用户名: 密码: 验证码:
冰层热力学生消过程现场观测和关键参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变暖及其伴随事件,特别是海平面上升,对我国海岸和近海工程会产生一系列影响,气候变化的准确预测是制定适应气候变化工程对策的依据。极区和亚极区海冰和淡水冰是全球气候系统重要组成部分之一,也因其对气候变化的敏感性一直都被当作物候学指标。目前制约海冰或淡水冰生消过程数值模式发展的不在于模式结构本身,除了数值算法的改进,更在于参数化方案的优化。本文以2005年11月至2006年12月中国第22次南极科学考察度夏和越冬期间普里兹湾中山站附近固定冰生消过程的热力学观测数据,以及2009年2月至4月环波罗的海地区芬兰和爱沙尼亚7个淡水湖泊湖冰不同生消阶段的光学观测数据为基础,对冰层生消过程及其关键参数进行了分析研究。作者全程负责上述两个观测项目的现场执行工作。
     第一章评价了全球气候变化及其对我国海岸和近海工程的可能影响;阐述了固定冰和湖冰的研究意义;综述了海冰和淡水冰生消过程、南极固定冰热力学观测、以及湖冰光学性质等议题的研究进展。
     第二章叙述了中山站附近固定冰生消过程的热力学观测以及环波罗的海地区湖冰不同生消阶段的光学观测所涉及的观测技术和现场实施情况。其中中山站附近固定冰热力学现场观测是迄今在普里兹湾海区实施的最为全面的固定冰热力学观测研究。实践中研制了一项基于磁致伸缩原理的冰/雪厚度测量技术,该技术现场测量精度为±2mm,是目前国际上报道精度最高的冰厚观测技术。
     第三章分析了固定冰生消过程,并对积雪热传导系数进行了计算和分析。夏季固定冰边缘线退缩过程与固定冰的消融过程相互促进。2006年固定冰生长期从2月持续到11月。依据高精度的冰厚观测数据首次对南极固定冰生长速率的日内变化进行了分析,结果表明极夜期间观测区域海冰生长率日内变化不明显,极夜前两个月和后两个月冰生长率日内变化明显,午后(12:00~15:00)生长率最低;冰内的热—盐耦合过程使得冰内盐度垂向分布在初冰期从“C-型”发展成“?-型”,该分布类型持续到冰发生消融,之后发展成“I-型”;风吹雪作用明显,使得积雪厚度较小,并以新雪为主,其热传导系数季节变化不明显。
     第四章基于剩余能量法利用冰生消和冰温廓线观测数据计算了中山站附近固定冰冰底海洋热通量,这是首次完全依据实测数据对东南极普里兹湾冰底海洋热通量的计算研究。冰底海洋热通量存在明显的季节变化,初冰期4月为11.8(±3.5)W/m~2,其后逐渐下降,最低值出现在9月,其值为1.9(±2.4)W/m~2,低水平的海洋热通量持续到11月中旬,之后迅速升高。海洋热通量的季节变化趋势与普里兹湾海冰密集度的季节变化趋势一致。除了海洋热通量趋于0W/m~2或冰生消趋于平衡的时期,引入海洋热通量能使斯蒂芬冰生长模式计算结果更好地逼近观测值。
     第五章讨论了对应光合作用有效辐射(Photosynthetically Active Radiation,PAR)的雪/冰光学特性与其层理结构的关系;评价了积雪层对冰层光通量乃至冰生消过程的影响;首次定量地比较了雪层、粒状冰层以及柱状冰层光学性质的差异;并对环波罗的海地区湖冰和中山站附近固定冰的生消过程进行了简单的对比分析。冰层PAR透射率主要受制于积雪层,当积雪层被清理后或随着春季到来逐渐融化后,冰层的PAR透射率显著增大。从冬季到春季,雪面反照率和雪层的消光系数都逐渐下降,但前者更为明显,春季雪面反照率约为冬季的1/4。冰层的消光系数只有积雪层的1/10~1/3,粒状冰层消光系数是柱状冰层消光系数的2~3倍,冰层的消光系数主要取决于粒状冰层的厚度比例。对于环波罗的海地区湖冰,积雪的隔热作用以及雪冰形成对冰层生消的影响不能忽视;积雪对中山附近固定冰的生长影响不大,没有雪冰形成。环波罗的海地区湖冰冰底来自水体的热通量季节变化平稳,短期变化不明显;中山站附近固定冰区冰底海洋热通量无论季节变化还是短期变化都十分强烈。
     本文给出的分析结果能为冰生消数值模式提供计算背景值和验证数据,并能为优化冰生消数值模式的参数化方案和完善天气气候模式中的冰模式提供支持。
Global warming and its resulting events, special for sea level rising, would make some directly or indirectly impacts on costal and offshore engineers in China. Reasonable forecast of climatic change is crucial to put forward corresponding policy. Sea ice and fresh ice in polar or sub-polar regions are primary factors in global climate system; also serve as proxy climate records as their sensitivity to climatic change. The optimization of parameterization and the arithmetic are more important than the model strategy to develop the ice thermodynamic model. Based on the data derived from the field campaigns of landfast sea-ice thermodynamic observation off Zhongshan Station in Prydz Bay, East Antarctica from November 2005 to December 2006, and lake-ice optical observation in seven lakes located in the drainage basin of Baltic Sea (with 5 lakes in Finland and 2 lakes in Estonia) from February to April, 2009, the growth and decay processes of ice cover have been studied. Some key thermodynamic parameters have been quantified and analyzed. The author took all field works involved in this study.
