用户名: 密码: 验证码:
细晶钨合金穿甲弹芯侵彻机理分析及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高杆式穿甲弹芯的侵彻威力,论文拟研制一种新型细晶结构钨合金穿甲弹芯材料,在侵彻过程中容易发生绝热剪切和“自锐”效应,以代替贫铀合金。普通钨合金是绝热剪切不敏感材料,侵彻过程中弹芯头部首先形成粗大“蘑菇头”。晶粒细化能有效增加晶界面积,提高钨合金的强度和硬度,及高温塑性变形速率,是提高钨合金力学性能和绝热剪切敏感性的一种可行方法。
     论文对钨合金杆式弹芯侵彻45#钢和603钢靶后的残余弹体和弹孔进行微、细观组织检测,并利用LS-DYNA程序对侵彻过程进行有限元模拟,深入分析弹、靶相互作用过程和变形失效机制。钨合金穿甲弹芯侵彻过程中弹芯头部3-4mm范围内产生较大的塑性变形,初始近似球形的钨晶粒被压扁成细长状,发生明显的塑性变形。45#钢的破坏为典型的延性扩孔,侵彻过程中不形成绝热剪切带。对603钢的侵彻,钨合金弹芯“蘑菇头”前端约1mm位置产生绝热剪切带,微裂纹在剪切带中形成和扩展,造成弹芯材料的质量消蚀。在603钢靶板的弹坑表面观测到绝热剪切带和裂纹分布,其中弹坑底部1-2mm处发现局部围绕弹坑分布的冠状裂纹,其形成原因可由绝热剪切带演化而来,或解释为弹、靶接触区域局部卸载波的相互作用引起的拉伸破坏。冠状裂纹的发现,可揭示装甲板弹坑形成的微、细观机制。
     绝热剪切沿最大剪应力方向发展,研究尺度属于材料结构的细观演化行为。本文利用可移动元胞自动机方法(MCA),在细观尺度上构造了钨合金两相特征的计算模型,并进行剪切失效行为的数值模拟。结果表明,细观尺度下的剪切变形表现为试件内各点速度场涡流形态的不断演化以满足变形协调;最后在局部涡流干涉处质点无法满足变形协调时发生微损伤,并诱发剪切变形局部化的快速发展和材料的失效。钨合金的剪切失效明显受晶粒大小影响,晶粒越细,需要的临界剪应力较小,剪切失效也越早发生。
     利用雾化干燥法制取钨纳米复合粉末和采用二次烧结工艺成功制备不同化学成分的细晶钨合金弹芯材料。得到细晶钨合金的晶粒平均尺寸为10-20μm,并具有更高的硬度。分别使用14.5mm机枪次口径穿甲弹和30mm次口径杆式尾翼弹对制备的细晶钨合金弹芯侵彻不同特性靶板进行对比试验,试验结果验证了细晶弹芯较普通弹具有更好的.侵彻性能。
The purpose of the thesis is to develop a new fine-grain stungsten heavy alloy material which may improves the penetration performance of long-rod penetrator. The fine-grain penetrator is prone to adiabatic shear and induces self-sharpening behavior. Conventional tungsten heavy alloy is well known as insensitive to adiabatic shear and such likely to form mushroom head-like during penetration. Refinement of tungsten grain size can increase the boundary area and enhances the strength and hardness and as well as plastic deformation flow speed under high temperature, which is an effective method to promote the mechanics capability and the sensitiveness of adiabatic shear.
