用户名: 密码: 验证码:
扎龙湿地草甸土壤微生物与土壤昆虫群落及其相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地生态系统与森林、海洋一起并称为全球三大生态系统,是自然界最富生物多样性和最具生产力的生态系统之一,因其巨大的生产功能和生态环境效益而被誉为“人类摇篮”、“生物基因库”和“自然之肾”。扎龙湿地是中国北方地区保持最完整、最原始的湿地生态系统,其在涵养水源、均化洪水、降解水质、调节气候、保护生物多样性等方面发挥着重要的作用。目前,系统综合评述扎龙湿地草甸土壤微生物与土壤昆虫群落及其相关性的研究尚未报道。本研究以土壤微生物与土壤昆虫的种间关系为依托,在探讨土壤微生物特性与土壤昆虫种群动态的基础上,揭示土壤微生物与土壤昆虫群落的相关性及实现两者相关性的主要环境因子,以期为进一步研究扎龙湿地草甸土壤肥力变化与养分转化及扎龙湿地健康评价等提供科学依据,对湿地生物资源开发和湿地环境保护具有重要意义。
     本研究以扎龙湿地草甸生境为研究对象,采取野外调查与室内试验测试相结合的研究方法,选取了扎龙湿地内吐木台、管理局、烟筒屯、育苇场4个研究地,于2011年5月、7月、9月、11月,对土壤微生物与土壤昆虫群落及其相关性等进行了系统研究。综合分析研究结果,得出如下结论:
     1、扎龙湿地草甸土壤微生物特性研究
     在整个采样期间,扎龙湿地草甸土壤微生物,各季节不同样地均以土壤细菌占绝对优势,土壤放线菌数量次于土壤细菌,土壤真菌数量最低。土壤微生物群落时空动态规律显著,土壤微生物总数、细菌、真菌和放线菌数量及所占比例水平动态基本规律:土壤微生物总数、细菌、真菌为吐木台样地>管理局样地>烟筒屯样地>育苇场样地,而土壤放线菌为吐木台样地>育苇场样地>管理局样地>烟筒屯样地;垂直动态基本规律:土壤微生物菌落数随着土层深度的增加而逐渐降低,具体表现为0-10cm>10-20cm>20-30cm;季节动态基本规律:土壤微生物总数为11月>9月>7月>5月;土壤细菌为9月>7月>11月>5月;土壤真菌为11月>5月>7月>9月;土壤放线菌为11月>5月>9月>7月。
     2、扎龙湿地草甸土壤昆虫种群动态研究
     本研究共捕获土壤昆虫4974只,隶属于13目82科(或类群)134种,包括大型土壤昆虫1224只,分属6目51科75种;中小型土壤昆虫3750只,分属13目50科59种。其中双翅目、鞘翅目和弹尾目昆虫占优势,且3类土壤昆虫类群的群落特征指数均表现为鞘翅目最高,弹尾目最低。土壤昆虫群落总体多样性指数值较高,群落水平分布总体特征表现出育苇场样地多样性指数和均匀度指数均最高,烟筒屯样地丰富度指数最高,其中大型土壤昆虫表现为吐木台样地3种指数均最高,中小型土壤昆虫表现为育苇场样地3种指数均最高,而管理局样地土壤昆虫群落3种指数均表现为最低。土壤昆虫群落特征季节动态表明,各区域昆虫群落多样性指数、均匀度指数和丰富度指数均呈正相关,表现出一致的变化趋势,群落结构是稳定的。结合种-多度分析,管理局样地、烟筒屯样地和育苇场样地土壤昆虫群落均符合对数正态分布模型,吐木台样地有向对数级数分布模型发展的趋势,说明扎龙湿地草甸土壤昆虫群落结构总体较为稳定,但吐木台样地土壤昆虫群落中常见种比例趋于减少,优势种和稀有种比例有增大的趋势,群落结构稳定性趋于减弱。
     3、扎龙湿地草甸土壤微生物与土壤昆虫群落及其相关性研究
     ①土壤酶活性时空动态规律显著,水平动态基本规律:吐木台样地>管理局样地>烟筒屯样地>育苇场样地;垂直动态基本规律:在土壤剖面中,土壤酶活性随着土层垂直深度的增加而降低,具体表现为0-10cm>10-20cm>20-30cm;季节动态基本规律:5月>7月>9月>11月。
     ②土壤理化因子时空动态规律显著。土壤温度、容重、酸碱性水平动态差异不大,垂直动态差异显著,季节动态不明显。4个样地的土壤pH值在9.01-10.50之间,均属碱性土壤。土壤养分(土壤有机质、全氮与速效氮、全磷与速效磷、全钾与速效钾)水平动态基本规律:吐木台样地>管理局样地、育苇场样地>烟筒屯样地;垂直动态基本规律:在土壤剖面上,土壤养分随着土层垂直深度的增加而降低,表现为0-10cm>10-20cm>20-30cm;季节动态基本规律:11月>5月>7月>9月。
     ③土壤微生物与土壤昆虫群落关系较为密切,在全年和各季节表现出一定的差异。全年,土壤细菌、真菌和放线菌均与土壤昆虫群落联系较为紧密,多酚氧化酶、土壤温度和速效磷是实现其相关性的关键因子。春季,土壤放线菌与土壤昆虫群落关系最为紧密,β-葡萄糖苷酶、碱性磷酸酶、多酚氧化酶、土壤pH值是实现其相关性的关键因子。夏季,土壤细菌和真菌与土壤昆虫群落的联系更为密切,碱性磷酸酶、土壤有机质、全磷和全钾是实现其相关性的关键因子。秋季,土壤放线菌与土壤昆虫群落的联系更为密切,土壤脲酶、全氮是实现其相关性的关键因子。冬季,土壤放线菌、细菌与土壤昆虫群落的联系更为密切,β-葡萄糖苷酶、过氧化氢酶、多酚氧化酶、土壤容重是实现其相关性的关键因子。
     本研究以国际重要湿地—扎龙湿地为背景,着眼于国际同领域的研究前沿,从数量生态和化学生态学角度,以扎龙湿地草甸土壤微生物特性研究和土壤昆虫种群动态研究为基础,深入探讨土壤微生物与土壤昆虫群落的相关性及实现两者相关性的主要环境因子,以期丰富和拓展湿地系统内物种间相互适应领域研究范畴。鉴于湿地土壤微生物与土壤昆虫群落相关性的研究在国内还很少,开展这方面研究,对区域和全国生态环境、经济发展都具有重大的理论意义。
Wetland ecological system is called the three ecosystems together with the forest and the sea in the world, and it is an ecosystem with the most rich biological diversity and productivity in nature. It is known as "the cradle of mankind","gene bank" and "the kidney of the nature" because of its huge production function and ecological environmental benefits. Zhalong wetland is a wetland ecosystem, and it is preserved