     In the first chapter, global warming and its possible impacts on coastal and offshore engineers in China were evaluated. Significance of study on landfast sea ice and lake ice has been explored. Studies on the growth and decay processes of sea ice and fresh ice, field work of landfast sea-ice thermodynamic observation in Antarctica, and lake-ice optical properties have been reviewed.
     In the second chapter, the field campaigns and the involved monitoring techniques of landfast sea-ice thermodynamic observation off Zhongshan Station and lake-ice optical observation in the drainage basin of Baltic Sea have been presented. The former field campaign is characterized as the most comprehensive one for landfast sea-ice thermodynamic study in Prydz Bay to date. A new apparatus for monitoring sea-ice and snow thickness has been developed based on the magnetostrictive-delay-line principle. The apparatus has a precision of±2 mm, which is higher than that of the previous techniques for monitoring ice thickness.
     In third chapter, the growth and decay processes of landfast ice off Zhongshan Station have been studied. The thermal conductivity of snow cover has been quantified based on the air-snow-ice temperature profile. The recoiling of fast-ice marginal line toward the shore promoted the decay of landfast sea ice during summer, and vice versa. Ice-growth season lasted from February to November in 2006. The first step to study intraday variation in ice-growth rate for Antarctic landfast ice has been launched based on the field data of ice thickness with high resulotion. The results show that there was no obvious intraday variation in ice-growth rate during polar night, while an obvious minimal ice-growth rate can be detected at postmeridiem (12:00~15:00) during the two months preceding or after the polar night. The ice salinity profile was a "C-shape" profile, and then turned into a "?-shape" profile after brine drainage due to warm air and ice temperatures around March, this profile was kept to November, when melt-onset turned it into a "I-shape" profile. Strong winds and the consequent blowing snow played a pivotal role for snow redistribution at the experimental site, which resulted in a relatively thin snow cover on the ice. The thermal conductivity of the snow did not exhibit any seasonal dependence.
     In the fourth chapter, based on the so-called residual method, ice temperature profiles, combined with measurements of ice bottom ablation or accretion were used to estimate oceanic heat flux under landfast ice off Zhongshan Station, which is the first time to using this method to estimate oceanic heat flux under landfast ice in Prydz Bay completely based on the field data. The oceanic heat flux decreased from initial values of 11.8(±3.5)W/m~2 in April to an annual minimum in September with a value of 1.9(±2.4)W/m~2. It remained low through to late November, in mid December it increased sharply. The seasonal evolvement of the oceanic heat flux was similar with that of sea-ice concentration in Prydz Bay. Taking into account the oceanic heat, the calculated ice growth based on the Stefan's Law improved except at times when the oceanic heat or the ice-growth rate approaching to zero.
     In the fifth chapter, the relationship between snow/ice optical properties related to the spectral region of photosynthetically active radiation (PAR) and their stratigraphical structure has been discussed based on lake-ice observation in the drainage basin of Baltic Sea, The optical properties of snow, granular ice and columnar ice have been compared quantitatively. The growth and decay processes of lake ice in the drainage basin of Baltic Sea have been compared in brief with those of landfast ice off Zhongshan Station. The PAR flux through ice cover was controlled by snow principally. When snow was removed or melted as the spring coming, the PAR flux would increase distinctly. The decline of snow albedo was more notable than that of snow extinction coefficient as spring coming. The snow albedo in spring was one fourth that in winter. Extinction coefficient of ice was about one tenth to on third that of snow, which was determined by the thickness ratio of granular ice basically as extinction coefficient of granular ice was twice to trebly that of columnar ice. The snow cover and the formation of snow ice complexed the ice growth and decay for the lake ice in the drainage basin of Baltic Sea, while as the snow was thin and no snow ice occurred over the landfast ice off Zhongshan Station, snow cover cannot make a significant impact on the ice growth and decay. The season vatiations in the heat from water under the lake ice in the drainage basin of Baltic Sea was stable and no short-term change can be detected. While, both the season vatiations and short-term changes in the oceanic heat under landfast ice off Zhongshan Station were vary distinct.