     The residual penetrators of tungsten heavy alloy and the shot holes of45#steel and603steel were performed respectively by microscopical observation. And also the simulations of penetrating into targets by tungsten long-rod penetrator were conducted by LS-DYNA. As a result, a large mushroom head-like formed in the range of3-4mm ahead of penetrator, which has caused by large plastic deformation of W grains that compressed from sphericity to slender body. It was obvious ductile failure for45#steel, the adiabatic shear band has never formed because of uniform deformation. While for the penetration of603steel, the adiabatic band was observed on the position about lmm ahead of the mushroom, and some micro-cracks were also distributed along the shear band. What important that large coronary cracks beneath the crater about1-2mm were also observed except for some adiabatic bands. Those coronary cracks may evolve from the adiabatic bands, another assumption was that caused by tensile stress which has induced by the superposition of rarefaction at some local areas of impacted interface. And that could reveal the microscopical mechanism of the formation of the crater.
     The adiabatic shear band generally distributes on the direction of maximum shear stress. And all of indicates that it is a mesoscale behavior which affected by internal-structure of materials. Movable cellular Automata method (MCA) was employed to fabricate the interior structure of tungsten alloy, and further investigation of the shear deformation failure behavior considering the meso-structure features such as the influence of grains size on shear mechanics capacity have been also discussed. From simulation, the vortex-morphology would change continually to sustain the global deformation field. Then the consistency of deformation was lost because of micro-damage for stress concentration between local vortexes, which finally results in failure of the material. It was also proved that the fine grain corresponding low critical stress for fracture and premature instability failure.
     W nanocomposite powders were synthesized by means of improved spray drying, and two steps sintering process were performed to the preparation of fine grain tungsten heavy alloy with series of different composition. The W grains varied10-20μm diameter, which was fine comparatively to conventional tungsten heavy alloy, and the hardness were also improved. The14.5mm and30mm normal projectiles penetrating into defferent armor plates were carried out in order to test the penetration performance of the fine grain tungsten alloy. The results indicats that fine grain tungsten alloy seems more sensitivity to adiabatic shear and self-sharpening behavior, and exhibits better penetration performance.
引文
[1]隋树元,王树山.终点效应学.北京:国防工业出版社,2000
    [2]张国伟.终点效应及靶场试验.北京:北京理工大学出版社,2009
    [3]赵国志.穿甲工程力学.北京:兵器工业出版社,1992
    [4]钱伟长.穿甲力学.北京:国防工业出版社,1984
    [5]赵慕岳,范景莲,王伏生.我国钨基高密度合金的发展现状与展望.中国钨业,1999,14(5):38-43
    [6]胡兴军.高密度钨合金在弹用材料中的应用及研究进展.稀有金属与硬质合金,2009,37(3):65~67
    [7]张存信,秦丽柏,米文宇等.我国穿甲弹用钨合金研究的最新进展与展望.粉末冶金材料科学与工程,2006,11(3):127~132
    [8]A. Bose, H. Couque, J. Lankford. Critical developments in tungsten heavy alloys. In: Bose A, Dowing R J, eds. Proceedings of International Conference on Tungsten and Tungsten Alloys, Princeton, NJ:MPIF,1992:291-292
    [9]白新德,姜作中,林伟.贫铀武器的发展现状及前景.稀有金属材料与工程,2003,32(6):412~416
    [10]祝志祥,程兴旺,才鸿年.高侵彻性能钨合金研究进展.兵器材料科学与工程,2006,29(6):69~72
    [11]范景莲.钨合金及其制备新技术.北京:冶金工业出版社,2006
    [12]田开文,尚福军,祝理君.具备绝热剪切敏感性的钨合金穿甲弹材料研究状况.兵器材料科学与工程,2005,28(4):53~56
    [13]程兴旺,王富耻,李树奎.新型自锐化钨合金材料研究.稀有金属材料学报,2006,35(11):1761~1764
    [14]扬扬,程信林.绝热剪切带的研究现状及发展趋势.中国有色金属学报,2002,12(3):401~408
    [15]叶途明,易建宏,彭元东.纳米晶高密度钨合金的研究进展.稀有金属,2004,18(4):726~730
    [16]刘桂荣,王玲,周武平.细晶钨合金的绝热剪切敏感性.粉末冶金材料科学与工程,2009,14(5):295~298
    [17]H.T. Wang, Z.Z. Fang, K.S. Hwang, el at. Sinter-ability of nanocrystalline tingsten powder. Int. Journal of Refractory Metals & Hard Materials.2010,28:312-316.