most entirely and primordially in the northern of China, and it plays an important role in supplying water resource, controlling flood, purifying water quality, regulating weather and protecting the biodiversity. Therefore, people pay more and more attention to the protection of Zhalong wetland. At present, a comprehensive review on the research advance of soil insect community structure and soil microorganism and their relativity in meadow of Zhalong Wetland has not been reported. Relying on the interspecific relationship of soil insect and soil microorganism, this study based on the study of soil microbial properties and soil insect population dynamics to reveal the relativity of soil insect community and soil microorganisms and the main environmental interaction factors. They have great practical guiding significance for the ecological regulation of Zhalong wetland. Furthermore, they can provide basic data and theoretical basis for further study on indicative function of soil insects' effect on soil quality changes.
     In this study, we took the meadow habitat in Zhalong wetland as the research object, adopted the research methods of field investigation and laboratory test, selected4sites (Tumutai, Guanliju, Yangtongtun, Yuweichang) in Zhalong wetland, conducted the system research on the soil insect community, soil microorganisms and their relationships in May, July, September and November, in the year2011. Synthesizing all the results, we draw the following conclusions:
     1. The study on soil microbial properties in meadow of Zhalong wetland.
     Throughout the sampling period, soil bacteria accounted for absolute advantage in different seasons and sample plots. It was the main decomposer in meadow ecosystem in Zhalong wetland. The quantity of soil actinomycetes was next to soil bacteria. The quantity of soil fungi was in the lowest. Spatio-temporal dynamics of soil microbial community in meadow of Zhalong wetland was significant. The basic rule of horizontal dynamic of the quantity of the total microorganism, bacteria, fungi of soil and their proportion was Tumutai> Guanliju> Yantongtun> Yuweichang, that of actinomyces was Tumutai> Yuweichang> Guanliju> Yantongtun, the quantity and proportion of soil microorganism group were the highest in Tumutai plot. The basic rule of vertical dynamic of the total microorganism, bacteria, fungi of soil and their proportion wss0-10cm>10-20cm>20-30cm and soil microbial number decreased with the increase of soil depth. Their basic rules of seasonal dynamics were different, that of the total microorganism was November> September> July> May; that of bacteria was September> July> November> May; that of fungi was November> May> July> September; that of actinomyces was November> May> September> July.
