197-1202.
    [9]Downey J. S., Frank R. S., Li W. H., Stover H. D. H. Growth mechanism of poly (divinylbenzene) microspheres in precipitation polymerization. Macromolecules, 1999,32:2838-2844.
    [10]顾相伶,朱晓丽,孔祥正,张利娜,谭业邦,鲁毅.乙醇或乙醇-水为新的溶 剂体系沉淀聚合制备单分散聚合物微球.化学学报,2009,67(21):2486-2494.
    [11]范勇恒,张林.多元丙烯酸酯泡沫制备中的溶剂效应.强激光与粒子束,2004,16(2):192-194.
    [12]Shim S. S., Cho Y. H., Yoon J. H., Kim B. K. Effects of silicone monomer on the grating formation of holographic PDLC. Eur. Polym. J.,2009,45:2184-2191.
    [1]Hirokawa Y., Tanaka T. Volume phase transition in a nonionic gel. J. Chem. Phys., 1984,81:6379-6380.
    [2]赵永强.聚(N-异丙基丙烯酰胺)水凝胶微球的合成.天津大学硕士学位论文,2008.
    [3]Kawaguchi H., Fujimoto K., Mizuhara Y. Hydrogel microspheres Ⅲ. Temperature dependent adsorption of proteins on poly-N-isopropylacrylamide hydrogel microspheres. Colloid Polym. Sci.,1992,270(1):53-57.
    [4]Okubo M., Ahmad H. Adsorption of enzymes onto submicron-sized temperature-sensitive composite polymer particles and its activity. Colloid Surface. A:Phys. Chem. Eng. Aspects,1999,153:429-433.
    [5]Qiu Y., Park K. Enviornment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev.,2001,53(3):321-339.
    [6]刘晓华,王晓工,刘德山.智能型水凝胶结构及响应机理的研究进展,化学通报,2000,10:1-6.
    [7]Takeshi S., Kazuaki W. Rapid dewelling of porous poly (N-isopropylacrylamide) hydrogels prepared by incorporation of silica particles. Macromolecules,2002, 35:10-12.
    [8]Pelton R. H., Chibante. P. Preparation of aqueous Iatices with N-isopropylaerylamide. Colloid Surface,1986,20:247-256.
    [9]Nagaoka N., Kubota H., Sarfani A. Synthesis of poly (N-isopropylacrylamide) hydrogels by radiation polymerization and cross-linking. Macromolecules,1993, 26:7386-7388.
    [10]张青松,查刘生,马敬红,梁伯润.N-异丙基丙烯酰胺与丙烯酸叔丁酯共聚微凝胶的温敏性.华东理工大学学报(自然科学版),2006,32(10):1216-1220.
    [11]袁燕华,陈明清,刘晓亚,杨成,倪忠斌.PNIPAAm接枝PAN/PSt热敏性聚合物微球的制备.高分子材料科学与工程,2005,21(5):71-74.
    [12]顾婷.相转变温度范围窄的聚(N-异丙基丙烯酰胺)水凝胶微球的研究.东华大学硕士学位论文,2007.
    [13]黄健,黄志明,包永忠,单国荣,翁志学.表面强化交联聚(N-异丙基丙烯酰胺)水凝胶的温敏和浓缩分离性能.化工学报,2006,57:948-952.
    [14]肖新才,褚良银,陈文梅,王枢,李艳.聚(N-异丙基丙烯酰胺)温敏微球的粒径及单分散性.化工学报,2004,55:321-324.
    [15]马晓梅,朱路,席靖宇,赵喜安,唐小真.含功能性羟基的温敏性聚(N-异丙基丙烯酰胺)微凝胶的制备及性能研究.高分子学报,2005,(2):197-202.
    [16]Meunier F., Elassari A. In colloidal polymer:synthesis and charaeterization, NewYork, Marcel Dekker, INC.2004:117-144.
    [17]Zhang Y., Zha L., Fu S. The kinetic analysis of poly (N-isopropylacrylamide-co-dimethyl aminoethyl methaerylate) microgel latexes formation. J. Appl. Polym. Sci.,2004,92(2):839-846.
    [18]宋江莉,王秀芬.LCST类水凝胶开关效应的研究进展.化学进展,2004,16:56-60.
    [19]谢亚林,司士辉,杨政鹏,李赛,彭芳.牛血清白蛋白在超薄纳米二氧化钛膜表面的印迹与吸附.分析化学,2007,35(4):555-558.