     The results derived from this study can provide background data and validation data for numerical simulation on the growth and decay processes of ice, support the optimization of the parameterization for ice thermodynamic modelling, and support the development of ice thermodynamic model coupled in the synoptic and climatic model.
引文
[1]IPCC,WGI.The IPCC WGII Fourth Assessment Report:Summary for Policymakers[EB/OL].2007,Http://www.ipcc.ch.
    [2]郑桂眉,杨宏.暖冬何以频繁出现[J].环境保护与循环经济,2008,28(2):64.
    [3]Stroeve J,Serreze M,Drobot S,et al.Arctic sea ice extent plummets in 2007[J].EOS Transactions American Geophysical Union,2008,89(2):13-14.
    [4]Comiso J C,Parkinson C L,Cersten R,et al.Accelerated decline in the Arctic sea ice cover[J].Geophysical Research Letters,2008,35(L01703),doi:10,1029/2007GL031972.
    [5]Rothrock D A,Yu Y,Maykut G A.Thinning of the arctic sea-ice cover[J].Geophysical Research Letters,1999,26(23):3469-3472.
    [6]Magnuson J J,Robertson D M,Benson B J,et al.Historical trends in lake and river ice cover in the Northern Hemisphere,Science[J].2000,289(5485):1743-1746.
    [7]Robinson D.Hemisphere snow cover and surface albedo for model validation[J].Annals of Glaciology,1997,25:241-245.
    [8]刘钦政,黄嘉佑,白珊,等.渤海冬季海冰气候变异的成因分析[J].海洋学报,2004,26(2):11-19.
    [9]王昕,雷瑞波,孔祥鹏,等.辽东湾近岸堆积冰表面形态特征分析[J].海洋通报,2008,27(5):18-22.
    [10]王颖,吴小根.海平面上升与海滩侵蚀[J].地理学报,1995,50(2):118-127.
    [11]宋春印,范志杰.太平洋海平面升高向人类敲响了警钟[J].海洋信息,1990,3:25-25.
    [12]国家海洋局.2008年中国海平面公报[EB/OL].2009,http://www.soa.gov.cn/hyjww/ml/pm/1b/webinfo/2009/03/1225332552975341.htm.
    [13]中国科学院地学部.海平面上升对中国三洲地区的影响及对策[M].北京:科学出版社,1994.
    [14]Bruun,P.Sea-lever rise as a cause of shore erosion[J].Journal of the Waterways,Harbors and Coastal Engineering Division,1962,88(ww1):117-130.
    [15]周健,丛林.相对海平面对上海沿海重大工程的影响分析[J].工程地质学报,2000(增):20-26.
    [16]杨桂山.中国热带气旋灾害及全球变暖背景下的可能趋势分析[J].自然灾害学报,1996,5(2):47-55.
    [17]Bengtsson L.Mixing in ice-covered lakes[J].Hydrobiologia,1996,322(1-3):91-97.
    [18]Fedotov V I,Cherepanov N V,Tyshko K P.Some features of the growth,structure and metamorphism of East Antarctic landfast ice[C]//Jeffries M O.Antarctic Sea Ice Physical Processes, Interactions, and Variability, Antarctic Research Series, edited by, AGU, Washington, D. C. 1998, 74: 141-160.
    [19] Giles A B, Massom R A, Lytle V I. Fast-ice distribution in East-Antarctica during 1997 and 1999 determined using RADARSAT data [J]. Journal of Geophysical Research, 2008, 113(C02S14), doi:10. 1029/2007JC004139.
    [20] Heil P. Atmospheric conditions and fast ice at Davis, East Antarctica: A case study [J]. Journal of Geophysical Research, 2006, 111(C05009), doi:10. 1029/2005JC002904.
    [21] Dumas J, Carmack E, MellingH. Climate change impacts on the Beaufort shelf landfast ice [J]. Cold Regions Science and Technology, 2005, 42(1): 41-51.
    [22] Divine D V, Korsnes R, Makshtas A P, et al. Atmospheric-driven state transfer of shore-fast ice in the northeastern Kara Sea [J]. Journal of Geophysical Research, 2005, 110(C09013), doi:10. 1029/2004JC002706.
    [23] Shirasawa K, Lepparanta M, Saloranta T, et al. The thickness of coastal fast ice in the Sea of Okhotsk [J]. Cold Regions Science and Technology, 2005, 42(1): 25-40.