     2. The study on the population dynamics of soil insect in meadow of Zhalong wetland.
     This study captured soil4974insects belonging to13orders,82families (or groups)134species, including1224large soil insects belonging to6orders,51families and75species, and small and medium-sized soil insects3750belonging to13orders,50families and59species. Diptera, Coleoptera and Collembola took the advantage, Community characteristic index of Coleoptera was the maximum and that of Collembola was the minimum. Total diversity index values of soil insect community in meadow of Zhalong Wetland was Higher, the general characteristics of horizontal distribution of the communities showed diversity index and evenness index were the highest in Yuweichang, the richness index was the biggest in Yantongtun, in which3index of the large soil insects were the highest Tumutai, that of small and medium-sized soil insect showed were the highest in Yuweichang, but those of the insect community administration to were the lowest. Seasonal dynamics of soil insect community characteristics showed that the diversity index, the evenness index and richness index of insect community were positively correlated, showed the same variation trend, and the community structure was stable. Combining the species-abundance analysis, soil insect community in Guanliju, Yantongtun, Yuweichang conformed to the lognormal distribution model, that in Tumutai had a development trend to the lognormal distribution model, and that illustrated overall community structure of soil insect in meadow Zhalong wetland was stable. But the common species ratio of soil insect community in Tumutai had a trend to decrease, the dominant species and rare species ratio had a tend to increase, and the stability of community structure had a tend to be weaken.
     3. The study on the insect community and soil microorganism and their relativity.
     (1) Temporal and spatial dynamic of soil enzyme activity in meadow of Zhalong wetland varied significantly. The horizontal dynamic of soil enzyme activity was Tumutai> Guanliju> Yantongtun> Yuweichang; seasonal dynamic was May> July> Autumn> November; vertical dynamic of soil enzyme activity in the soil profile was0-10cm>10-20cm>20-30cm, and soil enzyme activity gradually reduced with the increase of vertical depth.
     (2) Temporal and spatial dynamic of soil physical-chemical factor in meadow of Zhalong wetland was significant. The horizontal dynamic of organic matter, total nitrogen and available nitrogen, total phosphorus and available phosphorus, total potassium and available potassium was Tumutai> Guanliju, Yuweichan> Yantongtun; seasonal dynamic of that was November> May> July> Autumn; vertical dynamic of soil physical-chemical factor in the soil profile was0-10cm>10-20cm>20-30cm, soil physical-chemical factor gradually reduced with the increase of vertical depth. The horizontal distribution of soil bulk density, temperature, pH had less significant difference; vertical dynamic showed significant difference; seasonal dynamics was not obvious. The soil in4study areas was alkaline soil, in which soil pH value were among9.01-10.50.
     (3) Soil microorganism and soil insect community in meadow of Zhalong wetland was closely related. The annual and seasonal relativity of them showed some differences. Throughout the year, Soil bacteria, fungi and actinomycetes were more closely related with soil insect community, and polyphenol oxidase, soil temperature and soil available phosphorus were the key interaction factors of them. In spring, the relationship between soil actinomycetes and soil insect community was most closely, and β-glucosidase, alkaline phosphatase and polyphenoloxidase, soil pH value were the key interaction factors of them. In summer, soil bacteria and fungi and soil insect community were more closely related, and alkaline phosphatase, soil organic matter, total phosphorus and total potassium were the key interaction factors of them. In autumn, soil actinomycetes was more closely related to soil insect community, and soil urease, soil total nitrogen were the key interaction factors of them. In winter, soil actinomycetes and bacteria influenced the changes of structure community of soil insect jointly. Soil actinomycetes was more closely related to soil insect community and P-glucosidase, catalase, polyphenol oxidase, and soil bulk density were the key interaction factors of them.
     This study took a wetland of international importance-Zhalong wetland as the background and focused on the international frontier research in the same field. From the perspective of quantitative and chemical ecology, this study further discussed the relativity of soil insect community and soil microorganism and the main soil environmental factors completing their relativity. Study on this aspect can enrich and expand the research field of interspecific interaction in wetland ecological system. In our country, the research on the relativity of soil insect community and soil microorganisms in wetland was less. Studying the research field had great theoretical significance to regional and national ecological environment and economic development.
引文
[l]安树青主编.湿地生态工程—湿地资源利用与保护的优化模式[M].北京:化学工业出版社,2003:2-5
    [2]张永泽,王恒.自然湿地生态恢复研究综述[J].生态学报,2001,21(2):309-314
    [3]武海涛,朱宝光,刘尊显.美丽的三江湿地[M].哈尔滨:黑龙江教育出版社,2009:16-22
    [4]高中信等主编.扎龙鸟类[M].中国林业出版社,1988
    [5]吴长申.扎龙国家级自然保护区自然资源研究与管理[M].哈尔滨:东北林业大学出版社,1999,1-20
    [6]张崇邦.东北麦田土坡微生物、小型动物及其生化活性的季节变化动态[J].植物营养与肥料学报,2002,8(3):372~376
    [7]朱海平,姚槐应,张勇,等.不同培肥管理措施对土壤微生物生态特征的影响[J].土壤通报,2003,34(2):140-142
    [8]俞慎,李勇,王俊华,等.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):413-421
    [9]孙波,赵其国,张桃林,等.土壤质量与持续环境(Ⅲ)土壤质量评价的生物学指标[J].土壤,1997,29(5):225-234
    [10]尹文英等.中国亚热带土壤动物[M].北京:科学出版社,1992,7-9
    [11]尹文英.土壤动物学的回顾与展望[J].生物学通报,2001,36(8):1-3
    [12]张荣祖,杨明宪,陈鹏,等.长白山北坡森林生态系统土壤动物初步调查[J].森林生态系统研究,1980(01):133-152
    [13]梁文举,闻大中.土壤生物及其对土壤生态学发展的影响田.应用生态学报,2001,12(1):137-140
    [14]Paoletti M. G., Sommagio D., Favretto M. R., et al. Earthworms as useful bioindicators of agroecosystem sustainability in orchards and vineyards with different inputs [J]. Applied Soil Ecology,1998,10:137-150
    [15]Didden W., Rombke J. Enchytraeids as indicator organisms for chemical stress in terrestrial ecosystems [J]. Ecotoxicology and Environmental Safety,2001,50:25-43
    [16]Doring T. F., Hiller A., Wehke S., et al. Biotic indicators of carabid species richness on organically and conventionally managed arable fields [J]. Agriculture, Ecosystem and Environment,2003,98:133-139
    [17]彩万志,庞雄飞,花葆祯,等.普通昆虫学[M].北京:中国农业大学出版社,2001:1-3.