    [1]Ramos L., Lubensky T. C., Dan N., Nelson P., Weitz D. A. Surfactant-mediated two-dimensional crystallization of colloidal crystals. Science,1999,286: 2325-2328.
    [2]Klein S. M., Manoharan V. N., Pine D. J., Lange F. F. Synthesis of spherical polymer and titania photonic crystallites. Langmuir,2005,21:6669-6674.
    [3]Subramanian V., Wolf E. E., Kamat P. V. Catalysis with TiO2/Gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc.,2004,126:4943-4950.
    [4]Feng L., Li S., Li Y., Li H., Zhang L., Zhai J., Song Y., Liu B., Jiang L., Zhu D. Super-hydrophobic surfaces:from natural to artificial. Adv. Mater.,2002,14: 1857-1860.
    [5]Chen X., Chen Z., Fu N., Lu G., Yang B. Versatile nanopatterned surfaces generated via three-dimensional colloidal crystals. Adv. Mater.,2003,15(17): 1413-1417.
    [6]Vlasov Y. A., Bo X., Sturm J. C., Norris D. J. On-chip natural assembly of silicon photonic band gap crystals. Nature,2001,414:289-293.
    [7]Holtz J. H., Asher S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature,1997,389:829-832.
    [8]Okubo M., Ichikawa K. Production of anomalous polymer microspheres having
    uneven surfaces by "stepwise" heterocoagulation technique. Colloid Polym. Sci., 1990,268:791-796.
    [9]Okubo M., Lu Y., Wang Z. Production of soft core/hard shell composite polymer particles by the stepwise heterocoagulation method with heat treatment. Colloid Polym. Sci.,1998,276:833-837.
    [10]Ottewill R. H., Schofield A. B., Waters J. A., Williams N. St. J. Preparation of core-shell polymer colloid particles by encapsulation. Colloid Polym. Sci.,1997, 275:274-283.
    [11]Li G., Yang X., Bai F., Huang W. Raspberry-like composite polymer particles by self-assemble heterocoagulation based on a charge compensation process. J. Colloid Interf. Sci.,2006,297:705-710.
    [12]Li R., Yang X., Li G., Li S., Huang W. Core-corona polymer composite particles by self-assembled heterocoagulation based on a hydrogen-bonding interaction. Langmuir,2006,22:8127-8133.
    [13]Yamaguchi K., Ito M., Taniguchi T., Kawaguchi S., Nagai K. Preparation of core-shell composite polymer particles by a novel heterocoagulation based on hydrophobic interaction. Colloid Polym. Sci.,2004,282:366-372.
    [14]张俊虎,杨柏.基于自组装胶体晶体构筑有序微结构.科学通报,2009,54(6):717-728.
    [15]He, X., Ge, X., Liu, H., Wang, M., Zhang, Z. Synthesis of cagelike polymer microspheres with hollow core/porous shell structures by self-assembly of latex particles at the emulsion droplet interface. Chem. Mater,2005,17:5891-5892.
    [16]Velev, O. D., Lenhoff, A. M., Kaler, E. W. A class of microstructured particles through colloidal crystallization. Science,2000,287,2240-2243.
    [17]Manoharan, V. N., Elsesser, M. T., Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science,2003,301:483-487.
    [18]闫家宾,张玉崑.聚合物物理化学手册.北京:中国石化出版社,1995.
    [19]Naka Y., Kaetsu I., Yamamoto Y., Hayashi K. Preparation of microspheres by radiation-induced polymerization. Ⅰ. mechanism for the formation of monodisperse poly (diethylene glycol dimethacrylate) microspheres. J. Polym. Sci., Part A:Polym. Chem.,1991,29:1197-1202.
    [20]Shim S. S., Cho Y. H., Yoon J. H., Kim B. K. Effects of silicone monomer on the grating formation of holographic PDLC. Eur. Polym. J.,2009,45:2184-2191.
    [21]Yan Q., Zhao T., Bai Y., Zhang F., Yang.W. Precipitation polymerization in acetic acid:study of the solvent effect on the morphology of poly (divinylbenzene). J. Phys. Chem. B,2009,113:3008-3014.
    [22]Li G., Yang X., Wang J. Raspberry-like polymer composite particles via electrostatic heterocoagulation. Colloid Surface A:Phys. Eng. Aspects,2008, 322:192-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700