    [24] Blenckner T, Javinen M, Weyhenmeyer G A. Atmospheric circulation and its impact on ice phenology in Scandinavia [J]. Boreal Environment Research, 2004 9:371 - 380.
    [25] Lepparanta M, Reinart A, Erm A, et al. Investigation of ice and water properties and under-ice light fields in fresh and brackish water bodies [J]. Nordic Hydrology, 2003, 34(3): 245-266.
    [26] Mironov D, Terzhevik A, Kirillin G, et al. Radiatively driven convection in ice-covered lakes: Observations, scaling, and a mixed layer model [J], Journal of Geophysical Research, 2002, 107 (C4), 3032, doi:10. 1029/2001JC000892.
    [27] Livingstone D M. Lake oxygenation: application of a one-box model with ice cover [J]. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 1993, 78(4): 465-480.
    [28] Gerten D, Adrian R. Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation [J]. Limnology and Oceanography, 2000, 45(5), 1058-1066.
    [29] Vavrus S J, Wynne R H, Foley J A. Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model [J]. Limnology and Oceanography, 1996, 41(5), 822-831.
    [30] Ruosteenoja K. The date of break-up of lake ice as a climatic index [J]. Geophysica, 1986, 22(1-2): 89-99.
    [31] Livingstone D M. Break-up dates of alpine.lakes as proxy data for local and regional mean surface air temperatures [J]. Climatic Change, 1997, 37: 407-439.
    [32] Livingstone D M. Ice break-up on southern Lake Baikal and its relationship to local and regional air temperatures in Siberia and to the North Atlantic oscillation [J]. Limnology and Oceanography, 1999, 44(6), 1486-1497.
    [33] Lepparanta M, Kosloff P. The thickness and structure of Lake Paajarvi ice [J]. Geophysica, 2000, 36(1-2): 233-248.
    [34] Stefan J. Ober die Theorie der Eisbildung, isbesondere uber die Eisbildung im Polarmeere [J]. Annales de Physique, 1891, 42: 269-286.
    [35] Yen Y C. Review of thermal properties of snow, ice and sea ice [R].Cold Regions Research and Engineering Laboratory Report 81-10, Hanover, New Hampshire, 1981: 1-27.
    [36] Untersteiner N. On the mass and heat budget of Arctic sea ice, Archivfur Meteorologie [J]. Geophysik und Bioklimatologie, Series A, 1961, 12: 151-182.
    [37] Ono N. Thermal properties of sea ice:IV, Thermal constants of sea ice [J]. Low Temperature Science Series A, 1968, 26: 329-349.
    
    [38] Zubov N N. L'dy Arktiki [Arctic Ice] [M]. Istatel'stvo Glasevmorputi, Moscow, 1945.
    [39] Lepparanta M. A review of analytical sea-ice growth models [J]. Atmosphere-Ocean, 1993, 31(1): 123-138.
    [40] Anderson D L. Growth rate of sea ice [J]. Journal of Glaciology, 1961, 3(30): 1170-1172.
    [41] Untersteiner N. Calculations of temperature regime and heat budget of sea ice in the central Arctic [J]. Journal of Geophysical Research, 1964, 69(22): 4755-4766.
    [42] Maykut G A, Untersteiner N. Some results from a time dependent thermodynamic model of sea ice [J]. Journal of Geophysical Research, 1971, 76(6): 1550-1575.
    [43] Semtner A J. A model for the thermodynamic growth of sea ice in numerical investigation of climate [J]. Journal of Physical Oceanography. 1976, 6: 379-389.
    [44] Parkinson C L, Washington W M. A large-scale numerical model of sea ice [J]. Journal of Geophysical Research, 1979, 84(C1): 311-337.
    [45] Hibler W D. A dynamic thermodynamic sea ice model [J]. Journal of Physical Oceanography, 1979, 9:815-846.
    [46] Lepparanta M. A growth model for black ice, snow ice and snow thickness in subarctic basins [J]. Nordic Hydrology, 1983: 59-70.
    [47] Saloranta T. Modelling the evolution of snow, snow ice and ice in the Baltic Sea [J]. Tellus, 2000, 52A: 93-108.
    [48] Maykut G A, McPhee M G. Solar heating of the Arctic mixed layer [J].Journal of Geophysical Research, 1995, 100(C12):24691-24703.
    [49] Heil P, Allison I, Lytle V I. Seasonal and interannual variations of the oceanic heat flux under a landfast Antarctic ice cover [J]. Journal of Geophysical Research, 1996, 101(C11): 25741-25752.
    [50] Ebert E E, Curry J A. An Intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interaction [J]. Journal of Geophysical Research, 1993, 98 (C6): 10085-10109.