    [18]尹文英.中国土壤动物[M].北京:科学出版社,2000:1-290
    [19]孙刚,房岩,殷秀琴.豚草发生地土壤昆虫群落结构及动态[J].昆虫学报,2006,49(2):271~276
    [20]沈萍.微生物学[M].北京:高等教育出版社,2000:1~5
    [21]蒲蛰龙.昆虫病理学[M].广州:广东科技出版社,1994:85-498
    [22]余永年.注意保护和开发真菌资源[J].微生物学动态,1982(3):1-4
    [23]梁宗琦.昆虫病原真菌的研究利用[J].贵州农业科学,1983(5):21-8
    [24]SAMSON R. A. Identification of entomopathogenic Deuteromycetes[C]//Microbial Control of Pests and Plant Diseases 1970-1980. Acad Press,1981:93-106
    [25]李增智.虫生真菌在害虫治理中应用状况[J].安徽农学院学报,1987,14(2):59~65
    [26]廖太林,杨晓军.传播栎枯萎病的两种鬃额小蠹[J].植物检疫,2005,19(4):232~234
    [27]李小珍,刘映红,周利飞,张玲.玉米鼠耳病及其媒介昆虫二点叶蝉消长动态和玉米受害损失测定[J].生态学杂志,2007,26(1):51~55
    [28]张庭,王进军,徐鹏飞.温度对松褐天牛传递松材线虫数量的影响[J].四川动物,2008,27(3):408-411
    [29]徐婧,栾军波,刘树生.重大外来害虫B型烟粉虱的入侵行为和生态机制[J].昆虫知识,2008,45(3):347~352
    [30]陈华癸.土壤微生物学[M].上海:上海科学技术出版社,1979:311~314
    [31]张成娥,陈小莉,郑粉莉.子午岭林区不同环境土壤微生物生物量与肥力关系研究[J].生态学报,1998,18(2):218~222
    [32]夏北成.植被对土壤微生物群落结构的影响[J].应用生态学报,1998,9(3):296-300
    [33]陈鹏,张一.长白山北坡冰缘环境与土壤动物[J].地理科学,1983a,3(2):133~140
    [34]钱复生,王宗英.水东枣园土壤动物与土壤环境的关系[J].应用生态学报,1995,6(1):44~50
    [35]王振中,张友梅,邢协加.土壤环境变化对土壤动物落影响的研究[J].土壤学报,2002,39(6):892~897
    [36]张俊霞,刘贤谦.太谷县枣园土壤动物与土壤养分的关系[J].山西农业大学学报,2005,25(1):8-11
    [37]张雪萍,李春艳,殷秀琴,等.不同使用方式林地的土壤动物与土壤营养元素的关系[J].应用与环境生物学报,1999,5(1):26~31
    [38]黄伦先,沈世华.免耕生态系统中土壤动物对土壤养分影响的研究[J].农村生态环境,1996,12(4):8-10,14
    [39]Simoes D. C. M., Mc Neil D., Kristiansen B., et al. Purification and partial characterization of a 1.57 kDa thermostable esterase from Baeillus stear other mophilus [J]. FEMS Mierobio Llett, 1997,147:151-156
    [40]Naseby D. C., Pascual J. A., Lynch J. M. Effect of biocontrol strains of Trichoderma on plantgrowth, Psnhium optimum populations, soil microbial communities and soil enzyme activities [J]. Journal of Applied Microbiology,2000,88:161-169
    [41]Vazquez M. M., Cesar S., Azcon R., et al. Interactions between carbuncular mycorrhizal fungi othermicrobial inocants (Azospirillum,Pseudomonas, Trichoderma) and their effects on microbialpopulation and enzyme activities in the rhizosphere of maize plants [J]. Applied Soil Ecology,2000,15:261-272
    [42]Taylor J. P., Wilson B., Mills M. S., et al. Comparison of microbial numbers and enzymatic activitiesin surface and subsoils using various techniques [J]. Soil Biol.& Biochem.,2002,34: 387-401
    [43]Lattaud C., Locati S., Mora P., et al. The diversity of digestive systems in tropical geophagous earthworms [J]. Appl Soil Ecol,1998, (9):189-195
    [44]Rouland C., Lenoir F., Lepage M. The role of the symbiotic fungus in the digestive metabolism of several species of fungusgrowing termites [J]. Comp. Biochem. Physiol.,1991,99A:657-667.