    [18]Yuji Kitsunai, Hiroaki Kurishita, Hideo Kayano. Microstructure and impact properties of ultrafine grained tungsten alloys dispersed with TiC. Journal of Nuclear Materials,1999, 271:423-428
    [19]董永忠,陈廷芬.高速长杆穿甲弹垂直穿甲过程的实验研究.兵工学报,1981,2:36~47
    [20]金泉林,黄宗伟,叶以同,金美珍.长杆弹贯穿厚靶的实验研究与弹塑性分析.力学学报,1987,19(S):179~188
    [21]兰彬.长杆弹侵彻半无限靶的数值模拟和理论研究.中国科学技术大学博士学位论文,2008
    [22]李金泉.穿甲侵彻机理及绝热剪切带特性研究.南京理工大学博士学位论文,2005
    [23]U. Gerlach. Microstructural analysis of residual projectiles-a new method to explain penetration mechanisms. Metallurgical Transactions A,1986,17:435-442
    [24]J. Lankford, C.E. Anderson, S.A. Royal, et al. Penetration erosion phenomenology. Int. J. Impact Engng,1996,18(5):565-578
    [25]张宝平,黄风雷,焦彤.侵彻环境下两种钨合金的细观响应特性.宁波理工大学学报,2003,16(4):447~452
    [26]焦彤,张宝平,张海涛.钨合金模拟弹侵彻钢板的试验与细观响应分析.有色金属,2000,52(4):87~91
    [27]焦彤,张宝平,张海涛.90W和93W钨合金动态加载下微细观响应分析.中国有色金属学报,2001,11(1):92~96
    [28]许沐华,张刚明,王肖钧.预扭转钨合金杆弹侵彻能力的细观研究.爆炸与冲击,2000,20(4):143~149
    [29]段占强,丛美华,苏会和.45#钢高速冲击穿孔的显微组织.材料研究学报,2001,15(4):403~408
    [30]段占强,程国强,李守新.高速冲击下钢板的微、细观组织及绝热剪切带.金属学报,2003,39(5):486~491
    [31]李金泉,黄德武,段占强.穿甲侵试验靶弹孔微、细观结构和绝热剪切带特性.北京科技大学学报,2003,25(6):545~548
    [32]李金泉,黄德武,段占强.穿甲侵彻过程中靶板内绝热剪切带特性及形成原因分析.兵工学报,2005,26(1):60~63
    [33]李金泉,黄德武,段占强.高速侵彻装甲钢绝热剪切带特性研究.弹道学报,2003,15(3):86~91
    [34]李金泉,彭守凡,黄德武.穿甲试验靶板中绝热剪切带特性及裂纹的关系.兵器材料科学与工程,2007,30(6):29~32
    [35]C. Kennedy, L.E. Murr. Comparison of tungsten heavy-alloy rod penetration into ductile and hard metal targets:microstructural analysis and computer simulations. Materials Science and Engineering A,2002,325:131-143
    [36]马晓青,韩锋.高速碰撞动力学.北京:国防工业出版社,1998
    [37]杨桂通.塑性动力学.北京:高等教育出版社,2000
    [38]迈耶斯.材料的动力学行为.张庆明,刘彦等译.北京:国防工业出版社,2006
    [39]李裕春,时党勇,赵远.ANSYS 10.0/LS-DYAN基础理论与工程实践.北京:中国水利水电出版社,2006
    [40]W.W. Johnson, C.E. Anderson. History and application of hydrocodes in dypervelocity impact. International Journal of Impact Engineering,1987,5:423-439
    [41]许沐华,王肖钧,张刚明.预扭转钨合金杆弹侵彻钢靶的数值模拟.爆炸与冲击,2002,22(3):210-215
    [42]兰彬,文鹤鸣.钨合金长杆弹侵彻半无限钢靶的数值模拟及分析.高压物理学报,2008,22(3):245-252
    [43]赵晓宁,何勇,张先锋.高速杆式弹侵彻有限厚靶板数值模拟.系统仿真学报,2010,22(2):340~343
    [44]Z. Rosenberg, E. Dekel. A Computational Study of the Relations between Material Properties of Long-Rod Penetrators and the Ballistic Performance. Int J Impact Eng,1998, 21(4):283-296
    [45]Z. Rosenberg, E. Dekel. A Computational Study of the Influence of Projectile Strength on the Performance of Long-Rod Penetrators. Int J Impact Eng,1996,18(6):671-677
    [46]Z. Rosenberg, E. Dekel. A numerical study of the cavity expansion process and its application to long-rod penetration mechanics. International Journal of Impact Engineer,2008, 35:147-154