    [51] Launiainen J, Cheng B. Modelling of ice thermodynamics in natural water bodies [J]. Cold Regions Science and Technology, 1998, 27(3): 153-178.
    [52] Bitz C M, Lipscomb W H. An energyconserving thermodynamic model of sea ice [J]. Journal of Geophysical Research. 1999, 104(C7): 15669-15677.
    [53] Vancoppenolle M, Fichefet T, Bitz C M. On the sensitivity of undeformed Arctic sea ice to its vertical salinity profile [J]. Geophysical Research Letters, 2005, 32(L16502), doi:10.1029/2005GL023427.
    [54] Cheng B. On the numerical resolution in a thermodynamic sea ice model [J]. Journal of Glaciology, 2002, 48(161): 301-311.
    [55] Cheng B, Zhang Z, Vihma T, et al. Model experiments on snow and ice thermodynamics in the Arctic Ocean with CHINARE 2003 data [J]. Journal of Geophysical Research, 2008, 113(C09020), doi:10. 1029/2007JC004654.
    [56] Perovich D K. The optical properties of the sea ice [M]// Lepparanta M. Physics of ice-covered seas. Helsinki University Printing House, Helsinki, 1998: 195-230.
    [57] Perovich D K. Light reflection from sea ice during the onset of melt [J]. Journal of Geophysical Research, 1994, 99(C2), 3351-3359.
    [58] Perovich D K, Grenfell T C, Light B, et al. Seasonal evolution of the albedo of multiyear Arctic sea ice [J]. Journal of Geophysical Research, 2002, 07(C10), 8044, doi:10. 1029/2000JC000438.
    [59] Rasmus K, Ehn J, Granskog M, et al. Optical measurements of sea ice in the Gulf of Finland [J]. Nordic Hydrology, 2002, 33(2/3): 207-226.
    [60] Ehn J, Granskog M A, Papakyriakou T, et al. Surface albedo observations of Hudson Bay landfast sea ice during the spring melt [J]. Annals of Glaciology, 2006, 44: 23-29.
    [61] Untersteiner N. On the mass and heat budget of arctic sea ice [J]. Meteorology and Atmospheric Physics, 1961, 12(2): 150-182.
    [62] Grenfell T C, Maykut G A. The optical properties of ice and snow in the Arctic Basin [J]. Journal of Glaciology, 1977, 18(80): 445-463.
    [63] Perovich D K. The optical properties of sea ice [R]. Cold Regions Research and Engineering Laboratory Report 96-1, Hanover, New Hampshire, 1996: 22.
    [64] Huwald H, Tremblay L -B, Blatter H. Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes [J]. Journal of Geophysical Research, 2005, 110(C05009), doi:10.1029/2003JC002221.
    [65] Parkinson C L, Good M R. Sensitivity of a climatologically-driven sea ice model to the ocean heat flux [R]. NASA Technological Report (NASA-TM-83877), 1982: 29.
    [66] Perovich D K, Elder B C. Estimates of ocean heat flux at SHEBA [J]. Geophysical Research Letters, 2002, 29(9), 1344, doi:10. 1029/2001GL014171.
    [67] Wettlaufer J S. Heat flux at the ice-ocean interface [J]. Journal of Geophysical Research, 1991, 96(C4): 7215-7236.
    [68] Shirasawa K, Ingram R, Hudier E. Oceanic heat fluxes under thin sea ice in Saroma-ko Lagoon Hokkaido, Japan [J]. Journal of Marine Systems, 1997, 11(1-2): 9-19.
    
    [69] 季顺迎,岳前进.辽东湾冰期海洋热通量的确定与分析[J].海洋通报,2000,19(2):8—14.
    [70] Lytle V I, Ackley S F. Heat flux through sea ice in the western Weddell Sea: Convective and conductive transfer processes [J]. Journal of Geophysical Research, 1996, 101(C4): 8853-8868.
    [71] Allison I. Antarctica ice growth and oceanic heat flux [C]. IAHS Publish, 1981, 131:161-170.
    [72] Purdie C R, Langhorne P J, Leonard G H, et al. Growth of first-year landfast Antarctic sea ice determined from winter temperature measurements [J]. Annals of Glaciology, 2006, 44(1): 170-176.
    [73] Wadhams P. Atmosphere - ice - ocean interactions in the Antarctic [M]// Harris C M, Stonehouse B. Antarctica and Global Climate Change. Belhaven Press, London, UK, 1991: 65-81.
    [74] Ashton G. River and lake ice engineering [M]. Water Resources Publications, Littleton, Colorado, USA, 1986.
    [75] Lepparanta M, Uusikivi J. The Annual Cycle of the Lake Paajarvi Ice [R], Lammi Notes 29, 2002.