    [45]Garvin M. H., Lattaud C, Trigo D., et al. Activity of glycolytic enzymes in the gut of Hormogaster elisae (Oligechaeta Hormogastridae) [J]. Soil Biol Biochem,2000, (32):929-934
    [46]Merino-Trigo A., Sampedro L., Rodriguez-Berrocal F. J., et al. Activity and partial characterization of xylanolytic enzymes in the earthworm Eisenia andrei fed on organic wastes [J]. Soil Biol Biochem,1999, (31):1735-1740
    [47]Frouz J., Elhottova D., Sustr V., et al. Preliminary data about compartmentalization of the gut of the saprophagous dipteran larvae Penthetria holosericea(Bibiondae) [J]. Eur J Soil Bio,2002, (38):47-51
    [48]Tillinghast E. K., Odonnell R., Eves D., et al. Water-soluble luminal contents of the gut of theearthworm Lumbricas terrestris L.and their physiological significance [J]. Comp. Biochem. Physiol.,2001, (129A):345-353
    [49]Charrier M., Rouland C. Les osidases digestives de Iescargot Helix aspersa:localization et variations en foncton de Ietat nutritionnel [J]. Can J Zool,1992, (70):2234-2241
    [50]Oppermann U. C. T., Nahel G, Belai L., et al. Carbonyl reduction of an anti-inset agent imidazole analogue of metyrapone in soil bacteria, invertebrate and vertebrate species [J]. Chemico-Biolodical Inter,1998, (114):211-224
    [51]Sustr V., Frouz J. Activity of carbohydrases in the gut of Bibiondae (Diptera) larvae [J]. Eur J Soil Biol,2002, (38):5-77
    [52]Mulongoy K., Bedoret A. Properties of worm casts and surface soil under various plants covers in the humid tropics [J]. Soil Biol Biochem,1989,21:197-203
    [53]Mulongoy K. Microbial biomass and maize nitrogen uptake under a posphocarpus palustris-mulch grown on a tropical ALfisol [J].Soil Biol Biochem,1986,18:395-398
    [54]Kisand V., Tanmmert H. Bacterioplanton strategies for leucine and glucose uptake after a cyanobacterial bloom in a eutrophic shallow lake [J]. Soil Biol Biochem,2000,32:1965-1972
    [55]Flegel M., Schrader S.Importance of food quality on selected enzyme activities in earthworm casts (Dendroboena octaedra, Lumbricidae) [J]. Soil Biol Biochem,2000,32:1911-1196
    [56]苏永春,勾影波,王立新.农田土壤动物和微生物与生物化学动态关系的研究[J].生态学杂志,2004,23(3):134-137
    [57]Bandick A. K., Dick R. P. Field management effects on soil enzyme activities [J]. Soil Biology & Biochemistry,1999,31:1471-1479
    [58]Groffman P. M., Mc-Dowellb W. H., Myersc J. C., et al. Soil microbial biomass and activity in tropicalriparian forests [J]. Soil Biol.& Biochem.,2001,33:1339-1348
    [59]Jenkinson D. S., Ladd J. N. Microbial biomass in soil:measurement and turnover [J]. Soil Biochemistry,1981, (5):415-47
    [60]Doran J. W., Coleman D. C., Stewart B. A. Defining soil quality for asustainab & environment [J]. Soil Science Soeicty of America,1994, (35):3-21
    [61]Abbott L. K., Murphy D. V. Soil biological fertility-a key to sustainable land use in agriculture [J]. Kluwer Academic Publishers,2003, (7):129-162
    [62]Hatfield J. L., Stewart B. A. Soil biology:effects on soil quality [J]. The United Staten of American:CRC Press,1994
    [63]Garbeva, P., van Veen, J. A. and van Elsas, J. D. Microbial diversity in soil:Selection of microbial populations by plant and soil type and implications for disease suppressiveness [J]. Annual Review of Phytopathology,2004,42,243-270. Doi:10.1146/annurev. Phyto.42. 012604.135455
