用户名: 密码: 验证码:
Cystatin C防治大鼠SAH后早期脑血管痉挛及其与自噬相关性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨SD大鼠蛛网膜下腔出血(Subarachnoid Hemorrhage,SAH)后自噬在基底动脉壁的表达情况,研究经枕大池注入半胱氨酸蛋白酶抑制剂C(Cystatin C,CysC)对SD大鼠蛛网膜下腔出血后早期脑血管痉挛(Cerebral Vasospasm,CVS)的干预作用,并分析其与自噬的相关性。
     材料和方法:五十只SD大鼠随机分为对照组(A组)、蛛网膜下腔出血组(B组)、安慰剂组(C组)、Cystatin C低浓度治疗组(DL组)和Cystatin C高浓度治疗组(DH组),每组10只。对照组在枕大池注入生理盐水但不注血,SAH组采用枕大池一次注血法制作SAH模型,治疗组在注血前30分钟经枕大池注入Cystatin C水溶剂0.1ml(其中低浓度和高浓度组剂量分别为2μg/0.1ml和10μg/0.1ml),而安慰剂组则在注血前30分钟经枕大池注入等量生理盐水。各组于术后48小时处死动物取脑基底动脉及周围脑干组织行病理检查,测定基底动脉血管内径周长和血管壁厚度,以此评价有无脑血管痉挛及程度。应用自噬标记抗体LC3和Beclin-1对各组基底动脉组织进行Western blot分析。
     结果:SAH组和安慰剂组中大鼠基底动脉内径周长较对照组明显缩短(P<0.01),血管壁厚度明显增加(P<0.01),可见管腔狭窄,内膜皱褶,内皮细胞肿胀、变形,部分坏死,平滑肌细胞肥大、排列紊乱。CysC治疗组中基底动脉内径周长增大,管壁增厚程度减轻以及CVS值下降,与SAH组及安慰剂组对比有显著性差异(P<0.01),在高浓度治疗组更明显,与低浓度组相比有统计学意义(P<0.05)。Westernblot结果显示自噬相关指标LC3和Beclin-1在对照组的基底动脉壁是低表达的,在SAH组及安慰剂组表达明显增高,其LC3/GAPDH、Beclin-1/GAPDH值与对照组比较有统计学意义(P<0.05)。而在CysC治疗组,LC3和Beclin-1的表达进一步增高,以CysC高浓度组更明显,与SAH组及安慰剂组比较有显著性差异(P<0.01);CysC高浓度组与CysC低浓度组相比有统计学意义(P<0.05)。
     结论:1、通过构建大鼠枕大池一次注血模型,能够观察到基底动脉发生明显的细胞形态改变、管壁的增厚以及管腔的狭窄,提示SAH后存在CVS。2、自噬在正常大鼠基底动脉壁的表达是低水平的。3、SAH后自噬在基底动脉壁被激活,提示自噬可能作为一种保护机制参与了CVS的病理及生理过程。4、经枕大池注入Cystatin C能诱导自噬在基底动脉壁的高表达,对CVS有一定的防治作用,并且这种作用与Cystatin C的浓度及其诱导的自噬的水平存在正相关性。
Objective: To investigate the expressions of autophagy in BA(basilar artery) wallsfollowing subarachnoid hemorrhage (SAH) in rats,and to study the effect of cystatin C inthe prevention of cerebral vasospasm (CVS)and its relationships to autophagy.
     Methods:50health male Sprague-Dawley(SD) rats were assigned randomly intofollowing groups: Control group(injected normal sodium into cisterna magna only), SAHgroup, Vehicle group, Cystatin C therapy group(divided into high and low concentrationgroups)(n=10,respectively). All SAH animals were subjected to injection of0.3ml fresharterial, nonheparinized blood into Cisterna magna to establish SAH model in rats.30minutes before the blood injection, a amount of0.1ml different doses of the Cystatin C(2μg/0.1ml or10μg/0.1ml) was administered directly into the cisterna magna in the Cys-tatin C therapy groups, while Vehicle animals received an equal volume of NS into thecisterna magna.48hours later, we observed morphological changes and the expression ofautophagy in BA walls by pathological section and Western blot analysis.