    [47]Z. Rosenberg, E. Dekel. On the deep penetration of deforming long rods. International Journal of Solids and Structures,2010,47:238-250
    [48]Z. Rosenberg, E. Dekel. On the deep penetration and plate peforation by rigid projectile. International Journal of Solids and Structures,2009,46:4169-4180
    [49]S. Yadav, D.R. Chichili, K.T. Ramesh. The mechanical response of a 6061-T6 Al/Al2O3 metal matrix composite at high rates of deformation. Acta Metallurgical Materials,1995, 43(12):4453-4464
    [50]S.G Psakhie, S.Yu. Korostelev, A.Yu. Smolin. Movable cellular automata method as a tool for physical mesomechanicsof materials. Physical Mesomechanics,1998, 1(1):89-101
    [51]S.G. Phaskhie, A.Yu. Smolin, E.M. Tatarintsev. Discrete approach to study fracture energy absorption under dynamic loading. Computational Materials Science,2000, 19:179-182
    [52]V.L. Popov, S.G Psakhie. Physical nature and properties of dynamic surface layers in friction. Tribology International,2006,39:426-430
    [53]A.I. Dmitriev, V.L. Popov, S.G. Psakhie. Simulation of surface topography with the method of movable cellular automata. Tribology International,2006,39:444-449
    [54]K. Chen, D.W. Huang, E.V. Shiko. Strength analysis of ceramics under constrants by Movable cellular automata method. Journal of aircraft of AIAA.2004,41(3):641-644.
    [55]陈克,黄德武,S.G Psakhie.模拟长杆弹侵彻混凝土靶的MCA方法.爆炸与冲击,2004,24(2):127~132
    [56]陈克,黄德武.用MCA方法模拟混凝土在冲击载荷作用下的损伤和破坏过程.兵工学报,2002,23(S):66-69
    [57]陈克,黄德武,何俊.MCA方法模拟研究骨料对混凝土性能的影响.兵器材料科学与工程,2005,28(1):31-34
    [58]王猛,王建,黄德武.钨合金穿甲弹侵彻靶板开坑阶段的MCA模拟.沈阳理工大学学报,2006,25(2):84~88
    [59]黄德武,陈克.模拟材料损伤的移动元胞自动机法.南京理工大学学报,2005,40(3):292~295
    [60]黄德武,张健.用移动元胞自动机法模拟杆式穿甲弹长细比对侵彻过程的影响.爆炸与冲击,2010,30(4):407~412
    [61]S.M. Walley. Shear Localization:A Historical Overview. Metallurgical and Materials Transactions A,2007,38A:2629-2654
    [62]肖大武,李英雷,蔡灵仓.绝热剪切研究进展.实验力学,2010,25(4):463~475
    [63]徐永波,白以龙.动态载荷下剪切变形局部化、微结构演化与剪切断裂研究进展.力学进展,2007,37(4):496-516
    [64]N.S. Medyanik, K.L. Wing, F.L. Shao. On criteria for dynamic adiabatic shear band propagation. Journal of the Mechanics and Physics of Solid,2007,55:1439-1461
    [65]A. Marchand, J. Duffy. An experimental study of the formation process of adiabatic shear bands in a structural stell. J Mech Phys Solids,1988,36(3):251-283
    [66]A. V. Dobromyslov, N.I. Taluts, N.V. Kazantseva. Formation of adiabatic shear bands and instability of plastic flow in Zr and Zr-Nb alloys in spherical stress waves. Scripta mater, 2000,42:61-71
    [67]A.J. Sunwoo, R. Becker, D.M. Goto, et al. Adiabatic shear band formation in explosively driven Fe-Ni-Co alloy cylinders. Scripta Materialia,2006,55:247-250