    [76] Reid A, Crout N. A thermodynamic model of freshwater Antarctic lake ice [J]. Ecological Modelling, 2008, 210: 231-241.
    [77] Kawamura T, Ohshima K I, Takizawa T, et al. Physical, structural, and isotopic characteristics and growth processes of fast sea ice in Lutzow-Holm Bay, Antarctica [J]. Journal of Geophysical Research, 1997,. 102(C2): 3345-3355.
    [78]Pringle D J, Trodahl H J, Haskell T G. Direct measurement of sea ice thermal conductivity: no surface reduction [J]. Journal of Geophysical Research, 2006, 11KC05020), doi:10. 1029/2005JC002990.
    [79]秦大河.南极洲乔治王岛长城湾一年生海冰的发育特征和物理性质[J].冰川冻土,1991,13(2):115-130.
    [80]张青松.南极大陆东部戴维斯站地区海冰观测[J].冰川冻土,1986,8(2):143-148.
    [81]何剑锋,陈波.南极中山站近岸海冰生态学研究Ⅰ.1992年冰藻生物量的垂直分布及季节变化[J].南极研究,1995,7(4):53-64.
    [82]张林,程展,任北期,等.南极普里兹湾海冰数值模拟试验[J].海洋学报,2000,22(1):131-135.
    [83]Tang S L,Qin D H,Ren J W,et al.Structure,salinity and isotopic composition of multi-year landfast sea ice in Nella Fjord,Antarctica[J].Cold Regions Science and Technology,2007,49(2):170-177.
    [84]Lu P,Li Z,Zhang Z,et al.Aerial observations of floe size distribution in the marginal ice zone of summer Prydz Bay[J].Journal of Geophysical Research,2008,113(C02011),doi:10.1029/2006JC003965.
    [85]Hell P,Allison I.Manual to Observations of Coastal Fast Ice[R/OL].2004,http://staff.acecrc.org.au/~p_heil.
    [86]窦银科,常晓敏,秦建敏.电阻率冰厚监测装置在南极海冰考察中的应用[J].太原理工大学学报,2006,37(4):454-456.
    [87]Grenfell T C,Perovich D K.Spectral albedos of sea ice and incident solar irradiance in the Southern Beaufort Sea[J].Journal of Geophysical Research,1984,89(C3),3573-3580.
    [88]Bolsenga S J.Spectral reflectances of snow and fresh- water ice from 340 through 1100 nm[J].Journal of Glaciology,1983,29(102):296-305.
    [89]Henneman H E,Stefan H G.Albedo models for snow and ice on a freshwater lake[J].Cold Regions Science and Technology,1999,29:31-48.
    [90]Gray D M,Landine P G.Albedo model for shallow prairie snow covers[J].Canadian Journal of Earth Sciences,1987,24(9):1760-1768.
    [91]Kondo J,Yamazaki T.A prediction model for snowmelt,snow surface temperature and freezing depth using a heat balance method[5].Journal of Applied Meteorology,1990,29:375-384.
    [92]Baker D G,Ruschy D L,Wall D B.The albedo decay of prairie snows[J].Journal of Applied Meteorology,1990,29(2):179-187.
    [93]Winther J.Short-and long-term variability of snow albedo[J].Nordic Hydrology,1993,24:199-212.
    [94]Ehn J,.Granskog M A,Reinart A,et al.Optical properties of.melting landfast sea ice and underlying seawater in Santala Bay,Gulf of Finland[J].Journal of Geophysical Research,2004,109(C09003),doi:10.1029/2003JC002042.
    [95]Bolsenga S J.Radiation transmittance through lake ice in the 400-700nm range[J].Journal of Glaciology,1981,27(95):57-66.
    [96]Wang C,Shirasawa K,Lepp(a|¨)ranta M,et al.Solar radiation and ice heat budget during winter 2002-2003 in Lake P(a|¨)(a|¨)j(a|¨)rvi,Finland[J].Verh International Verein himnology,2005,29,414-417.
    [97]Arst H,Erm A,Herlevi,et al.Optical properties of boreal lake water in Finland and Estonia[J].Boreal Environment Research,2008,13:133-158.
    [98]许大志,曹文熙,孙兆华.辽东湾海冰光衰减特性[J].海洋通报,2007,26(1):12-19.
    [99]赵进平,李涛,李淑江,等.北极海冰人造光源实验的光场结构和实验方案优化[J].极地研究,2008,20(3):287-298.
    [100]赵进平,李涛,张树刚,等.北冰洋中央密集冰区海冰对太阳短波辐射能吸收的观测研究[J].地球科学进展,2009,24(1):33-41.
    [101]陆龙骅,卞林根,逯昌贵.近20年中国南极科学考察的气象业务进展[J].气象,2005,31(1):3-8.