    [64]郭瑞英,陈清,李晓林.土壤微生物-抑病性与土壤健康[J].中国蔬菜,2005(增刊):78~82
    [65]张晶,张惠文,李新宇,等.土壤微生物生态过程与微生物功能基因多样性[J].应用生态学报,2006,17(6):1129~1132
    [66]Roy S., Singh J. S. Consequences of habitat heterogeneity for availability of nutrients in a dry tropical forest [J]. Journal of Ecology,1994,82:503-509
    [67]Lutzoni F., Pagel M., Reeb V. Major fungal lineages are derived from lichen symbiotic ancestors [J]. Nature,2001,411:937-940
    [68]Smith K. A., Ball T., Conen F., et al. Exchange o fgreenhouse g ases between soil and atmosphere:interactions of soil physical factors and biological processes [J]. European Journal of Soil Science,2003,54:779-791
    [69]黄守印.《食用菌栽培》教学中的几点做法[J].承德民族职业技术学院学报,2005,10(1):35~36
    [70]Holden C. Study science andmath teaching [J]. Science,1992,26,541
    [71]Brussaard L. An appraisal of the Dutch programme on soil ecology of arable farming system (1985-1992) [J]. Agri. Ecosys. Environ.,1994,51:1-6
    [72]Baker G. H. Recognising and responding to the influences of agriculture and other land-use practices on soil fauna in Australia [J]. Appl. Soil Ecol.,1998,10(9):303-310
    [73]Ryan M. Is an enhanced soil biological community, relative to conventional neighbors, a consistent feature of alternative (organic and biodynamic) agricultural systems? [J] Biological Agriculture and Horticulture,1999,17(2):131-144
    [74]苏永春,勾影波,张忠恒,张崇邦.东北高寒地区土壤动物和微生物的生态特征[J].生态学报,2001,21(10):1613~1619
    [75]廖崇惠,李健雄,杨悦屏,张振才.海南尖峰岭热带林土壤动物群落结构的季节变化及其气候因素[J].生态学报,2003,23(1):139~147
    [76]佟富春,金哲东,王庆礼,肖以华.长白山北坡土壤动物群落物种共有度的海拔梯度变化[J].应用生态学报,2003,14(10):1723~1728
    [77]朱巽,袁金荣,林仲桂,朱雅安.衡阳盆地土壤动物多样性研究[J].生态学杂志,2004,23(4):57~60
    [78]吴东辉,张柏,陈鹏.吉林省中西部平原区大型土壤动物群落组成与生态分布[J].动物学研究,2005,26(4):365-372
    [79]徐国良,周国逸,莫江明,周小勇,彭闪江.鹤山丘陵退化生态系统植被恢复的土壤动物群落结构[J].生态学报,2005,25(7):1670-1677
    [80]贺达汉,洪波,田真.宁夏新垦区土壤昆虫生态演替及优势种种群序列演变的研究[J].宁夏农学院学报,2000,21(3):5-10
    [81]郭砺,刘新民,刘永江.内蒙古典型草原土壤动物优势类群鞘翅目(Coleoptera)昆虫研究[J].内蒙古大学学报(自然科学版),2000,31(2):189~192
    [82]高权荣,刘永江,石珍宝.内蒙古锡林河中游草原生态系统土壤昆虫调查研究初报[J].中国草地,2002,24(4):75~77
    [83]于晓东,罗天宏,周红章.东灵山地区地表甲虫群落组成及季节变化[J].昆虫学报,2002,45(6):785~793
    [84]林英华,朱平,张夫道,彭畅,高洪军,刘淑环.吉林黑土区不同施肥处理对农田土壤昆虫的影响[J].生态学报,2006,26(4):1122-1130
    [85]李绒,苑彩霞,刘长海,李中华,杨选文.延安市枣园土壤昆虫组成初步调查[J].延安大学学报(自然科学版),2009,28(1):81~86
    [86]安静超,殷秀琴.小兴安岭凉水自然保护区土壤昆虫群落特征及多样性研究[J].东北师大学报(自然科学版),2010,42(3):139~144
    [87]Roberts D. W., Humber R. A. Entomogenous fungi. In biology of conidial fungi [M]. New York: Academic Press,1981,201-236
    [88]Gillespie J. P., Bailey A. M., Cobb B., et al. Fungi as elicitors of insect immune response [J]. Archives of Insect Biochemistry and Physiology,2000,44:49-68
    [89]Savage, D. C. Microbial ecology of the gastrointestinal tract [J]. Ann. Rev. Microbiol.1977,31, 107-133
    [90]Dillon R. J., Charnley A. K. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota [J]. Research in Microbiology,2002,153(8):503-509
    [91]Brummel T. A., Ching L., Seroude A., et al. Drosophila lifespan enhancement by exogenous bacteria [J]. PNAS,2004,101(35):12974-12979
    [92]徐孝华,普通微生物学[M].北京:中国农业大学出版社,1991:227
    [93]牟吉元,普通微生物学[M].北京:中国农业大学出版社,1998,71~72
    [94]王伯荪,彭少麟,李明光.植物种群学[M].广州:中山大学出版社,1989:115-120