     Results: The inner perimeter of basal arteries (BA) in SAH group and Vehiclegroup gets smaller, and the wall thickness of basal arteries becomes thicker than controlgroup(P<0.01), we can note the luminal narrowing, icreased wall thickness, and corruga-tion of the tunica intima in the above two groups. Compared with SAH and Vehicle groups,the inner perimeter of BA in treatment group was expanded and thickness of BA wallswere decreased with a statistical difference (P <0.01), especially in high concentrationgroup(Compared with low concentration group, P <0.05). Western blot results showed:the expression of autophagy in BA walls was low in control group, the activity of auto-phagy was significantly increased in the rats of SAH and vehicle groups(Compared with
     control group, P <0.05),the increased activity of autophagy was further markedlyupregulated by CysC treatment, especially in high concentration group(Compared withSAH and low concentration group, P <0.01and P <0.05,respectively).
     Conclusions:1.The pathological changes including morphological changes, lu-minal narrowing, icreased wall thickness in BA wall suggest that CVS happens after SAH.2. The level of expression of autophagy is low in the normal control group.3. The in-creased expression of autophagy in the BA walls following SAH suggests that autophagymay participate the pathological course of CVS.4. Activation of autophagy induced byCysC resulted in attenuation of CVS in SAH models, and this effect was paralleled withthe intensity of autophagy in the BA wall induced by CysC.
引文
[1] Rothoerl R D, Ringel F. Molecular mechanisms of cerebral vasospasm followinganeurysmal SAH[J]. Neurological Research,2007,29(7):636-642.
    [2] Mayberg M R, Batjer H H, Dacey R, et al. Guidelines for the management of aneurys-mal subarachnoid hemorrhage. A statement for healthcare professionals from a spe-cial writing group of the Stroke Council, American Heart Association.[J]. Circula-tion,1994,90(5):2592.
    [3] Haley E C, Kassell N F, Torner J C. The international cooperative study on the timingof aneurysm surgery. The North American experience[J]. Stroke,1992,23(2):205-214.
    [4] Borel C O, Mckee A, Parra A, et al. Possible role for vascular cell proliferation in cere-bral vasospasm after subarachnoid hemorrhage[J]. Stroke,2003,34(2):427-433.
    [5] Kim P, Sundt T J, Vanhoutte P M. Alterations of mechanical properties in canine basi-lar arteries after subarachnoid hemorrhage[J]. J Neurosurg,1989,71(3):430-436.
    [6] Sprague A H, Khalil R A. Inflammatory cytokines in vascular dysfunction and vasculardisease[J]. Biochem Pharmacol,2009,78(6):539-552.
    [7] Zhou Y, Martin R D, Zhang J H. Advances in experimental subarachnoid hemor-rhage[J]. Acta Neurochir Suppl,2011,110(Pt1):15-21.
    [8] Munakata A, Ohkuma H, Nakano T, et al. Effect of a free radical scavenger, edaravone,in the treatment of patients with aneurysmal subarachnoid hemorrhage[J]. Neurosur-gery,2009,64(3):423-428,428-429.
    [9] Chyatte D, Rusch N, Sundt T J. Prevention of chronic experimental cerebral vasospasmwith ibuprofen and high-dose methylprednisolone[J]. J Neurosurg,1983,59(6):925-932.
    [10] Peterson J W, Nishizawa S, Hackett J D, et al. Cyclosporine A reduces cerebral vaso-spasm after subarachnoid hemorrhage in dogs[J]. Stroke,1990,21(1):133-137.
    [11]王中,周岱,鲍耀东.免疫抑制剂-环孢菌素A治疗脑血管痉挛的实验研究[J].中华神经外科杂志,2003,19(4):252-254.
    [12] Bavbek M, Polin R, Kwan A L, et al. Monoclonal antibodies against ICAM-1andCD18attenuate cerebral vasospasm after experimental subarachnoid hemorrhage inrabbits[J]. Stroke,1998,29(9):1930-1935,1935-1936.
    [13] Zhou C, Yamaguchi M, Kusaka G, et al. Caspase inhibitors prevent endothelial apop-tosis and cerebral vasospasm in dog model of experimental subarachnoid hemor-rhage[J]. J Cereb Blood Flow Metab,2004,24(4):419-431.
    [14] White E, Karp C, Strohecker A M, et al. Role of autophagy in suppression of inflam-mation and cancer[J]. Curr Opin Cell Biol,2010,22(2):212-217.
    [15] Levine B, Mizushima N, Virgin H W. Autophagy in immunity and inflammation[J].Nature,2011,469(7330):323-335.
    [16] Bensaad K, Cheung E C, Vousden K H. Modulation of intracellular ROS levels byTIGAR controls autophagy[J]. EMBO J,2009,28(19):3015-3026.
    [17] Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pa-thology[J]. Trends Biochem Sci,2011,36(1):30-38.