    [68]G.A. Li, L. Zhen, C. Lin, etc. Deformation localization and recrystallization in TC4 alloy under impact condition. Materials Science and Engineering A,2005,395:98-101
    [69]F. Martinez, L.E. Murr, A. Ramirez. Dynamic deformation and adiabatic shear microstructures associated with ballistic plug formation and fracture in Ti-6A1-4V targets. Materials Science and Engineering A,2007,455:581-589
    [70]M.A. Meyers, Y.B. Xu, Q. Xue. Microstructural evolution in adiabatic shear localization in stainless steel. Acta Materialia,2003,51:1307-1325
    [71]K. Cho, Y.C. Chi, J. Duffy. Microscopic Observation of Adiabatic Shear Bands in Three Different Steel. Metallurgical transactions A,1990,21A:1161-1175
    [72]A.G. Odershi, M.N. Bassim. Dynamic shear band propagation and failure in AISI 4340 steel. Journal of Materials Processing Technology,2005,169:150-155
    [73]B.F. Wang, Y. Yang. Microstructure evolution in adiabatic shear band in fine grain sized Ti-3Al-5Mo-4.5V alloy. Materials Science and Engineering A,2008,473:306-311
    [74]汪冰峰.钛及钛合金中绝热剪切带微、细观结构演化及其集体行为研究.中南大学博士学位论文,2006
    [75]L.E. Murr, A.C. Ramirez, S.M. Gaytan. Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti-6A1-4V targets. Materials Science and Engineering A,2009,516:206-216
    [76]H. C. Thomas.材料力学行为.北京:机械工业出版社,2004
    [77]唐新文,罗述东.添加钻对W-Ni-Fe高密度合金性能的影响.粉末冶金材料科学与工程,2003,8(3):196~200
    [78]王星,李树奎,王迎春.添加Al2O3对95W-Ni-Fe合金微、细观组织与力学性能的影响.南京理工大学学报,2009,45(2):304~309
    [79]陈勇,吴玉程,于福文.La203弥散强化钨合金的组织性能研究.稀有金属材料与工程,2007,36(5):822~824
    [80]王迎春,姚志涛,程兴旺.Y203对钨合金微、细观组织与性能的影响.北京理大学学报,2007,27(9):824~827
    [81]王富耻,王迎春,黄国华,等.碳含量对W-Ni-Fe系合金析出相及动态力学性能的影响.粉末冶金技术,1998,16(2):93~96
    [82]张朝晖,王富耻,李树奎.静液挤压钨合金的显微组织与力学性能.中国有色金属学报,2001,11(S):88~91
    [83]王换玉,才鸿年,李刚.液力挤压法制备新型钨合金穿甲弹芯材料技术.金属成形工艺,2003,21(5):35~36
    [84]F.D.S. Marquis, A. Mahajan, A.G. Mamalis. Shock synthesis and densification of tungsten based heavy alloys. Journal of Materials Processing Technology,2005,161:113-120
    [85]Y. Chen, Y.C. Wu, F.W. Yu. Microstructure and mechanical properties of tungsten composites co-strengthened by dispersed TiC and La2O3 particles. International Journal of Refractory Metals & Hard Materials,2008,26:525-529
    [86]Y. Hatano, M. Takamori, K. Nogita. Influence of microstructure of tungsten on solid state reaction rate with amorphous carbon film. Journal of Nuclear Materials,2005,339: 902-906
    [87]ZHANG Li, CHEN Shu, WANG Yuan-jie. Tungsten carbide platelet-containing cemented carbide with yttrium containing dispersed phase. Trans.Nonferrous Met.Soc.China, 2008,18:104-108