    [95]张金屯,焦蓉.关帝山神尾沟森林群落木本植物种间联结性与相关性研究[J].植物研究,2003,23(4):458-463
    [96]东丽,上官铁梁,薛红喜,等.沱河湿地植物群落的种间关系研究[J].山西大学学报:自然科学版,2003,6(1):71~75
    [97]刘丽艳,张峰.山西桑干河流域湿地植被优势种群种间关系研究[J].生态环境,2006,15(6):1278-1283
    [98]成新跃,徐汝梅.昆虫种间表观竞争研究进展[J].昆虫学报,2003,46(2):237~243
    [99]孔垂华.植物与其他有机体的化学作用—潜在的有害生物控制途径[J].中国农业科学,2007,40(4):712~20
    [100]张庆贺,姬兰柱.植食性昆虫产卵的化学生态学.生态学杂志[J].1994,13(6):39-43
    [101]苗振旺,张钟宁,王培新,郭玉永,孙江华.外来入侵害虫红脂大小蠹对寄主挥发物的反应[J].昆虫学报,2004,47(3):360-364
    [102]张龙娃,鲁敏,柱东,孙江华.红脂大小蠢侵入机制与化学生态学研究[J].昆虫知识,2007,44(2):71~178
    [103]杜永均,吴仲南.蚊虫搜寻吸血寄主和产卵行为的调节因子及相关嗅觉机理[J].昆虫学报,2007,50(10):1060-1069
    [104]Eebilgin, N., Mori, S. R., Sun, J. H., Stein, J. D., Owen, D. R., Merrill, L. D., Campos Bolanos, R., Raffa, K. F., Mendez Montiel, T., Wood D. L. and Gillette, N. E. Response to host volatiles by native and introduced populations of Dendroctonus valens (Coleoptera:Scolytidae) in north America and China[J]. Journal of Chemical Ecology,2007,33:131-146
    [105]Fan, J. T. and Sun, J. H. Influences of host volatiles on feeding behavior of the Japanese pine sawyer, Monochamus alternatus [J]. Journal of Applied Entomology,2006,130:238-244
    [106]Fan, J. T., Kang, L. and Sun, J.H. Role of host volatiles in mate location by the Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera:Scolytidae) [J]. Environmental Entomology, 2007a,36:58-63
    [107]Fan, J. T., Sun, J. H. Shi, J. Attraction of the Japanese pine sawyer. Monochamus alternatus, to volatiles from stressed host in China [J]. Annals of Forest Science,2007b,64:67-71
    [108]Lu, M., Miller, D. R. and Sun, J.H. Cross-attration between an exotic and a native pine bark beetle:A novel invasion mechanism? [J] PloS ONE,2007,12:1-9, el 302. Doi:10.1371/ journal. Pone.0001302
    [109]Zhang, L. W. and Sun, J. H. Electrophysiological and behavioral response of Dendrocotonus valens (Coleoptera:Scolytidae) to candidate pheromone components identified in hindgut extracts [J]. Environmental Entomology,2006,35(5):1232-1237
    [110]Zhang, L.W., Gillette, N. E. and Sun, J. H. Electrophysiological and behavioral response of Dendrocotonus valens to non-host volatiles [J]. Annals of Forest Science,2007,64:267-273
    [111]郭跃东,何岩,邓伟,张明祥,章光新.扎龙国家自然湿地生态环境需水量研究[J].水土保持学报,2004,18(6):163~166
    [112]李玉文,梁晶,李智娟.扎龙湿地水体富营养化与治理措施研究[J].环境科学与管理,2009,34(2):165~168
    [113]郭跃东,邓伟,潘继花.扎龙河滨湿地水体营养化污染特征及水环境恢复对策[J].生态环境,2003,12(4):393~397
    [114]关雪,李枫,沙剑斌,曲文慧.扎龙国家级自然保护区水鸟群落季节性变化调查[J].野生动物杂志,2009,30(4):180~184
    [115]刘广民,尹莉莉,刘子靖,薛建良.扎龙湿地沉积物垂向剖面中多环芳烃分布特征[J].环境科学研究,2008,21(3):36-39
    [116]李枫,张微微,刘广平.扎龙湿地水体重金属沿食物链的生物累积分析[J].东北林业大学学报,2007,35(1):44-46
    [117]Allan C. Quebec 2000:Millennium Wetland Event Program with Abstracts [C]. Quebec Canada:Elizabeth MacKay,2000:36-147
    [118]中华人民共和国林业部.扎龙国家级自然保护区管理计划[M].北京:中国林业出版社,1997:1-5
    [119]李波,苏岐芳,周晏敏等.扎龙湿地的生态环境评价及防治对策[J].中国环境监测,2002,18(3):33~37
    [120]王因,谢永刚,姜睿.扎龙湿地缺水情况调查及对策探讨[J].水利水电科技进展,2005,25(5):27~30
    [121]于保群,朱世龙,王天才.扎龙湖的水生维管束植物[J].黑龙江水产,1998,71(1):35~36
    [122]张海鹰.扎龙湿地生态资源保护与开发对策研究[J].环境保护,2004(2):29~32
    [123]盖赫莉,王淑梅,王欣.对扎龙湿地生态环境的分析[J].黑龙江环境通报,2002,26(3):94-96
    [124]郭春景,倪宏伟,周志强等.扎龙国家级自然保护区的种子植物区系研究[J].国土与自然资源研究,1998(2):54~57
    [125]王珊珊,杜富华,陈设.扎龙自然保护区人口、资源、环境关系探析[J].哈尔滨师范大学自然科学学报,2009,25(1):101~104