    [18] Eisenberg-Lerner A, Bialik S, Simon H U, et al. Life and death partners: apo-ptosis,autophagy and the cross-talk between them[J]. Cell Death Differ,2009,16(7):966-975.
    [19] Klionsky D J, Emr S D. Autophagy as a regulated pathway of cellular degradation[J].Science,2000,290(5497):1717-1721.
    [20] Lee J Y, He Y, Sagher O, et al. Activated autophagy pathway in experimental su-barachnoid hemorrhage[J]. Brain Res,2009,1287:126-135.
    [21] Wang Z, Shi X Y, Yin J, et al. Role of autophagy in early brain injury after experi-mental subarachnoid hemorrhage[J]. J Mol Neurosci,2012,46(1):192-202.
    [22] Levy E, Jaskolski M, Grubb A. The role of cystatin C in cerebral amyloid angiopathyand stroke: cell biology and animal models[J]. Brain Pathol,2006,16(1):60-70.
    [23] Tizon B, Ribe E M, Mi W, et al. Cystatin C protects neuronal cells from amy-loid-β-induced toxicity[J]. Journal of Alzheimer's Disease,2010,19(3):885-894.
    [24] Tizon B, Sahoo S, Yu H, et al. Induction of autophagy by cystatin C: a mechanismthat protects murine primary cortical neurons and neuronal cell lines[J]. PLoSOne,2010,5(3):e9819.
    [1] Gules I, Satoh M, Clower B R, et al. Comparison of three rat models of cerebral vaso-spasm[J]. Am J Physiol Heart Circ Physiol,2002,283(6):H2551-H2559.
    [2] Yamaguchi M, Zhou C, Nanda A, et al. Ras protein contributes to cerebral vasospasmin a canine double-hemorrhage model[J]. Stroke,2004,35(7):1750-1755.
    [3] Liszczak T M, Varsos V G, Black P M, et al. Cerebral arterial constriction after ex-perimental subarachnoid hemorrhage is associated with blood components within thearterial wall[J]. J Neurosurg,1983,58(1):18-26.
    [4] Handa Y, Kabuto M, Kobayashi H, et al. The correlation between immunological reac-tion in the arterial wall and the time course of the development of cerebral vasospasmin a primate model[J]. Neurosurgery,1991,28(4):542-549.
    [5] Kourtis N, Tavernarakis N. Autophagy and cell death in model organisms[J]. CellDeath Differ,2009,16(1):21-30.
    [6] Mizushima N. The pleiotropic role of autophagy: from protein metabolism to bacteri-cide[J]. Cell Death Differ,2005,12Suppl2:1535-1541.
    [7] Levine B, Kroemer G. Autophagy in aging, disease and death: the true identity of a celldeath impostor[J]. Cell Death Differ,2009,16(1):1-2.
    [8] Meijer A J, Codogno P. Regulation and role of autophagy in mammalian cells[J]. Int JBiochem Cell Biol,2004,36(12):2445-2462.
    [9] Klionsky D J, Emr S D. Autophagy as a regulated pathway of cellular degradation[J].Science,2000,290(5497):1717-1721.
    [10] White E, Karp C, Strohecker A M, et al. Role of autophagy in suppression of inflam-mation and cancer[J]. Curr Opin Cell Biol,2010,22(2):212-217.
    [11] Yang Z, Huang J, Geng J, et al. Atg22recycles amino acids to link the degradativeand recycling functions of autophagy[J]. Mol Biol Cell,2006,17(12):5094-5104.
    [12] Kihara A, Kabeya Y, Ohsumi Y, et al. Beclin-phosphatidylinositol3-kinase complexfunctions at the trans-Golgi network[J]. EMBO Rep,2001,2(4):330-335.
    [13] Edinger A L, Thompson C B. Defective autophagy leads to cancer[J]. CancerCell,2003,4(6):422-424.
    [14] Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeastApg8p, is localized in autophagosome membranes after processing[J]. EMBOJ,2000,19(21):5720-5728.
    [15] Clausen J. Proteins in Normal Cerebrospinal Fluid Not Found in Serum.[J]. Exp BiolMed,1961,107(1):170-172.
    [16] Mussap M, Plebani M. Biochemistry and clinical role of human cystatin C[J]. CritRev Clin Lab Sci,2004,41(5-6):467-550.
    [17] Abrahamson M, Barrett A J, Salvesen G, et al. Isolation of six cysteine proteinase in-hibitors from human urine. Their physicochemical and enzyme kin-etic properties andconcentrations in biological fluids[J]. J Biol Chem,1986,261(24):11282-11289.