    [88]A.Bose, R.A. Coque, J.J. Langford. Development and properties of new tungsten-based composites for penetrators. The International Journal of Power Metallurgy,1992, 28(4):383-394
    [89]A. Bose, S.C. Yang, R.M. German. Development of a new W-Ni-Fe heavy alloy. Advances in Powder Metallurgy,1991,4:425-437
    [90]李云凯,解峰,王富耻,等.高密度合金W-Ni-Mn的绝热剪切破坏研究.爆炸与冲击,2007,27(2):185~189
    [91]R.D. Conner, R.B. Dandliker, V. Scruggs. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites. International Journal of Impact Engineer, 2000,24:435-444
    [92]R.D. Conner, R.B. Dandliker. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cul2.5Ni10Be22.5 Metallic glass matrix composites. Acta mater,1998, 46(17):6089-6102
    [93]荣光,黄德武.钨纤维复合材料穿甲弹芯侵彻时的自锐现象.爆炸与冲击,2009,29(4):351~355
    [94]崔忠圻.金属学与热处理.北京:机械工业出版社,2000
    [95]卢柯,刘学东,胡壮麒.纳米晶体材料的Hall-Petch关系.材料研究学报,1994,8(5):384~391
    [96]唐建成,黄伯云,贺跃辉.Ti-Al基合金中的Hall-Petch关系及影响因素分析.金属学报,2002,38(4):365~368
    [97]J.L. Fan, X. Gong, B. Y. Huang. Dynamic failure and adiabatic shearbands in fine-grain 93W-4.9Ni-2.1Fe alloy with Y2O3 addition under lower high-strain-rate (HSR) compression. Mechanics of Materials,2010,42:24-30.
    [98]S.H. Hong, H.J. Ryu. Combination of mechanical alloying and two-stage sintering of a 93W-5.6Ni-1.4Fe tungsten heavy alloy. Mater Sci Eng A,2003,344:253-260
    [99]范景莲,黄伯云,张传福.纳米钨合金粉末常压烧结的致密化和晶粒长大.中南工业大学学报,2001,32(4):390~394
    [100]范景莲,汪登龙,黄伯云.MA制备W-Ni-Fe纳米复合粉末的工艺优化.中国有色金属学报,2004,14(1):6~12
    [101]唐一科,许静,韦立凡.纳米材料制备方法的研究现状与发展趋势.重庆大学学报,2005,28(1):5-10
    [102]Q. Wei, T. Jiao, K.T. Ramesh. Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression. Acta Materialia,2006, 54:77-87
    [103]Q. Wei, K.T. Ramesh, E. Ma. Plastic flow localization in bulk tungsten with ultrafine microstructure. Appl Phys Letter,2005,86(10):1907-1909
    [104]D.K. Kim, S. Lee, W.H. Baek. Microstructural study of adiabatic shear bands formed by high-speed impact in a tungsten heavy alloy penetrator. Materials Science and Engineering A, 1998,249:197-205
    [105]D.K. Kim, S. Lee, H. J. Ryu. Correlation of Microstructure with Dynamic Deformation Behavior and Penetration Performance of Tungsten Heavy Alloys Fabricated by Mechanical Alloying. MetalLurgical and Materials Transactions A,2000,31:2475-2489
    [106]H.K. Lee, S.I. Cha, H.J. Ryu. Effect of two-stage sintering process on microstructure and mechanical properties of ODS tungsten heavy alloy. Materials Science and Engineering A,2007,458:323-329
    [107]H.J. Ryu, S.H. Hong. Fabrication and properties of mechanically alloyed oxide-dispersed tungsten heavy alloys. Materials Sci Eng A,2003,363:179-184.