    [102]李志军.中国第19次南极科学考察中海冰调查技术介绍[J].冰川冻土,2003,25(S2):210-213.
    [103]Dong Z.Chinese Scientific Contributions to IPY2007-2008[R].Oral presentations in the International Symposium,Asian Collaboration in IPY 2007-2008,Science Council of Japan,Tokyo,Japan,2007.
    [104]Stone R.Long(and Perilous) March heralds China's rise as polar research power [J].Science,2007,315(5818):1516.
    [105]Perovich D K,Grenfell T C,Richter-Menge J A,et al.Thin and thinner:sea ice mass balance measurements during SHEBA[J].Journal of Geophysical Research,2003,108(C3),8050,doi:10,1029/2001J0O01079.
    [106]Perovich D K,Richter-Menge J A.From points to poles:Extrapolating point measurements of sea-ice mass balance[J].Annals of Glaciology,2006,44:188-192.
    [107]Richter-Menge J A,Perovich D K,Elder B C,et al.Ice mass-balance buoys:A tool for measuring and attributing changes in the thickness of the Arctic sea-ice cover [J].Annals of Glaciology,2006,44:205-210.
    [108]Laxon S,Peacock N,Smith D.High interannual variability of sea ice thickness in the Arctic region[J].Nature,2003,425:947-950.
    [109]Sun B,Wen J,He M,Kang J,et al.Sea ice thickness measurement and its underside morphology analysis using radar penetration in the Arctic Ocean[J].Science in China Series D,2003,46(1):1151-1160.
    [110]Haas C.Evaluation of ship-based electromagnetic-inductive thickness measurements of summer sea-ice in the Bellingshausen and Amundsen Seas,Antarctica [J].Cold regions science and technology,1998,27(1):1-16.
    [111]郭井学,孙波,田钢,等.南极普里兹湾海冰厚度的电磁感应探测方法研究[J].地球物理学报.2008,51(2):596-602.
    [112]Strass V H.Measuring sea ice draft and coverage with moored upward looking sonars [J].Deep-sea research,Part 1,1998,45:795-818.
    [113]崔华义,郭纪捷.相关技术在冰水界面测量中的应用[J].海洋技术,2004,23(1):35-37.
    [114]Hristoforou E,Chiriac H,M.Neagu,et al.On the calibration of position sensors based on magnetic delay lines[J].Sensors and Actuators A,59,1997:89-93.
    [115]Hristoforou E,Chiriac H.Position measuring system for applications in field sports[J].Journal of magnetism and magnetic materials,2002,249:407-410.
    [116]Hristoforou E,Dimitropoulos P D,Petrou J.A new position sensor based on the MDL technique[J].Sensors and Actuators A,2006,132:112-121.
    [117]潘日敏,杨永才,虞翔.基于DSP的磁致伸缩传感器位移测量研究[J].仪器仪表学报,2005,26(S8):354-356.
    [118]Worby A.Observing Antarctic sea ice:a practical guide for conducting sea ice observations from vessels operating in the Antarctic pack ice[R]// A CD - ROM produced for the Antarctic Sea Ice Processes and Climate(ASPeCt) Program of the Scientific Committee for Antarctic Research(SCAR) Global Change and the Antarctic (GLOCHANT) Program,Hobart,Australia,1999.
    [119]Richard J H,Nick H,Peter W.A systematic method of obtaining ice concentration measurements from ship-based observations[J].Cold Regions Science and Technology,2002,34(2):97-102.
    [120]卢鹏,李志军,董西路,等.基于遥感影像的北极海冰厚度和密集度分析方法[J].极地研究,2004,16(4):317-323.
    [121]Timco G W,Frederking R M W.A review of sea ice density[J].Cold Regions Science and Technology,1996,14(1):1-6.
    [122]冯守珍.南极中山站附近海域水深地形特征[J].极地研究,2004,16(1):75-80.
    [123]Parkinson C L.Interannual variability of monthly southern ocean sea ice distributions[J].Journal of Geophysical Research,1992,97(C4):5349-5363.
    [124]解思梅,魏立新,郝春江,等.南极海冰和陆架冰的变化特征[J].海洋学报,2003,25(3):33-46.
    [125]List of lakes in Finland[EB/OL].2009,http://en.wikipedia.org/wiki/List_of_lakes_in_Finland.
    [126]K(a|¨)rk(a|¨)s E.The ice season of Lake P(a|¨)(a|¨)j(a|¨)rvi in southern Finland[J].Geophysica,2000,36(1-2),85-94.
    [127] Reinart A, Parn O. Ice conditions of a large shallow lake (Lake Peipsi) determined by observations, an ice model, and satellite images [J]. Proceedings of the Estonian Academy of Sciences. Biology, Ecology, 2006, 55(3): 243-261.