    [18] Bobek L A, Levine M J. Cystatins--inhibitors of cysteine proteinases[J]. Crit Rev OralBiol Med,1992,3(4):307-332.
    [19] Levy E, Jaskolski M, Grubb A. The role of cystatin C in cerebral amyloid angiopathyand stroke: cell biology and animal models[J]. Brain Pathol,2006,16(1):60-70.
    [20] Tizon B, Ribe E M, Mi W, et al. Cystatin C protects neuronal cells from amy-loid-β-induced toxicity[J]. Journal of Alzheimer's Disease,2010,19(3):885-894.
    [21] Olsson T, Nygren J, Hakansson K, et al. Gene deletion of cystatin C aggravates braindamage following focal ischemia but mitigates the neuronal injury after globalischemia in the mouse[J]. Neuroscience,2004,128(1):65-71.
    [22] Kaur G, Mohan P, Pawlik M, et al. Cystatin C Rescues Degenerating Neurons in aCystatin B-Knockout Mouse Model of Progressive Myoclonus Epilepsy[J]. Am. J.Pathol.,2010,177(5):2256-2267.
    [23] Gauthier S, Kaur G, Mi W, et al. Protective mechanisms by cystatin C in neurodegen-erative diseases[J]. Front Biosci (Schol Ed),2011,3:541-554.
    [24] Tizon B, Sahoo S, Yu H, et al. Induction of autophagy by cystatin C: a mechanismthat protects murine primary cortical neurons and neuronal cell lines[J]. PLoSOne,2010,5(3):e9819.
    [25] Du L, Hickey R W, Bayir H, et al. Starving Neurons Show Sex Difference in Auto-phagy[J]. J. Biol. Chem.,2009,284(4):2383-2396.
    [26] Liu C, Gao Y, Barrett J, et al. Autophagy and protein aggregation after brain ische-mia[J]. J Neurochem,2010,115(1):68-78.
    [27] Puyal J, Clarke P G. Targeting autophagy to prevent neonatal stroke damage[J].Autophagy,2009,5(7):1060-1061.
    [28] Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous sys-tem causes neurodegeneration in mice[J]. Nature,2006,441(7095):880-884.
    [29] Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hy-poxia-ischemia induced brain injury[J]. Neurobiol Dis,2008,32(3):329-339.
    [30] Zhang Y B, Li S X, Chen X P, et al. Autophagy is activated and might protect neuronsfrom degeneration after traumatic brain injury[J]. Neurosci Bull,2008,24(3):143-149.
    [31] He Y, Wan S, Hua Y, et al. Autophagy after experimental intracerebral hemorrhage[J].J Cereb Blood Flow Metab,2008,28(5):897-905.
    [32] Lee J Y, He Y, Sagher O, et al. Activated autophagy pathway in experimental su-barachnoid hemorrhage[J]. Brain Res,2009,1287:126-135.
    [33]石晓勇,陈罡,王中.大鼠蛛网膜下腔出血后脑皮层中LC3和Beclin-1表达的变化[J].临床神经外科杂志,2011,08(3):119-121.
    [34] Wang Z, Shi X Y, Yin J, et al. Role of autophagy in early brain injury after experi-mental subarachnoid hemorrhage[J]. J Mol Neurosci,2012,46(1):192-202.
    [35] Rothoerl R D, Ringel F. Molecular mechanisms of cerebral vasospasm followinganeurysmal SAH[J]. Neurological Research,2007,29(7):636-642.
    [36] Borel C O, Mckee A, Parra A, et al. Possible role for vascular cell proliferation incerebral vasospasm after subarachnoid hemorrhage[J]. Stroke,2003,34(2):427-433.
    [37] Kim P, Sundt T J, Vanhoutte P M. Alterations of mechanical properties in caninebasilar arteries after subarachnoid hemorrhage[J]. J Neurosurg,1989,71(3):430-436.
    [38] Sprague A H, Khalil R A. Inflammatory cytokines in vascular dysfunction and vascu-lar disease[J]. Biochem Pharmacol,2009,78(6):539-552.
    [39] Zhou Y, Martin R D, Zhang J H. Advances in experimental subarachnoid hemor-rhage[J]. Acta Neurochir Suppl,2011,110(Pt1):15-21.
    [40] Munakata A, Ohkuma H, Nakano T, et al. Effect of a free radical scavenger, edara-vone, in the treatment of patients with aneurysmal subarachnoid hemorrhage[J].Neurosurgery,2009,64(3):423-428,428-429.