    [108]H.K. Lee, I.S. Cha, H.J. Ryu. Effect of oxide dispersoids addition on mechanical properties of tungsten heavy alloy fabricated by mechanical alloying process. Materials Science and Engineering A,2007,453:55-60
    [109]J.L. Fan, X. Gong, B.Y. Huang, el at. Densification behavior of nanocrystalline W-Ni-Fe composite powders prepared by sol-spray drying and hydrogen reduction process. Journal of Alloys and Compounds,2010,489:188-194
    [110]龚星,范景莲,刘涛,等.细晶93W-4.9Ni-2.1Fe合金动态压缩下绝热剪切带的形成及其特征.稀有金属材料与工程,2010,39(8):1390~1394
    [111]刘桂荣,王玲,周武平.细晶钨合金的绝热剪切敏感性.粉末冶金材料科学与工程,2009,14(5):295~298
    [112]刘海燕,宋卫东,宁建国.不同晶粒度钨合金动态力学性能研究.材料工程,2007, 6:3-6
    [113]兰胜威,曾新吾.晶粒度对纯铝动态力学性能的影响.爆炸与冲击,2008,28(5):462-466
    [114]于福文,吴玉程,陈俊凌.纳米TiC颗粒弥散增强超细晶钨基复合材料的组织结构与力学性能.功能材料,2008,39(1):139~142
    [115]Q. Wei, H.T. Zhang, B.E. Schuster. Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion. Acta Materialia, 2006,54:4079-4089
    [116]Jiten Das, U. Ravi Kiran, A. Chakraborty. Hardness and tensile properties of tungsten based heavy alloys prepared by liquid phase sintering technique. Int. Journal of Refractory Metals & Hard Materials,2009,27:577-583
    [117]D. Rittel, Z.G. Wang. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6A14V alloys. Mechanics Materials,2008,40:629-635
    [118]L. Daridon, O. Oussouaddi, S. Ahzi. Influence of the material constitutive models on the adiabatic shear band spacing:MTS, power law and Johnson-Cook Models. International Journal of Solids and Structures,2004,41:3109-3124
    [119]H. Feng, M. N. Bassim. Finite element modeling of the formation of adiabatic shear bands in AISI 4340 steel. Materials Science and Engineering A.1999,266:255-260
    [120]H.A. Grebe, H.R. Pak, M.A. Meyers. Adiabatic shear localization in titanium and Ti-6 pct Al-4 pct V Alloy. Metallurgical Transactions A,1985,16:761-775
    [121]X. Teng, T. Wierzbicki, H. Couque. On the transition from adiabatic banding to fracture. Mechanics of Materials,2007,39:107-125
    [122]胡昌明,贺红亮,胡时胜.45号钢的动态力学性能研究.爆炸与冲击,2003,23(2):188~192
    [123]魏志刚,胡时胜,李永池等.粉末烧结钨合金材料的绝热剪切研究.爆炸与冲击,1999,19(2):158~163
    [124]魏志刚,李永池,李剑荣,等.冲击载荷作用下钨合金材料绝热剪切带形成机理.金属学报,2000,36(12):1263~1268
    [125]张善俊.材料的高温变形与断裂.北京:科学出版社,2007
    [126]申坤,汪明朴,郭明星.Cu-0.23%Al2O3弥散强化铜合金的高温变形特性研究.金属学报,2009,45(5):597~604
    [127]周科朝,黄伯云,曲选辉.细晶TiAl基合金的高温拉伸力学性能.矿冶工程,1999,19(1):67~72
    [128]田宇兴,李述军,郝玉琳.Ti2448合金在不同应变速率下的高温变形机制.中国有 色金属学报,2010,20(1):83~86
    [129]徐英鸽,康进兴,朱金华.93WNiFe合金的高温变形机制.机械工程材料,2002,26(12):24~27
    [130]R.C. Batra, B.M. Love. Consideration of microstructural effects in the analysis of adiabatic shear bands in a tungsten heavy alloy. International Journal of Plasticity,2006, 22:1858-1878