    
    [128] Noqes T. Reflection of the changes of the North Atlantic Oscillation Index and the Gulf Steam Position Index in the hydrology and phytoplankton of Vortsjarv, a large, shallow lake in Estonia [J]. Boreal Environment Research, 2004, 9: 401-407.
    
    [129] Wang K, Lepparanta M, Reinart A. Modeling ice dynamics in Lake Peipsi[J]. Verh International Verein Limnology, 2006, 29: 1443-1446.
    
    [130] Allison I, Brandt R E, Warren S G. East Antarctic sea ice: aledo, thickness distribution, and snow cover [J]. Journal of Geophysical Research, 1993, 98(C7): 12417-12429.
    
    [131] 肖晖,黄自强,杨绪林,等.1998~1999年南极中山站气象要素变化特征[J].台湾海峡,2003,22(2):237—241.
    [132] McPhee M G, Morison J H, Nilsen F. Revisiting heat and salt exchange at the ice-ocean interface: ocean flux and modeling considerations [J]. Journal of Geophysical Research. 2008, 113(C06014), doi:10. 1029/2007JC004383.
    [133] Eicken H. Salinity profiles of Antarctic sea ice: field data and model results [J]. Journal of Geophysical Research, 1992, 97(C10): 15545-15557.
    [134] Wettlaufer J S, Worster M G, Huppert H E. The phase evolution of young sea ice [J].Geophysical Research Letters, 1997, 24(10):1251-1254.
    [135] Notz D, Worster M G. In situ measurements of the evolution of young sea ice [J]. Journal of Geophysical Research, 2008,113(C03001), doi:10.1029/2007JC004333.
    [136] Golden K M, Ackley S F, Lytle V I. The percolation phase transition in sea ice [J]. Science, 1998, 282(5397): 2238-2241.
    [137] Notz D, Worster M G. Desalination processes of sea ice revisited [J]. Journal of Geophysical Research, 2009, 114(C05006), doi:10. 1029/2008JC004885.
    [138] Cottier F, Eicken H, Wadhams P. Linkages between salinity and brine channel distribution in young sea ice[J]. Journal of Geophysical Research, 1999, 104(C7): 15859 -15871.
    [139] Sturm M, Perovich D K, Holmgren J. Thermal conductivity and heat transfer through the snow on the ice of the Beaufort Sea [J]. Journal of Geophysical Research, 2002, 107(C10), 8043, doi:10. 1029/2000JC000409.
    [140] Abel's G. Beobachtungen der taglichen periode der temperatur im schnee und bestimmung des warmeleitungsvermogens des schnees als funktion seiner dichtigkeit [R]. Kaiserliche Akademie der Wissenschaften, Repertorium fur Meteorologie, 1893,16: 1-53.
    [141] Sturm M, Holmgren J, Konig M, et al. The thermal conductivity of seasonal snow [J]. Journal of Glaciology, 1997, 43(143): 26-41.
    [142] Perovich D K, Elder B C, Richter-Menge J A. Observations of the annual cycle of sea ice temperature and mass balance [J]. Geophysical Research Letters, 1997, 24(5): 555-558.
    [143] Zhang T, Osterkamp T E. Considerations in determining thermal diffusivity from temperature time series using finite difference methods [J]. Cold Regions Science and Technology, 1995, 23(4): 333-341.
    [144] McPhee M G, Maykut G A, Morison J H. Dynamics and thermodynamics of the ice/upper ocean system in the Marginal Ice Zone of the Greenland Sea [J]. Journal of Geophysical Research, 1987, 92 (C7): 7017-7031.
    [145] McPhee M G. Turbulent heat flux in the upper ocean under sea ice [J]. Journal of Geophysical Research, 1992, 97 (C4): 5365-5379.
    [146] McPhee M G, Untersteiner N. Using sea ice to measure vertical heat flux in the ocean [J] Journal of Geophysical Research, 1982, 87(C3): 2071-2074.
    [147] Lytle V I, Massom R, Bindoff N, et al. Wintertime heat flux to the underside of east Antarctic pack ice [J]. Journal of Geophysical Research, 2000, 105(C12): 28759-28769.
    [148] Notz D, Wettlaufer J S, Worster M G. A non-destructive method for measuring the salinity and solid fraction of growing sea ice in situ [J]. Journal of Glaciology, 2005, 51(172): 159-166.
    [149] Jakkila J, Lepparanta M, Kawamura T, et al. Radiation transfer and heat budget during the ice season in Lake Paajarvi, Finland [J]. Aquatic Ecology, doi:10. 1007/sl0452-009-9275-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700