    [41] Chyatte D, Rusch N, Sundt T J. Prevention of chronic experimental cerebral vaso-spasm with ibuprofen and high-dose methylprednisolone[J]. J Neurosurg,1983,59(6):925-932.
    [42] Peterson J W, Nishizawa S, Hackett J D, et al. Cyclosporine A reduces cerebral vaso-spasm after subarachnoid hemorrhage in dogs[J]. Stroke,1990,21(1):133-137.
    [43]王中,周岱,鲍耀东.免疫抑制剂-环孢菌素A治疗脑血管痉挛的实验研究[J].中华神经外科杂志,2003,19(4):252-254.
    [44] Bavbek M, Polin R, Kwan A L, et al. Monoclonal antibodies against ICAM-1andCD18attenuate cerebral vasospasm after experimental subarachnoid hemorrhage inrabbits[J]. Stroke,1998,29(9):1930-1935,1935-1936.
    [45] Zhou C, Yamaguchi M, Kusaka G, et al. Caspase inhibitors prevent endothelial apop-tosis and cerebral vasospasm in dog model of experimental subarachnoid hemor-rhage[J]. J Cereb Blood Flow Metab,2004,24(4):419-431.
    [46] Levine B, Mizushima N, Virgin H W. Autophagy in immunity and inflammation[J].Nature,2011,469(7330):323-335.
    [47] Bensaad K, Cheung E C, Vousden K H. Modulation of intracellular ROS levels byTIGAR controls autophagy[J]. EMBO J,2009,28(19):3015-3026.
    [48] Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pa-thology[J]. Trends Biochem Sci,2011,36(1):30-38.
    [49] Eisenberg-Lerner A, Bialik S, Simon H U, et al. Life and death partners: apoptosis,autophagy and the cross-talk between them[J]. Cell Death Differ,2009,16(7):966-975.
    [50] Ravikumar B, Berger Z, Vacher C, et al. Rapamycin pre-treatment protects againstapoptosis[J]. Hum Mol Genet,2006,15(7):1209-1216.
    [1] Rothoerl R D, Ringel F. Molecular mechanisms of cerebral vasospasm followinganeurysmal SAH[J]. Neurological Research,2007,29(7):636-642.
    [2] Bederson J B, Connolly E S, Batjer H H, et al. Guidelines for the management ofaneurysmal subarachnoid hemorrhage[J]. Stroke,2009,40(3):994-1025.
    [3] Mayberg M R, Batjer H H, Dacey R, et al. Guidelines for the management of aneurys-mal subarachnoid hemorrhage. A statement for healthcare professionals from a spe-cial writing group of the Stroke Council, American Heart Association.[J]. Circula-tion,1994,90(5):2592.
    [4] Haley E C, Kassell N F, Torner J C.The international cooperative study on the timingof aneurysm surgery. The North American experience[J]. Stroke,1992,23(2):205-214.
    [5]冯九庚,封荣华,洪涛.延迟性脑血管痉挛分子机制研究进展[J].中国脑血管病杂志,2005,2(011):525-528.
    [6] Wickman G, Lan C, Vollrath B. Functional roles of the rho/rho kinase pathway andprotein kinase C in the regulation of cerebrovascular constriction mediated by hemo-globin: relevance to subarachnoid hemorrhage and vasospasm[J]. Circ Res,2003,92(7):809-816.
    [7] Sehba F A, Schwartz A Y, Chereshnev I, et al. Acute decrease in cerebral nitric oxidelevels after subarachnoid hemorrhage[J]. Journal of Cerebral Blood Flow&Metabo-lism,2000,20(3):604-611.
    [8] Jung C S, Iuliano B A, Harvey-White J, et al. Association between cerebrospinal fluidlevels of asymmetric dimethyl-L-arginine, an endogenous inhibitor of endothelial ni-tric oxide synthase, and cerebral vasospasm in a primate model of subarachnoid hem-orrhage[J]. Journal of neurosurgery,2004,101(5):836-842.
    [9] Tierney T S, Clatterbuck R E, Lawson C, et al. Prevention and reversal of experimentalposthemorrhagic vasospasm by the periadventitial administration of nitric oxide froma controlled-release polymer[J]. Neurosurgery,2001,49(4):945.
    [10] Harrod C G, Bendok B R, Batjer H H. Prediction of cerebral vasospasm in patientspresenting with aneurysmal subarachnoid hemorrhage: a review[J]. Neurosurgery,2005,56(4):633.