    [131]B.E.潘宁.物理介观力学和材料的计算机辅助设计.北京:冶金工业出版社,2002
    [132]V.E. Panin. Physical Fundamentals of Mesomechanics of Plastic Deformation and Fracture of Solid. Acta Metallurgica Sinica,1997,33(2):187-197
    [133]V.E. Panin, V.E. Egorushkin. Nonequilibrium thermodynamics approach to the mesomechanics of a deformed solid as a multiscale system. Procedia Engineering,2009, 1:113-116
    [134]V.E. Panin, A.V. Panin, D.D. Moiseenko. Physical mesomechanics of a deformed solid as a multilevel system. II.Chessbord-like mesoeffect of the interface in heterogeneous media in external fields. Physical mesomechanics,2007,10:5-14
    [135]D.罗伯.计算材料学.北京:化学工业出版社,2002
    [136]范景莲,黄伯云,张传福.纳米钨合金粉末的制备技术与烧结技术.硬质合金,2001,18(4):225~232
    [137]刘筱玲,宋顺成,黄伟,史洪刚.钨合金基体相原位细观性能的测定.西南交通大学学报,2007,42(4):447~451
    [138]N. Ranc, L. Taravella, V. Pina. Temperature field measurement in titanium alloy during high strain rate loading-Adiabatic shear bands phenomen. Mechanics of Materials,2008, 40:255-270
    [139]黄伯云,范景莲.纳米钨合金材料的研究与应用.中国钨业,2001,16(5-6):38~44
    [140]姚敏琪,卫英慧,胡立青.溶胶-凝胶法制备纳米粉末.稀有金属材料与工程,2002,31(5):325~329
    [141]Jinfeng Zhao, Troy Holland, Cosan Unuvar. Sparking plasma sintering of nanometric tungsten carbide. Int. Journal of Refractory Metal & Hard Materials,2009,27:130-139
    [142]张邦维.纳米材料物理基础.北京:化学工业出版社,2009
    [143]Zhangjian Zhou, Yao Ma, Juan Du. Fabrication and characterization of ultrafine grained tungsten by resistance sintering under ultra-high pressure. Materials Science and Engineering A,2009,505:131-135
    [144]S. Eroglu, T. Baykara. Effects of powder mixing technique and tungsten powder size on the properties of tungsten heavy alloys. Journal of Materials Processing Technology,2000, 103:288-292
    [145]Youngmoo Kim, Kyong Ho Lee, Eun-Pyo Kim. Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process. Int. Journal of Refractory Metals & Hard Materials,2009,27:842-846
    [146]邓忠民,洪友士,朱晨.SPD纳米材料制备方法及其力学特性.力学进展,2003,33(1):56-64.
    [147]林振汉,张玲秀,林钢.喷雾干燥法制备PSZ-3Y粉末的粒度研究.稀有金属,2001,25(1):336~339
    [148]刘广文.喷雾干燥实用技术大全.北京:中国轻工业出版社,2001
    [149]B.H. Kear, R.K. Sadang, M. Jain. Thermal sprayed nanostructured WC/Co hardcoating. Journal of Thermal Spray Technology,2000,9(3):399-406
    [150]杨明川,宋贞祯,卢柯.W-20Cu%纳米复合粉的制备.金属学报,2004,40(6):639~642
    [151]Farid Akhtar. An investigation on the solid state sintering of mechanically alloyed nano-structured 90W-Ni-Fe tungsten heavy alloy. International Journal of Refractory Metals & Hard Materials,2008,26:145-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700