    [126]杨芳,徐秋芳.土壤微生物多样性研究进展[J].浙江林业科技,2002,22(6):39~55
    [127]薛立,陈红跃,邝立刚.湿地松混交林地土壤养分,微生物和酶活性的研究[J].应用生态学报,2003,14(1):157~159
    [128]姚槐应,黄昌勇.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006
    [129]Hofman J., Bezch J., Dusek L., et al. Novel approach to monitoring of the soil biological quality [J]. Environment international,2003,28(8):771-778
    [130]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986:92-110
    [131]Louise M. D., Gwyn S. G., John H., et al. Management influences on soil microbial communities and their function in botanically diverse haymeadows of northern England and Wales [J]. Soil Biology & Biochemistry,2000,32(2):253-263
    [132]Petersen H., Luxton M. A comparative analysis of soil fauna populations and their role in decomposition processes [J]. Oikos,1982,39(3):288-388
    [133]Coleman D. C., Crossley D. A., Hendrix P. F. Fundamentals of Soil Ecology [M]. Amsterdam: Elsevier,2004
    [134]Fu S. L., Zou X. M., Coleman D. C., et al. Highlights and perspectives of soil biology and ecology research in China [J]. Soil Biology & Biochemistry,2009,41(5):868-876
    [135]刘继亮,曹靖,李世杰,潘春林,潘成臣.秦岭西部山地次生林和人工林大型土壤动物群落结构特征[J].应用生态学报,2012,23(09):2459~2466
    [136]Yin X. Q., Song B., Dong W. H., et al. A review on the eco-geography of soil fauna in China [J]. Journal of Geo-graphical Sciences,2010,20(3):91-102
    [137]陈鹏.土壤动物的采集和调查方法[J].生态学杂志,1983b,2(2):46-51
    [138]忻介六.土壤动物知识[M].北京:科学出版社,1986
    [139]尹文英.中国土壤动物检素图鉴[M].北京:科学出版社,1998
    [140]青木淳一.土壤动物学.[M].东京:北隆馆,1973
    [141]土壤动物研究方法手册编写组.土壤动物研究方法手册[M].中国林业出版社,1998
    [142]尹文英等.中国土壤动物检索图鉴[M].北京:科学出版社,1998,第一版
    [143]南开大学等合编.昆虫学上册[M].高等教育出版社,1984,第一版
    [144]南京农业大学.昆虫学通论(上册)[M].农业出版社,1978
    [145]钟觉民.幼虫分类学[M].北京:农业出版社,1990
    [146]影万志,庞雄飞,花仅祯等.普通昆虫学[M].中国农业大学出版社,2001
    [147]中国土样学会农业化学专业委员会.土壤农业化学常规分析方法[M].科学出版社.1983,第一版:67~352
    [148]吴金水,林启美,黄巧云,肖和艾.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006:60-61
    [149]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:323-328
    [150]李振高,骆永明,滕应.土壤与环境微生物研究法[M].北京:科学出版社,2008: 395-421
    [15 1]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:30-108
    [152]中国土壤学会.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:62-1
    [153]戈峰.现代生态学[M].北京:科学出版社,2002:224-246
    [154]拉德维格J.A.,蓝诺兹J.F.,李育中,等译.统计生态学—方法和计算人门[M].呼和浩特:内蒙古大学出版社.1990:42~53
    [155]Sugihara, G. Minimal community structure:an explanation of species abundance Pattern [J]. Amer Nat,1980,116:770-787
    [156]尚玉昌,蔡晓明.普通生态学(上册)[M].北京:北京大学出版社,1992:28-76
    [157]Preston F. W. The commonness and rarity of species [J]. Ecology,1948,29:254-283
    [158]Fisher R. A. The relation between the number of species and the number of individuals in a random sample of an animal population [J]. J. Anim. Ecol.,1943,12:4258
    [159]Pielou E. C. Ecological Diversity John[M].Wiley & Sons Inc,1975
    [160]Magurran A.E. Ecological Diversity and Its Measurement [M]. New Jersey:Princeton University Press,1988
    [161]Wilson J. B. Methods for fitting dominance/diversity curves [J]. Journal of Vegetation Scienee.1991,2:35-46
    [162]Whittaker R. H. Vegetation of the Siskiyou Mountains [J]. Oregon and California. Ecol. Monopr,1960,30:279-338

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700