    [11] Pluta R M. Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, andproposed treatment[J]. Pharmacol Ther,2005,105(1):23-56.
    [12] Barth M, Capelle H H, M U Nch E, et al. Effects of the selective endothelin A (ET A)receptor antagonist Clazosentan on cerebral perfusion and cerebral oxygenation fol-lowing severe subarachnoid hemorrhage--preliminary results from a randomizedclinical series[J]. Acta neurochirurgica,2007,149(9):911-918.
    [13] Clark J F, Sharp F R. Bilirubin oxidation products (BOXes) and their role in cerebralvasospasm after subarachnoid hemorrhage[J]. J Cereb Blood Flow Metab,2006,26(10):1223-1233.
    [14] Pyne-Geithman G J, Morgan C J, Wagner K, et al. Bilirubin production and oxidationin CSF of patients with cerebral vasospasm after subarachnoid hemorrhage[J]. J CerebBlood Flow Metab,2005,25(8):1070-1077.
    [15] Schoch B, Regel J P, Wichert M, et al. Analysis of intrathecal interleukin-6as a po-tential predictive factor for vasospasm in subarachnoid hemorrhage[J]. Neurosurgery,2007,60(5):828-836,828-836.
    [16] Link T E, Murakami K, Beem-Miller M, et al. Oxyhemoglobin-induced expression ofR-type Ca2+channels in cerebral arteries[J]. Stroke,2008,39(7):2122-2128.
    [17] Fountas K N, Tasiou A, Kapsalaki E Z, et al. Serum and cerebrospinal fluidC-reactive protein levels as predictors of vasospasm in aneurysmal subarachnoidhemorrhage. Clinical article[J]. Neurosurg Focus,2009,26(5):E22.
    [18] Bowman G, Bonneau R H, Chinchilli V M, et al. A novel inhibitor of inflammatorycytokine production (CNI-1493) reduces rodent post-hemorrhagic vasospasm[J].Neurocrit Care,2006,5(3):222-229.
    [19] Zubkov A Y, Tibbs R E, Clower B, et al. Apoptosis in basilar endothelial cells in acanine double hemorrhage model[J]. Acta Neurochir Suppl,2001,77:29-31.
    [20] Jayaraman T, Berenstein V, Li X, et al. Tumor necrosis factor alpha is a key modula-tor of inflammation in cerebral aneurysms[J]. Neurosurgery,2005,57(3):558-564,558-564.
    [21] Linfante I, Delgado-Mederos R, Andreone V, et al. Angiographic and hemodynamiceffect of high concentration of intra-arterial nicardipine in cerebral vasospasm[J].Neurosurgery,2008,63(6):1080-1086,1086-1087.
    [22] Hui C, Lau K P. Efficacy of intra-arterial nimodipine in the treatment of cerebral va-sospasm complicating subarachnoid haemorrhage[J]. Clin Radiol,2005,60(9):1030-1036.
    [23] Feigin V L, Rinkel G J, Algra A, et al. Calcium antagonists in patients with aneurys-mal subarachnoid hemorrhage:a systematic review[J].Neurology,1998,50(4):876-883.
    [24] Haley E J, Kassell N F, Torner J C, et al.A randomized trial of two doses of nicardip-ine in aneurysmal subarachnoid hemorrhage. A report of the Cooperative AneurysmStudy[J]. J Neurosurg,1994,80(5):788-796.
    [25] Tejada J G, Taylor R A, Ugurel M S, et al. Safety and feasibility of intraarterialnicardipine for the treatment of subarachnoid hemorrhage-associated vasospasm: ini-tial clinical experience with high-dose infusions[J]. AJNR Am J Neuroradiol,2007,28(5):844-848.
    [26] van den Bergh W M, Algra A, van der Sprenkel J W, et al. Hypomagne-semia afteraneurysmal subarachnoid hemorrhage[J].Neurosurgery,2003,52(2):276-281,281-282.
    [27] Ram Z, Sadeh M, Shacked I, et al. Magnesium sulfate reverses experime-ntal delayedcerebral vasospasm after subarachnoid hemorrhage in rats[J]. Stroke,1991,22(7):922-927.
    [28] van den Bergh W M, Algra A, van Kooten F, et al. Magnesium sulfate in aneurysmalsubarachnoid hemorrhage: a randomized controlled trial[J]. Stroke,2005,36(5):1011-1015.
    [29] Macdonald R L, Curry D J, Aihara Y, et al. Magnesium and experimental vaso-spasm[J]. J Neurosurg,2004,100(1):106-110.
    [30] Tanaka K, Minami H, Kota M, et al. Treatment of cerebral vasospasm with in-tra-arterial fasudil hydrochloride[J]. Neurosurgery,2005,56(2):214-223,214-223.
    [31] Wu C T, Wong C S, Yeh C C, et al. Treatment of cerebral vasospasm after subarach-noid hemorrhage--a review[J]. Acta Anaesthesiol Taiwan,2004,42(4):215-222.
    [32] Makita T, Sucov H M, Gariepy C E, et al. Endothelins are vascular-deri-ved axonalguidance cues for developing sympathetic neurons[J]. Nature,2008,452(7188):759-763.
    [33] Nirei H, Hamada K, Shoubo M, et al. An endothelin ETA receptor antag-onist,FR139317, ameliorates cerebral vasospasm in dogs[J]. Life Sci,1993,52(23):1869-1874.
    [34] Kwan A L, Bavbek M, Jeng A Y, et al. Prevention and reversal of cerebral vasospasmby an endothelin-converting enzyme inhibitor, CGS26303, in an experimental modelof subarachnoid hemorrhage[J]. J Neurosurg,1997,87(2):281-286.
    [35] Macdonald R L, Kassell N F, Mayer S, et al. Clazosentan to overcome neurologicalischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1):randomized, double-blind, placebo-controlled phase2dose-finding trial[J]. Stroke,2008,39(11):3015-3021.
    [36] Tseng M Y, Czosnyka M, Richards H, et al. Effects of acute treatment with pravas-tatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneu-rysmal subarachnoid hemorrhage: a phase II randomized placebo-controlled trial[J].Stroke,2005,36(8):1627-1632.
    [37] Lynch J R, Wang H, Mcgirt M J, et al. Simvastatin reduces vasospasm after aneurys-mal subarachnoid hemorrhage: results of a pilot randomized clinical trial[J].Stroke,2005,36(9):2024-2026.
    [38] Vergouwen M D, de Haan R J, Vermeulen M, et al. Effect of statin treatment on va-sospasm, delayed cerebral ischemia, and functional outcome in patients with aneu-rysmal subarachnoid hemorrhage: a systematic review and meta-analysis update [J].Stroke,2010,41(1):e47-e52.
    [39] Amin-Hanjani S, Ogilvy C S, Barker F N. Does intracisternal thrombolysis preventvasospasm after aneurysmal subarachnoid hemorrhage? A meta-analysis[J]. Neuro-surgery,2004,54(2):326-334,334-335.
    [40] Kawamoto S, Tsutsumi K, Yoshikawa G, et al. Effectiveness of the head-shakingmethod combined with cisternal irrigation with urokinase in preventing cerebral va-sospasm after subarachnoid hemorrhage[J]. J Neurosurg,2004,100(2):236-243.
    [41] Kinouchi H, Ogasawara K, Shimizu H, et al. Prevention of symptomatic vasospasmafter aneurysmal subarachnoid hemorrhage by intraoperative cisternal fibrinolysis us-ing tissue-type plasminogen activator combined with continuous cisternal drainage[J].Neurol Med Chir (Tokyo),2004,44(11):569-575,576-577.
    [42] Munakata A, Ohkuma H, Shimamura N. Effect of a free radical scavenger, edaravone,on free radical reactions: related signal transduction and cerebral vasospasm in therabbit subarachnoid hemorrhage model[J]. Acta Neurochir Suppl,2011,110(Pt2):17-22.
    [43] Munakata A, Ohkuma H, Nakano T, et al. Effect of a free radical scavenger, edara-vone, in the treatment of patients with aneurysmal subarachnoid hemorrhage[J]. Neu-rosurgery,2009,64(3):423-428,428-429.
    [44] Macdonald R L, Zhang J, Sima B, et al. Papaverine-sensitive vasospasm and arterialcontractility and compliance after subarachnoid hemorrhage in dogs[J]. Neurosurgery,1995,37(5):962-967,967-968.
    [45] Ramdurg S R, Suri A, Gupta D, et al. Magnetic resonance imaging evaluation of su-barachnoid hemorrhage in rats and the effects of intracisternal injection of papaverineand nitroglycerine in the management of cerebral vasospasm[J]. NeurolIndia,2010,58(3):377-383.
    [46] Omeis I, Neil J A, Murali R, et al. Treatment of cerebral vasospasm with biocompati-ble controlled-release systems for intracranial drug delivery[J]. Neurosurgery,2008,63(6):1011-1019,1019-1021.
    [47]张金男,于莹,高宇飞等.生物蛋白胶罂粟碱缓释物对动脉瘤性蛛网膜下腔出血后脑血管痉挛的作用[J].中国实验诊断学,2010,14(7):1106-1107.
    [48] Guven E, Guven E O, Bayram C, et al. Preparation and characterization of papaver-ine-loaded poly[(r)-3-hydroxybutyrate] membranes to be used in the prevention ofvasospasm[J]. PDA J Pharm Sci Technol,2010,64(4):316-326.
    [49] Sakabe T, Maekawa T, Ishikawa T, et al. The effects of lidocaine on canine cerebralmetabolism and circulation related to the electroencephalogram[J]. Anesthesiology,1974,40(5):433-441.
    [50] Lei B, Popp S, Capuano-Waters C, et al. Lidocaine attenuates apoptosis in theischemic penumbra and reduces infarct size after transient focal cerebral ischemia inrats[J]. Neuroscience,2004,125(3):691-701.
    [51]施贤清,廖大清,尹妙妙,等.经枕大池注入利多卡因对兔蛛网膜下腔出血的脑保护作用[J].中国神经免疫学和神经病学杂志,2008,15(5):368-370,373.
    [52] Origitano T C, Wascher T M, Reichman O H, et al. Sustained increased cerebralblood flow with prophylactic hypertensive hypervolemic hemodilution ("triple-H"therapy) after subarachnoid hemorrhage[J]. Neurosurgery,1990,27(5):729-739,739-740.
    [53] Solenski N J, Haley E J, Kassell N F, et al. Medical complications of aneurysmal su-barachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Par-ticipants of the Multicenter Cooperative Aneurysm Study[J]. Crit Care Med,1995,23(6):1007-1017.
    [54] Provencio J J, Vora N. Subarachnoid hemorrhage and inflammation: bench to bedsideand back[J]. Semin Neurol,2005,25(4):435-444.
    [55] Yoshimoto T, Shirasaka T, Fujimoto S, et al. Cilostazol may prevent cerebral vaso-spasm following subarachnoid hemorrhage[J]. Shinkei geka,2009,49(6):235-241.
    [56] Tseng M Y, Hutchinson P J, Richards H K, et al. Acute systemic erythropoietin ther-apy to reduce delayed ischemic deficits following aneurysmal subarachnoid hemor-rhage: a Phase II randomized, double-blind, placebo-controlled trial. Clinical article[J].J Neurosurg,2009,111(1):171-180.
    [57] Fraticelli A T, Cholley B P, Losser M R, et al. Milrinone for the treatment of cerebralvasospasm after aneurysmal subarachnoid hemorrhage[J].Stroke,2008,39(3):893-898.
    [58] Yoneda H, Shirao S, Kurokawa T, et al. Does eicosapentaenoic acid (EPA) inhibitcerebral vasospasm in patients after aneurysmal subarachnoid hemorrhage?[J]. ActaNeurol Scand,2008,118(1):54-59.
    [59] Kwon O Y, Kim Y J, Kim Y J, et al. The Utility and Benefits of External LumbarCSF Drainage after Endovascular Coiling on Aneurysmal Subarachnoid Hemor-rhage[J]. J Korean Neurosurg Soc,2008,43(6):281-287.
    [60] Klimo P J, Kestle J R, Macdonald J D, et al. Marked reduction of cerebral vasospasmwith lumbar drainage of cerebrospinal fluid after subarachnoid hemorrhage[J]. JNeurosurg,2004,100(2):215-224.
    [61] Biondi A, Ricciardi G K, Puybasset L, et al. Intra-arterial nimodipine for the treatmentof symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage: pre-liminary results[J]. AJNR Am J Neuroradiol,2004,25(6):1067-1076.
    [62] Song J K, Elliott J P, Eskridge J M. Neuroradiologic diagnosis and treatment of vaso-spasm[J]. Neuroimaging Clin N Am,1997,7(4):819-835.
    [63] Eskridge J M, Mcauliffe W, Song J K, et al. Balloon angioplasty for the treatment ofvasospasm: results of first50cases[J]. Neurosurgery,1998,42(3):510-516,516-517.
    [64] Schmid-Elsaesser R, Kunz M, Zausinger S, et al. Intravenous magnesium versus ni-modipine in the treatment of patients with aneurysmal subarachnoid hemorrhage: arandomized study[J]. Neurosurgery,2006,58(6):1054-1065,1054-1065.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700